Electronic Supplementary Information for

Visible-light-driven anaerobic oxidative upgrading of biomass-derived HMF for co-production of DFF and H₂ over 1D Cd_{0.7}Zn_{0.3}S/NiSe₂ Schottky junction

Tao Shan, Luteng Luo, Taoran Chen, Lixun Deng, Mengqing Li, Xuhui Yang, Lijuan Shen, Min-Quan Yang*

College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China *Corresponding Author E-mail: <u>yangmq@fjnu.edu.cn</u>

Figure S1. Standard curve of the ICP-OES for Ni^{2+} .

Figure S2. Standard curve of the GC 9790plus for H_2 .

Figure S3. Standard curve of the GC-2030 for DFF.

Figure S4. SEM image of CdS.

Figure S5. SEM image of CdS/NiSe₂ 4%.

Figure S6. SEM image of $Cd_{0.9}Zn_{0.1}S$.

Figure S7. SEM image of Cd_{0.9}Zn_{0.1}S/NiSe₂ 4%.

Figure S8. SEM image of Cd_{0.8}Zn_{0.2}S.

Figure S9. SEM image of $Cd_{0.8}Zn_{0.2}S/NiSe_2$ 4%.

Figure S10. SEM image of $Cd_{0.6}Zn_{0.4}S$.

Figure S11. SEM image of $Cd_{0.6}Zn_{0.4}S/NiSe_2 4\%$.

Figure S12. SEM image of $Cd_{0.5}Zn_{0.5}S$.

Figure S13. SEM image of $Cd_{0.5}Zn_{0.5}S/NiSe_2$ 4%.

Figure S14. SEM image of $Cd_{0.7}Zn_{0.3}S/NiSe_2 2.5\%$.

Figure S15. SEM image of $Cd_{0.7}Zn_{0.3}S/NiSe_2 3.5\%$.

Figure S16. SEM image of $Cd_{0.7}Zn_{0.3}S/NiSe_2 4.6\%$.

Figure S17. XRD patterns of Cd_{0.7}Zn_{0.3}S/NiSe₂ x% composites.

Figure S18. XRD patterns of Cd_{0.7}Zn_{0.3}S, CdS, and ZnS.

Figure S19. XRD patterns of $Cd_{1-x}Zn_xS$ with different Cd and Zn proportions.

Figure S20. XRD patterns of $Cd_{1-x}Zn_xS/NiSe_2$ 4% with different Cd and Zn proportions.

Figure S22. DRS spectra of CdS, ZnS, and $Cd_{0.7}Zn_{0.3}S$ samples.

Figure S23. DRS spectra of $Cd_{0.7}Zn_{0.3}S/NiSe_2 x\%$ samples (x = 0, 2.5, 3.5, 4, 4.6)

Figure S24. Tauc plot for measuring the bandgap of Cd_{0.7}Zn_{0.3}S.

Figure S25. The band structure of bulk NiSe₂.

Figure S26. Nitrogen adsorption-desorption isotherms of $Cd_{0.7}Zn_{0.3}S$ and $Cd_{0.7}Zn_{0.3}S/NiSe_2$ 4%.

Figure S27. Pore size distribution of Cd_{0.7}Zn_{0.3}S and Cd_{0.7}Zn_{0.3}S/NiSe₂ 4%.

Figure S28. GC-MS spectra of the reaction solution analyzed after photocatalytic experiment. Conditions: 100 μ mol HMF, 10 mg Cd_{0.7}Zn_{0.3}S/NiSe₂ 4%, 3 mL CH₃CN, 780 nm $\geq \lambda \geq 400$ nm.

Figure S29. The photoactivity tests of selective HMF oxidation into DFF integrated with H_2 evolution under different concentrations.

Figure S30. SEM image of Cd_xZn_xS NPs

Figure S31. SEM image of $Cd_xZn_{1-x}S$ NPs/NiSe₂ 4% composite.

Figure S32. The photoactivity tests of selective HMF oxidation into DFF integrated with H_2 evolution over different $Cd_{0.7}Zn_{0.3}S$ and $Cd_{0.7}Zn_{0.3}S/NiSe_2$ composites.

Figure S33. The photoactivity tests of selective HMF oxidation into DFF integrated with H₂ evolution under different wavelengths of light.

Figure S34. Photocatalytic cycle test of selective HMF oxidation into DFF integrated with H_2 over $Zn_{0.7}Cd_{0.3}S/NiSe_2$ 4%.

Figure S35. SEM image of Cd_{0.7}Zn_{0.3}S/NiSe₂ 4% after 11 h reaction.

Figure S36. XPS spectra of Zn 2p of $Cd_{0.7}Zn_{0.3}S/NiSe_2$ 4% sample before reaction and after reaction.

Figure S37. XPS spectra of Cd 3d of $Cd_{0.7}Zn_{0.3}S/NiSe_2$ 4% sample before reaction and after reaction.

Figure S38. XPS spectra of S 2p of $Cd_{0.7}Zn_{0.3}S/NiSe_2$ 4% sample before reaction and after reaction.

Figure S39. XPS spectra of Ni 2p of $Cd_{0.7}Zn_{0.3}S/NiSe_2$ 4% sample before reaction and after reaction.

Figure S40. XPS spectra of Se 3d of $Cd_{0.7}Zn_{0.3}S/NiSe_2$ 4% sample before reaction and after the reaction.

Figure S41. Standard curve of the ICP-OES for Cd²⁺.

Entry	Catalyst	Light source	H_2 production rate (µmol $g^{-1} h^{-1}$)	DFF production rate (µmol g ⁻¹ h ⁻¹)	Atmosphere	Reference
1	Zn _{0.5} Cd _{0.5} S/MnO ₂	$\lambda \ge 400$ nm, 30 × 3 W LED	55	46	N_2	[1]
2	UCNT/Pt	$\lambda \ge 400$ nm, 300 W Xe lamp	92	95	vacuum	[2]
3	Zn _{0.5} Cd _{0.5} S-P	$30 \times 3 W$ LED	786	367	Ar	[3]
4	NiS/Zn ₃ In ₂ S ₆	λ ≥ 420 nm, 300 W Xe lamp	120	129	N_2	[4]
5	MAPbBr ₃	$\lambda \ge 450$ nm, blue LED light	-	106	Air	[5]
6	CN-WO ₃	λ≥420 nm, 10 W LED	-	36	Air	[6]
7	MoS ₂ /CdIn ₂ S ₄	λ≥420 nm, 7 W LED	-	50	Air	[7]
8	g-C ₃ N ₄ /Pd	300 W Xe lamp	-	250	N_2	[8]
9	Au-Ru/rGO	300 W Xe lamp	-	1328	O ₂	[9]
10	CoP/ZCS	$\lambda \ge 420$ nm, 300 W Xe	600	400	vacuum	[10]
11	Cd _{0.7} Zn _{0.3} S/NiSe ₂	λ≥400 nm, 300 W Xe	1690	1728	Ar	This work

Table S1. Photocatalytic performance of selective oxidation of HMF to DFF in relevant research.

Table S2. ICP-OES test of $Cd_{0.7}Zn_{0.3}S/NiSe_2 x\%$.

10 mg Cd _{0.7} Zn _{0.3} S/NiSe ₂ x%	5%	8%	10%	11%
Theoretical mass	0.5 mg	0.8 mg	1 mg	1.1 mg
Actual mass	0.25 mg	0.35 mg	0.40 mg	0.46 mg

Table S3. Structural parameters of photocatalysts obtained from N_2 adsorption-desorption analysis.

C + 1 +	Specific surface	Mean pore	Pore volume	
Catalyst	area (m^2/g)	diameter (nm)	(cm^{3}/g)	
Cd _{0.7} Zn _{0.3} S	22.4	34.7	0.19	
Cd _{0.7} Zn _{0.3} S/NiSe ₂ 4%	19.3	34.9	0.17	

References

- 1. S. Dhingra, T. Chhabra, V. Krishnan and C. M. Nagaraja, *ACS Appl. Energy Mater.*, 2020, **3**, 7138-7148.
- X. Bao, M. Liu, Z. Wang, D. Dai, P. Wang, H. Cheng, Y. Liu, Z. Zheng, Y. Dai and B. Huang, ACS Catal., 2022, 12, 1919-1929.
- 3. H.-F. Ye, R. Shi, X. Yang, W.-F. Fu and Y. Chen, *Appl. Catal.*, *B*, 2018, **233**, 70-79.
- 4. S. Meng, H. Wu, Y. Cui, X. Zheng, H. Wang, S. Chen, Y. Wang and X. Fu, *Appl. Catal.*, *B*, 2020, **266**.
- M. Zhang, Z. Li, X. Xin, J. Zhang, Y. Feng and H. Lv, ACS Catal., 2020, 10, 14793-14800.
- H. Qian, Q. Hou, W. Zhang, Y. Nie, R. Lai, H. Ren, G. Yu, X. Bai, H. Wang and M. Ju, *Appl. Catal.*, *B*, 2022, **319**.
- Q. Zhu, Y. Zhuang, H. Zhao, P. Zhan, C. Ren, C. Su, W. Ren, J. Zhang, D. Cai and P. Qin, *Chin. J. Chem. Eng.*, 2022, DOI: 10.1016/j.cjche.2022.04.018.
- A. E. ElMetwally, M. S. Sayed, Y. Zhou, J. B. Domena, J.-J. Shim, R. M. Leblanc, M. R. Knecht and L. G. Bachas, *J. Phys. Chem. Lett.*, 2022, **126**, 15671-15684.
- B. Ma, Y. Wang, X. Guo, X. Tong, C. Liu, Y. Wang and X. Guo, *Appl. Catal.*, *A*, 2018, 552, 70-76.
- 10. Y. Yang, W. Ren, X. Zheng, S. Meng, C. Cai, X. Fu and S. Chen, *ACS Appl. Mater. Interfaces*, 2022, **14**, 54649-54661.