Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Photoinduced Generation of Ketyl Radicals and Application in C–C Coupling without External Photocatalyst

Yonggang Yan^a, Gang Li^a, Jiani Ma^a, Chao Wang^a, Jianliang Xiao^b and Dong Xue^{*a}

^a Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China, E-mail: xuedong_welcome@snnu.edu.cn
 ^b Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom

Table of Content

1.	General Information	. S1		
2.	Optimization of Reaction Condition	. S2		
3.	ns-TA Experiments and DFT Calculation	. S3		
4.	Control Experiments	. S5		
5.	Application of Ketyl Radical in C-C Coupling	. S6		
6.	General Procedure	. S7		
7.	Gram-Scale Procedure	. S9		
8.	Characterization Data	S10		
9.	Reference	S34		
10.	10. Copies of NMR Spectra			

1. General Information

All reactions were performed with Schlenk-tube in the glovebox unless otherwise stated. Commercial reagents were used as purchased without further purification. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 F254 plates and visualized by UV light (254 nm) or by staining with phosphomolybdic acid alcoholic solution or triketohydrindene alcoholic solution.

The general photochemical reactions were carried with 9 W purple LED (390-395 nm, composed of 3 LED units in series, LED Driver: XC-12W900-OS), the optical power up to 210 mw at 1 cm axis distance detected by Thorlabs' Optical Power Meter (PM100D, S120VC). The LED were purchased from Zhuhai UV Optoelectronics Co., LTD. (P/N: CUN96B1B).

¹H NMR spectra, ¹⁹F NMR spectra and ¹³C NMR spectra were recorded at 400 MHz, 376 MHz, 100 MHz on a Bruker 400 spectrometer. All chemical shifts in ¹HNMR spectra were given in parts per million (ppm) relative to the residual CDCl₃ (7.26 ppm) or DMSO-*d*₆ (2.50 ppm) as internal standards and coupling constants (*J*) were given in Hertz (Hz). ¹H NMR data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, br = broad), coupling constants, the number of protons (n) for a given resonance was indicated by *n*H. ¹⁹F NMR chemical shifts were reported in ppm. ¹³C NMR chemical shifts were reported in ppm relative to the central peak of CDCl₃ (77.16 ppm) or DMSO-*d*₆ (39.52 ppm) as internal standards. HRMS data were obtained by using ESI method. HRMS data were obtained by ESI or APCI method with Bruker mass spectrometer (MAXIS). EPR were recorded with Bruker E500 electron paramagnetic spectrometer. The ns-TA experiments were conducted using LP980 laser flash spectrometer (Edinburgh Instruments).

S1

Figure S1. Pictures of photoreactor

2. Optimization of Reaction Condition

2.1 Optimization for pinacol coupling of benzaldehyde.

Table S1. Screening of light source (Photoreactor I)

ОН	Light NEt ₃ (2.0 equiv), DMF, N ₂ , 15 h	OH OH 1	
Entry	Light	Yield of 1 ª	
1	white LED	-	
2	green LED (530 nm)	-	
3	blue LED (460-465 nm)	-	
4	purple LED (395-400 nm)	53%	
5	UV LED (360-365 nm)	44%	

Reaction conditions: Benzaldehyde (1.0 equiv, 0.4 mmol), NEt₃ (2.0 equiv, 0.8 mmol), DMF (4 mL), 3 W LED (**Photoreactor I**). a: NMR yields.

С С Н	Purple light (395-400 nm) Base (2.0 equiv), DMF, N ₂ , 15 h	OH OH 1	
Entry	Base	Yield of 1 ^a	
1	DABCO	21%	
2	DBU	28%	
3	<i>i-</i> Pr ₂ NEt	68%	
4	Et ₃ N	53%	
5	N,N-Dicyclohexylmethylamine	46%	
6	N,N,N',N'-Tetramethylethylenediamin	e 25%	

Table S2. Screening of base (Photoreactor I)

Reaction conditions: Benzaldehyde (1.0 equiv, 0.4 mmol), Base (2.0 equiv, 0.8 mmol), DMF (4 mL), 3 W purple LED (395-400 nm, **Photoreactor I**). a: NMR yields.

ОН	Purple light (395-400 nm)	OH OH 1
Entry	Solvent	Yield of 1 ª
1	H ₂ O	46%
2	DCM	48%
3	MeCN	75%
4	THE	64%
5	DMSO	48%
6	EtOH	59%
7	<i>i-</i> PrOH	61%
8	DMF	68%
9	toluene	53%
10	MeCN-H ₂ O(3:1)	99%

Table S3. Screening of solvent (Photoreactor I)

Reaction conditions: Benzaldehyde (1.0 equiv, 0.4 mmol), *i*-Pr₂NEt (2.0 equiv, 0.8 mmol), Solvent (4 mL), 3 W purple LED (395-400 nm, **Photoreactor I**). a: NMR yields.

С Н Н	Light <i>i</i> -Pr ₂ NEt (2.0 equiv) MeCN-H ₂ O, N ₂	\rightarrow		
Setup	Optical Power	Reaction Time	Yield of 1 ª	
Photoreactor I 3 W (395-400 nm)	~35 mw/cm ²	15 h	99%	
Photoreactor II 9 W (390-395 nm)	~210 mw/cm ²	3 h	99%	

Table S4. Comparation between Photoreactor I and Photoreactor II

Reaction conditions: Benzaldehyde (1.0 eq, 0.4 mmol), *i*-Pr₂NEt (2.0 eq, 0.8 mmol), MeCN/H₂O (3 mL, 1mL), a: NMR yields.

3. ns-TA Experiments and DFT Calculation

The ns-TA experiments were conducted using LP980 laser flash spectrometer (Edinburgh Instruments). A 355 nm laser pulse was used as the pump beam that generated from the third harmonic output of an Nd:YAG laser, the probe light source came from a 150 W xenon lamp. The sample solutions were prepared with an absorbance of 1 at 355 nm using a 1 cm quartz cuvette, and degassing with Ar before testing. The optimizated geometries and vibrational frequencies for aldehyde and

relevant intermediates were calculated using DFT under M062X/6-311G^{**} level. UV-vis spectra were simulated by TD-DFT/M062X/6-311G^{**} calculations. The solvation model based on density (SMD) in MeCN (ϵ = 35.688) was used to evaluate the solvent effect. All DFT calculations were conducted using Gaussian 16.

Figure S2. Left: ns-TA results acquired after 355 nm photoexcitation of benzaldehy with *i*-PrNEt in MeCN-H₂O. Right: comparision of UV-vis spectra of ketyl radical anion between experimental and simulated result.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Ŷ	Z
1	6	0	1.323177	-1.327712	0.000389
2	6	0	-0.042175	-1.103347	-0.000911
3	6	0	-0.571223	0.228873	-0.00084
4	6	0	0.380334	1.297638	-0.000441
5	6	0	1.737486	1.05332	0.000442
6	6	0	2.240458	-0.264866	0.000454
7	1	0	1.692153	-2.349731	0.000267
8	1	0	-0.737528	-1.935673	-0.000098
9	1	0	0.015261	2.321819	-0.000312
10	1	0	2.428748	1.891	0.000567
11	1	0	3.307597	-0.451465	-0.000854
12	6	0	-1.970253	0.481192	0.000374
13	8	0	-2.879682	-0.402089	0.000475
14	1	0	-2.255593	1.550175	-0.000171

Table S5. Cartesian coordinates and total energies for the optimized geometry of ketvl radical anion.

S4

Thermal correction to Gibbs Free Energy= 0.076094 Sum of electronic and thermal Free Energies= -345.540278 The number of imaginary frequencies: 0

4. Control Experiments

4.1 Radical trapping experiments

To verify the photoinduced generation ketyl radical from benzaldehyde, experiments were performed by addition of radical trapping reagents such as TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), PBN (*N-tert*-butyl-2-phenylnitrone) and 1,1-diphenylethene respectively.

PhCHO + **TEMPO**
(1.5 equiv)
$$\xrightarrow{\text{Purple light (390-395 nm)}}_{i-\text{Pr}_2\text{NEt, MeCN-H}_2\text{O}} \xrightarrow{\text{OH}}_{Ph} \xrightarrow{\text{OH}}_{OH}$$

In a glovebox, benzaldehyde (1.0 equiv, 0.4 mmol), *i*-Pr₂NEt (2.0 equiv, 0.8 mmol), TEMPO (1.5 equiv, 0.6 mmol) were placed into a 10 mL Schlenk-tube with a magnetic stir bar. Then degassed solvent H₂O (1 mL) and MeCN (3 mL) were added. The reaction mixture was placed in a stirrer and irradiated with 9 W pure LEDs. After 3 hours, the reaction mixture was washed with water and extracted with ethyl acetate (3 x 15 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtrated and concentrated under vacuum. No pinacol product was detected by TLC and HRMS.

The PBN (2.0 equiv, 0.8 mmol) was added in the above reaction instead of TEMPO, after irradiating for 10 minuntes, suitable volume of mixture was transferred to an ovendried EPR tube. The EPR spectrum was recorded at room temperature.

Figure S3. EPR spectrum of radical trapping with PBN. (A: no light; B: purple light irradiation)

The 1,1-diphenylethylene (2.0 equiv, 0.8 mmol) was added in the above reaction instead of TEMPO. After irradiation, the reaction mixture was firstly determined by HRMS, and then isolated to get the product **1** (54% yield) and **1a** (33% yield). The mass spectrum clearly shows a peak of the coupling product from α -amino radical and diphenylethylene, **HRMS** (**ESI**): m/z calcd for C₂₂H₃₂N [M+H]⁺: 310.2529, found: 310.2525.

5. Application of Ketyl Radical in C-C Coupling

General procedure for ketyl readical coupling reactions (1b-1e): In the glovebox, the benzaldehyde (1.0 equiv, 0.4 mmol), *i*-Pr₂NEt (2.0 or 3.0 equiv), corresponding coupling partners and additives (if necessary) were placed into a 10 mL Schlenk-tube with a magnetic stir bar, respectively, then degassed solvent (4.0 mL) were added. The reaction mixture was placed in a stirrer and irradiated with 9 W pure LEDs (approximately 1 cm away from the tube, the optical power up to 210 mw, the mixture temperature ranging from 38 to 45 °C). After stirring for 3 hours or more, the mixture was washed with water and extracted with ethyl acetate (3 x 15 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtrated and concentrated under vacuum. The desired product was obtained by column chromatography.

6. General Procedure

6.1 Standard procedure for pinacol coupling of aldehydes and ketones.

In the glovebox, the aldehydes or ketones (1.0 equiv, 0.4 mmol), *i*-Pr₂NEt (2.0 equiv, 0.8 mmol) were placed into a 10 mL Schlenk-tube with a magnetic stir bar. Then degassed solvent H₂O (1mL) and MeCN (3 mL) were added. The reaction mixture was placed in a stirrer and irradiated with 9 W pure LEDs (approximately 1 cm away from the tube, the optical power up to 210 mw, the mixture temperature ranging from 38 to 45 °C). After stirring for 3 hours or more, the reaction mixture was washed with water and extracted with ethyl acetate (3 x 15 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtrated and concentrated under vacuum. The desired product was obtained by column chromatography.

6.2 Standard procedure for photoinduced coupling of aldehydes with allyl sulfone.

In the glovebox, the aldehyde (1.0 equiv, 0.4 mmol), allyl sulfone (3.0 equiv, 1.2 mmol), *i*-Pr₂NEt (2.0 equiv, 0.8 mmol) were placed into a 10 mL Schlenk-tube with a magnetic stir bar. Then degassed H₂O (1mL) and MeCN (3 mL) were added. The reaction mixture was placed in a stirrer and irradiated with 9 W purple LEDs (approximately 1 cm away from the tube, the optical power up to 210 mw, the mixture temperature ranging from 38 to 45 °C). After stirring for 3 hours, the reaction mixture was washed with water and extracted with ethyl acetate (3 x 15 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtrated and concentrated under vacuum. The desired product was obtained by column chromatography.

6.3 Standard procedure for the pinacol coupling of imines.

The aldehyde (1.0 equiv, 0.4 mmol), amine (1.0 equiv, 0.4 mmol), 4Å MS (200 mg) and DCM (2 mL) were added to a 10 mL Schlenk-tube with a magnetic stir bar. After stirring at room temperature for 3 h, the mixture was filtrated and concentrated, the crude product was transferred into the glovebox, redissolved in another 10 mL Schlenk-tube with MeCN (3 mL). Then, *i*-Pr₂NEt (2.0 equiv, 0.8 mmol) and H₂O (1 mL) were added. The reaction mixture was placed in a stirrer and irradiated with 9 W purple LEDs (approximately 1 cm away from the tube, the optical power up to 210 mw, the mixture temperature ranging from 38 to 45 °C). After stirring for 10 hours, the reaction mixture was dried over anhydrous Na₂SO₄, filtrated and concentrated under vacuum. The desired product was obtained by column chromatography, some of examples were directly filtrated and dried to get the desired racemize (*dl*) products.

6.4 Synthesis of allyl sulfone (ethyl 2-((phenylsulfonyl)methyl)acrylate) ^[1]

To a solution of ethyl 2-(bromomethyl) acrylate (1.99 g, 10.4 mmol) in dry methanol (25 mL) was added sodium phenylsulfinate (2.50 g, 15.2 mmol). After refluxing at 60 °C for 2.5 hours, the mixture was concentrated under reduced pressure, the obtained residue was dissolved in ethyl acetate and washed with water, brine, dried with Na₂SO₄, then purified by column chromatography (PE:EA = 2:1) to give the allyl sulfone as a colourless oil (1.95 g, 74% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.6 Hz, 2H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 2H), 6.50 (s, 1H), 5.91 (s, 1H), 4.17 (s, 2H), 4.02 (q, *J* = 7.2 Hz, 2H), 1.17(t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 138.4, 133.9, 133.4, 129.2, 129.1, 128.8, 61.5, 57.5, 14.0. HRMS (ESI) m/z calcd. for C₁₂H₁₄NaO₄S [M+Na]⁺: 277.0506, found: 277.0506.

7. Gram-Scale Procedure

7.1 Gram-scale procedure for pinacol coupling of aldehydes.

The corresponding aldehyde (15 mmol), *i*-Pr₂NEt (30 mmol,) were placed into a 100 mL Schlenk-tube with H₂O (15 mL) and MeCN (45 mL). The reaction mixture was bubbling with nitrogen for 10 minutes, then placed in a stirrer and surrounded by irradiation with pure LEDs for 12 hours. The desired products **1**, **3**, **11**, **20** were obtained by column chromatography in 98%, 98%, 86%, 94% yield.

7.2 Gram-scale procedure for pinacol coupling of imines.

The corresponding aldehyde (20 mmol) and excess benzylamine (30 mmol) were directly added in a 100 mL Schlenk-tube with H_2O (15 mL) and MeCN (45 mL). The reaction mixture was bubbling with nitrogen for 10 minutes, then placed in a stirrer and surrounded by irradiation with pure LEDs for 12 hours. Large amounts of white solid appeared, the reaction mixture was filtrated and washed with *n*-hexane to obtain the racemic diamine **49**, **54**, **55** in 57 %, 55%, 36% yield.

7.3 Gram-scale procedure for the reaction of benzaldehyde with allyl sulfone.

The corresponding aldehyde (1.0 equiv, 8 mmol), aulfone (3.0 equiv, 24 mmol), *i*- Pr_2NEt (2.0 equiv, 16 mmol,) were placed into a 100 mL Schlenk-tube with H₂O (15 mL) and MeCN (45 mL). The reaction mixture was bubbling with nitrogen for 10 minutes. Then placed in a stirrer and surrounded by irradiation with purple LED for 10 hours. The desired products **37**, **47** were obtained by column chromatography in 85%, 87% yield.

8. Characterization Data.

1,2-Diphenylethane-1,2-diol (1).^[2] White solid, 42 mg, 98% yield, *dl : meso* = 1.7:1. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.28 (m, 6H), 7.24-7.1 9 (m, 10H), 7.11-7.07 (m, 4H), 4.79 (s, 2H, *meso*), 4.64 (s, 2H, *dl*), 3.21 (s, 2H, *dl*), 2.54 (s, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 140.0, 139.8, 128.3, 128.2, 128.1, 128.0, 127.2, 127.1, 79.2, 78.1. HRMS (ESI) m/z calcd. for C₁₄H₁₄NaO₂ [M+Na]⁺: 237.0886, found: 237.0887.

1,3,3-triphenylpropan-1-ol (1a).^[3] Colorless oil, 33% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.18 (m, 15H), 4.55-4.51 (m, 1H), 4.17 (dd, *J* = 8.9, 6.8 Hz, 1H), 2.58-2.43 (m, 2H), 1.80 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 144.3, 128.8, 128.7, 128.7, 128.2, 128.0, 127.9, 126.5, 126.4, 126.1, 72. 6, 47.8, 45.0. HRMS (ESI) m/z calcd. for C₂₁H₂₀NaO [M+Na]⁺: 311.1406, found: 311.1412.

4-(hydroxy(phenyl)methyl)benzonitrile (1b).^[4] White solid, 47 mg, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.2 Hz, 2H), 7.40-7.29 (m, 5H), 5.84 (s, 1H), 2.60 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 142.9, 132.4, 129.0, 128.4, 127.1, 126.8, 118.9, 111.2, 75.7. **HRMS** (ESI) m/z calcd. for C₁₄H₁₁NNaO [M+Na]⁺: 232.0733, found: 232.0730.

1-phenylbut-3-en-1-ol (1c).^[5] Colourless oil, 34 mg, 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.31 (m, 4H), 7.29-7.20 (m, 1H), 5.88-5.72 (m, 1H), 5.21-5.09 (m, 2H), 4.73 (t, J = 6.3 Hz, 1H), 2.61-2.45 (m, 2H), 2.07 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 134.6, 128.6, 127.7, 126.0, 118.6, 73.4, 44.0. HRMS (ESI) m/z calcd. for C₁₀H₁₂NaO [M+Na]⁺: 171.0780, found: 171.0782.

5-phenyldihydrofuran-2(3H)-one (1d).^[6] Light yellow oil, 43 mg, 66% yield.¹ **H NMR** (400 MHz, CDCl₃): δ 7.41-7.32 (m, 5H), 5.53-5.49 (m, 1H), 2.69-2.62 (m, 3H), 2.23-2.15 (m, 1H), ¹³**C NMR** (100 MHz, CDCl₃): δ 177.0, 139.5, 128.9, 128.5, 125.4, 81.3, 31.1, 29.0. **HRMS (ESI)** m/z calcd. for C₁₀H₁₀NaO₂ [M+Na]⁺: 185.0573, found: 185.0579.

2-(methyl(phenyl)amino)-1-phenylethan-1-ol(1e).^[7] Light brown oil, 40 mg, 44% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.34 (m, 4H), 7.33-7.22 (m, 3H), 6.85 (d, *J* = 8.0 Hz, 2H), 6.78 (t, *J* = 7.3 Hz, 1H), 4.99 (dd, *J* = 8.1, 4.1 Hz, 1H), 3.47 (qd, *J* = 14.7, 6.6 Hz, 2H), 2.94 (s, 3H), 2.52 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 142.1, 129.4, 128.7, 128.0, 126.0, 117.7, 113.4, 71.9, 62.2, 39.5. **HRMS** (ESI) m/z calcd. for C₁₅H₁₇NNaO [M+Na]⁺: 250.1202, found: 250.1206.

1,2-Di-*p*-tolylethane-1,2-diol (2).^[8] White solid, 46 mg, 95% yield, *dl* : *meso* = 1.5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.14 (dd, *J* = 13.5, 8.1 Hz, 8H, *dl*), 7.02 (dd, *J* = 14.0, 8.0 Hz, 8H, *meso*), 4.72 (s, 2H, *meso*), 4.63 (s, 2H, *dl*), 2.96 (s, 2H, *dl*), 2.35 (s, 6H, *meso*), 2.31 (s, 6H, *dl*), 2.24 (s, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 137.9, 137.6, 137.2, 137.1, 129.1, 128.9, 127.2, 127.0, 78.9, 78.1, 21.3, 21.3. HRMS (ESI) m/z calcd. for C₁₆H₁₈NaO₂ [M+Na]⁺: 265.1199, found: 265.1193.

1,2-Bis(4-methoxyphenyl)ethane-1,2-diol (3).^[2] White solid, 53 mg, 97% yield, *dl* : *meso* = 2:1. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.4 Hz, 4H, *meso*), 7.01 (d, *J* = 8.4 Hz, 4H, *dl*), 6.84 (d, *J* = 8.4 Hz, 4H, *meso*), 6.75 (d, *J* = 8.4 Hz, 4H, *dl*), 4.71 (s, 2H, *meso*), 4.59 (s, 2H, *dl*), 3.79 (s, 6H, *meso*), 3.75 (s, 6H, *dl*), 2.97 (s, 2H, *dl*), 2.24 (s, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 159.3, 132.2, 132.1, 128.5, 128.3, 113.8, 113.6, 78.9, 77.9, 55.4, 55.3. HRMS (ESI) m/z calcd. for C₁₆H₁₈NaO₄ [M+Na]⁺: 297.1097, found: 297.1091.

1,2-Bis(4-(methylthio)phenyl)ethane-1,2-diol (4). Pale yellow solid, 54 mg, 88% yield, *dl* : *meso* = 1:2.3. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.16 (dd, *J* = 15.2, 8.3 Hz, 8H, *dl*), 7.05 (dd, *J* = 13.6, 8.4 Hz, 8H, *meso*), 5.33 (s, 2H, *meso*), 5.20 (s, 2H, *dl*), 4.53 (s, 6H, *meso*), 4.50 (s, 6H, *dl*), 2.44 (s, 2H, *dl*), 2.41 (s, 2H, *meso*). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 140.1, 139.1, 136.0, 135.9, 128.0, 127.9, 125.2, 125.0, 77.0, 76.6, 14.9, 14.8. HRMS (ESI) m/z calcd. for C₁₆H₁₈NaO₂S₂ [M+Na]⁺: 329.0640, found: 329.0632.

1,2-Bis(4-(tert-butyl)phenyl)ethane-1,2-diol (5).^[2] White solid, 61 mg, 94% yield, *dl : meso* = 1:1.5. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.2 Hz, 4H, *dl*), 7.31 (d, *J* = 8.2 Hz, 4H, *meso*), 7.27 (d, *J* = 8.2 Hz, 4H, *dl*), 7.15 (d, *J* = 8.2 Hz, 4H, *meso*), 4.73 (s, 2H, *meso*), 4.70 (s, 2H, *dl*), 2.74 (s, 2H, *meso*), 2.03 (s, 2H, *dl*), 1.33 (s, 18H, *dl*), 1.30 (s, 18H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 150.9, 137.5, 137.4, 127.0, 126.6, 125.5, 125.2, 78.3, 78.2, 34.7, 34.6, 31.5, 31.4. HRMS (ESI) m/z calcd. for C₂₂H₃₀NaO₂ [M+Na]⁺: 349.2138, found: 349.2138.

Dimethyl 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate (6).^[2] White solid, 61 mg, 92% yield, *dl : meso* = 1:1. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.84 (d, *J* = 8.0 Hz, 4H, *dl*), 7.77 (d, *J* = 8.0 Hz, 4H, *meso*), 7.36 (d, *J* = 8.0 Hz, 4H, *dl*), 7.24 (d, *J* = 8.0 Hz, 4H, *meso*), 5.65 (s, 2H, *meso*), 5.54 (s, 2H, *dl*), 4.76 (s, 2H, *meso*), 4.69 (s, 2H, *dl*), 3.83 (s, 6H, *dl*), 3.81 (s, 6H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 166.2, 148.5, 147.7, 128.3, 128.2, 128.1, 128.0, 127.6, 127.4, 76.7, 76.5, 52.0, 51.9. HRMS (ESI) m/z calcd. for C₁₈H₁₈NaO₆ [M+Na]⁺: 353.0996, found: 353.0991.

1,2-Bis(4-(trifluoromethyl)phenyl)ethane-1,2-diol (7).^[8] White solid, 68 mg, 97% yield, *dl : meso* = 1.2:1. ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.46 (m, 8H), 7.24 (d, *J* = 8.1 Hz, 4H, *meso*), 7.18 (d, *J* = 8.1 Hz, 4H, *dl*), 4.91 (s, 2H, *meso*), 4.69 (s, 2H, *dl*), 3.19 (s, 2H, *dl*), 2.68(s, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 143.3, 130.6 (q, *J* = 32.3 Hz), 130.4 (q, *J* = 32.3 Hz), 127.5, 125.4, 124.1 (q, *J* = 270.4 Hz), 124.1 (q, *J* = 270.4 Hz), 125.34 (q, *J* = 3.8 Hz), 125.18 (q, *J* = 3.8 Hz), 78.5, 77.3. ¹⁹F NMR

 $(376 \text{ MHz}, \text{CDCI}_3) \delta$ -62.57, -62.60. **HRMS** (ESI) m/z calcd. for C₁₆H₁₂F₆NaO₂ [M+Na]⁺: 373.0634, found: 373.0629.

1,2-Bis(4-fluorophenyl)ethane-1,2-diol (8).^[2] White solid, 48 mg, 96% yield, *dl* : *meso* = 1.4:1. ¹H NMR (400 MHz, CDCl₃) δ 7.14 (dd, *J* = 8.5, 5.5 Hz, 4H, *meso*), 7.04 (dd, *J* = 8.5, 5.5 Hz, 4H, *dl*), 7.00-6.95 (m, 4H, *meso*), 6.94-6.88 (m, 4H, *dl*), 4.81 (s, 2H, *meso*), 4.61 (s, 2H, *dl*), 2.97 (s, 2H, *dl*), 2.36 (s, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 163.8 (d, *J* = 8.2 Hz), 161.4 (d, *J* = 8.3 Hz), 135.5 (d, *J* = 3.1 Hz), 135.3 (d, *J* = 3.2 Hz), 128.8 (d, *J* = 8.0 Hz), 128.7 (d, *J* = 8.1 Hz), 115.3 (d, *J* = 1.2 Hz), 115.1 (d, *J* = 1.2 Hz), 78.9, 77.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.00, -114.05. HRMS (ESI) m/z calcd. for C₁₄H₁₂F₂NaO₂ [M+Na]⁺: 273.0698, found: 273.0695.

1,2-Bis(4-chlorophenyl)ethane-1,2-diol (9).^[2] White solid, 54 mg, 96% yield, *dl* : *meso* = 1.5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, *J* = 6.7 Hz, 4H, *meso*), 7.18 (d, *J* = 6.7 Hz, 4H, *dl*), 7.02 (d, *J* = 6.7 Hz, 4H, *meso*), 6.94 (d, *J* = 6.7 Hz, 4H, *dl*), 4.74 (s, 2H, *meso*), 4.51 (s, 2H, *dl*), 3.27 (s, 2H, *dl*), 2.70(s, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 137.9, 134.0, 133.9, 128.48, 128.44, 128.40, 78.6, 77.2. HRMS (ESI) m/z calcd. for C₁₄H₁₂Cl₂NaO₂ [M+Na]⁺: 305.0107, found: 305.0105.

1,2-Di-o-tolylethane-1,2-diol (10).^[2] White solid, 44 mg, 91% yield, *dl : meso* = 1.5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.5 Hz, 2H, *dl*), 7.28 (d, *J* = 7.5 Hz, 2H, *meso*), 7.20-7.11 (m, 10H), 7.07 (d, *J* = 7.5 Hz, 2H, *meso*), 6.91 (d, *J* = 7.5 Hz, 2H, *dl*), 5.15 (s, 2H, *meso*), 4.90 (s, 2H, *dl*), 3.34 (s, 2H, *dl*), 2.57 (s, 2H, *meso*), 2.12 (s, 6H, *meso*), 1.63 (s, 6H, *dl*). ¹³**C NMR** (100 MHz, CDCl₃) δ 138.2, 138.1, 136.1, 136.0, 130.2, 130.1, 127.7, 127.3, 126.9, 126.1, 126.0, 74.7, 73.3, 19.2, 18.8. **HRMS** (ESI) m/z calcd. for C₁₆H₁₈NaO₂ [M+Na]⁺: 265.1199, found: 265.1197.

1,2-Bis(2-fluorophenyl)ethane-1,2-diol (11). White solid, 43 mg, 86% yield, *dl* : *meso* = 1.5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.42 (m, 2H), 7.24-7.18 (m, 6H), 7.09 (t, *J* = 7.5 Hz, 2H), 7.02 (t, *J* = 7.5 Hz, 2H), 6.92-6.87 (m, 4H), 5.34 (s, 2H, *meso*), 5.12 (s, 2H, *dl*), 3.06 (s, 2H, *dl*), 2.83(s, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 160.2 (d, *J* = 245.9 Hz), 160.1 (d, *J* = 245.9 Hz), 129.7 (d, *J* = 8.4 Hz), 129.4 (d, *J* = 8.4 Hz), 128.6 (d, *J* = 4.3 Hz), 128.4 (d, *J* = 4.3 Hz), 127.0 (d, *J* = 12.8 Hz), 126.5 (d, *J* = 12.8 Hz), 124.2 (d, *J* = 3.4 Hz), 123.9 (d, *J* = 3.4 Hz), 115.3 (d, *J* = 22.3 Hz), 114.9 (d, *J* = 22.3 Hz), 72.0, 70.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.25, -118.62. HRMS (ESI) m/z calcd. for C₁₄H₁₂F₂NaO₂ [M+Na]⁺: 273.0698, found: 273.0697.

1,2-Bis(2-chlorophenyl)ethane-1,2-diol (12).^[8] White solid, 52 mg, 92% yield, *dl* : *meso* = 1.1:1. ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.61 (m, 2H), 7.23-7.12 (m, 14H), 5.56 (s, 2H, *meso*), 5.32 (s, 2H, *dl*), 2.96 (s, 2H, *dl*), 2.91 (s, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 137.4, 136.5, 133.5, 132.7, 129.6, 129.3, 129.2, 129.0, 128.9, 128.8, 126.9, 126.5, 73.1, 72.2. HRMS (ESI) m/z calcd. for C₁₄H₁₂Cl₂NaO₂ [M+Na]⁺: 305.0107, found: 305.0106.

1,2-Bis(2-(trifluoromethyl)phenyl)ethane-1,2-diol (13). White solid, 65 mg, 93% yield, *dl : meso* = 1.7:1. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.8, 2H), 7.61-7.55 (m, 10H), 7.49 (t, *J* = 7.8, 2H), 7.38 (t, *J* = 7.8, 4H), 5.43 (s, 2H, *meso*), 5.36 (s, 2H, *dl*), 3.05 (s, 2H, *dl*), 2.54(s, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 138.6, 132.2,

131.9, 129.7, 129.1, 128.7 (q, J = 30.0 Hz), 128.4, 128.3, 128.2 (q, J = 29.9 Hz), 125.9 (m), 125.5 (m), 122.9 (q, J = 2.6 Hz), 120.2 (q, J = 2.4 Hz), 72.3, 72.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.64, -57.65. HRMS (ESI) m/z calcd. for C₁₆H₁₂F₆NaO₂ [M+Na]⁺: 373.0634, found: 373.0628.

1,2-Di([1,1'-biphenyl]-2-yl)ethane-1,2-diol (14). White solid, 69 mg, 94% yield, *dl* : *meso* = 1.5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.24 (m, 16H), 7.20-7.16 (m, 4H), 7.07-6.97 (m, 8H), 6.76 (br, 8H), 4.96 (s, 2H, *meso*), 4.91 (s, 2H, *dl*), 2.78 (br, 2H, *dl*), 2.28 (br, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 142.0, 140.9, 140.7, 137.0, 136.7, 129.8, 129.7, 129.3, 129.2, 128.1, 128.0, 127.8, 127.6, 127.5, 127.4 (3C), 127.0, 126.8, 74.5, 73.0. HRMS (ESI) m/z calcd. for C₂₆H₂₂NaO₂ [M+Na]⁺: 389.1512, found: 389.1503.

1,2-Bis(3,4-dimethylphenyl)ethane-1,2-diol (15).^[9] White solid, 51 mg, 94% yield, *dl* : *meso* = 1.5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.16-7.08 (m, 6H), 7.02-7.01 (m, 4H), 6.87 (d, *J* = 7.7 Hz, 2H), 4.65 (s, 2H, *meso*), 4.64 (s, 2H, *dl*), 2.83 (br, 2H), 2.27 (s, 12H, *dl*), 2.22 (s, 12H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 137.9, 137.7, 136.8, 136.7, 136.4, 136.1, 129.8, 129.5, 128.5, 128.1, 124.8, 124.5, 78.5, 78.3, 19.9, 19.8, 19.7, 19.6. HRMS (ESI) m/z calcd. for C₁₈H₂₂NaO₂ [M+Na]⁺: 293.1512, found: 293.1509.

1,2-Bis(3,4-dimethoxyphenyl)ethane-1,2-diol (16).^[10] White solid, 64 mg, 96% yield, *dl : meso* = 1:1.3. ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.83-6.74 (m, 8H), 6.63-6.61 (m,
4H), 5.21 (s, 2H, *meso*), 5.04 (s, 2H, *dl*), 4.50 (S, 2H, *dl*), 4.46 (S, 2H, *meso*), 3.71 (s,

S16

6H, *dl*), 3.68 (s, 6H, *meso*), 3.65 (s, 6H, *dl*), 3.58 (s, 6H, *meso*). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 147.9, 147.8, 147.6, 147.6, 135.8, 134.9, 119.6, 119.4, 111.3, 111.2, 110.9, 110.8, 77.6, 76.8, 55.5, 55.4, 55.3, 55.2. **HRMS** (ESI) m/z calcd. for C₁₈H₂₂NaO₆ [M+Na]⁺: 357.1309, found: 357.1300.

1,2-Bis(3-fluoro-4-methoxyphenyl)ethane-1,2-diol (17). White solid, 57 mg, 92% yield, *dl* : *meso* = 4.1:1. ¹H NMR (400 MHz, CDCl₃) δ 6.99 (d, *J* = 12.1 Hz, 2H), 6.92-6.87 (m, 4H), 6.81-6.72 (m, 6H), 4.71 (s, 2H, *meso*), 4.55 (s, 2H, *dl*), 3.87(s, 6H, *meso*), 3.84(s, 6H, *dl*), 2.93 (s, 2H, *dl*), 2.30 (s, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 152.1 (d, *J* = 245.9 Hz), 147.3 (d, *J* = 10.7 Hz), 132.8 (d, *J* = 5.8 Hz), 123.0 (d, *J* = 3.5 Hz), 114.7 (d, *J* = 18.9 Hz), 112.9 (d, *J* = 1.8 Hz), 78.3(2C), 56.3, 56.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -134.76, -134.87. HRMS (ESI) m/z calcd. for C₁₆H₁₆F₂NaO₄ [M+Na]⁺: 333.0909, found: 333.0904.

1,2-Bis(2-chloro-4-fluorophenyl)ethane-1,2-diol(18). White solid, 57 mg, 90% yield, *dl : meso* = 1.5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, *J* = 8.6, 6.2 Hz, 2H), 7.22 (dd, *J* = 8.6, 6.2 Hz, 2H), 7.00-6.93 (m, 6H), 6.90-6.86 (m, 2H), 5.53 (s, 2H, *meso*), 5.23 (s, 2H, *dl*), 2.84 (s, 2H, *dl*), 2.73 (s, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, *J* = 250.4 Hz), 162.0 (d, *J* = 250.1 Hz), 133.9 (d, *J* = 10.2 Hz), 133.4 (d, *J* = 10.3 Hz), 133.2 (d, *J* = 3.5 Hz), 132.3 (d, *J* = 3.3 Hz), 130.6 (d, *J* = 8.9 Hz), 130.1 (d, *J* = 8.8 Hz), 116.8 (d, *J* = 24.7 Hz), 116.2 (d, *J* = 24.7 Hz), 114.4 (d, *J* = 21.0 Hz), 114.0 (d, *J* = 21.0 Hz), 73.0, 71.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.88, -112.30. HRMS (ESI) m/z calcd. for C₁₄H₁₀Cl₂F₂NaO₂ [M+Na]⁺: 340.9918, found: 340.9911.

1,2-Bis(2,4-dichlorophenyl)ethane-1,2-diol (19). White solid, 58 mg, 83% yield, *dl* : *meso* = 1.1:1. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, *J* = 7.7, 1.4 Hz, 2H), 7.29-7.10 (m, 10H), 5.56 (s, 2H, *meso*), 5.32 (s, 2H, *dl*), 2.99 (s, 2H, *dl*), 2.95 (s, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 135.7, 134.8, 134.6, 134.3, 133.9, 133.3, 130.2, 129.8, 129.3, 128.7, 127.4, 127.0, 72.8, 71.5. HRMS (ESI) m/z calcd. for C₁₄H₁₀Cl₄NaO₂ [M+Na]⁺: 372.9327, found: 372.9322.

1,2-Di(thiophen-2-yl)ethane-1,2-diol (20).^[9] Colorless oil, 42 mg, 93% yield, *dl* : *meso* = 2.3:1. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.21 (m, 4H), 6.95-6.86 (m, 6H), 6.76 (d, *J* = 3.2 Hz, 2H), 5.07 (s, 2H, *meso*), 4.96 (s, 2H, *dl*), 3.53 (s, 2H, *dl*), 3.00 (s, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 142.5, 126.7, 126.6, 126.1, 125.9, 125.8, 125.4, 74.9, 74.3. HRMS (ESI) m/z calcd. for C₁₀H₁₀NaO₂S₂ [M+Na]⁺: 249.0014, found: 249.0013.

1,2-Bis(3-methylthiophen-2-yl)ethane-1,2-diol (21). Colorless oil, 42 mg, 83% yield, *dl : meso* = 1.3:1. ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, *J* = 4.9 Hz, 2H, *meso*), 7.14 (d, *J* = 4.9 Hz, 2H, *dl*), 6.79 (d, *J* = 4.9 Hz, 2H, *meso*), 6.66 (d, *J* = 4.9 Hz, 2H, *dl*), 5.19 (s, 2H, *meso*), 5.02 (s, 2H, *dl*), 3.16 (s, 2H, *dl*), 2.44 (s, 2H, *meso*), 2.16 (s, 6H, *meso*), 1.69 (s, 6H, *dl*). ¹³C NMR (100 MHz, CDCl₃) δ 136.5, 136.0, 135.8, 135.6, 130.0, 129.6, 124.7, 123.9, 73.9, 72.3, 14.0, 13.1. HRMS (ESI) m/z calcd. for C₁₂H₁₄NaO₂S₂ [M+Na]⁺: 277.0327, found: 277.0319.

1,2-Di(pyridin-2-yl)ethane-1,2-diol (22).^[11] Pale yellow solid, 29 mg, 67% yield, *dl : meso* = 1.1:1. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 4.1 Hz, 2H, *dl*), 8.41 (d, *J* = 4.1 Hz, 2H, *meso*), 7.68-7.61 (m, 4H), 7.47-7.42 (m, 4H), 7.20 (dd, *J* = 6.3, 5.6 Hz, 2H), 7.13 (dd, *J* = 6.3, 5.6 Hz, 2H), 5.39 (br, 4H), 5.14 (s, 2H, *meso*), 4.90 (s, 2H, *dl*). ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 160.5, 147.9, 147.8, 137.0, 136.9, 122.7, 122.5, 122.1, 121.5, 75.4, 75.2. HRMS (ESI) m/z calcd. for C₁₂H₁₂N₂NaO₂ [M+Na]⁺: 239.0791, found: 239.0787.

1,2-Di(pyridin-4-yl)ethane-1,2-diol (23).^[9] Pale yellow solid, 36 mg, 83% yield, *dl* : *meso* = 2:1. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.44 (d, *J* = 5.6 Hz, 2H, *dl*), 8.40 (d, *J* = 5.6 Hz, 2H, *meso*), 7.23 (d, *J* = 5.6 Hz, 2H, *dl*), 7.19 (d, *J* = 5.6 Hz, 2H, *meso*), 5.68 (s, 4H, *dl* and *meso*), 4.76 (s, 2H, *meso*), 4.62 (s, 2H, *dl*). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 151.2, 150.8, 148.8, 148.6, 122.5, 122.2, 75.3, 75.1. HRMS (ESI) m/z calcd. for C₁₂H₁₂N₂NaO₂ [M+Na]⁺: 239.0791, found: 239.0786.

1,2-Bis(1-methyl-1H-pyrrol-2-yl)ethane-1,2-diol (24). White solid, 32 mg, 73% yield, *dl : meso* = 2.4:1. ¹H NMR (400 MHz, CDCl₃) δ 6.63 (s, 2 H, *meso*), 6.49 (s, 2 H, *dl*), 6.21-6.13 (m, 4H), 6.03 (s, 2H, *dl*), 4.95 (s, 2H, *meso*), 4.84 (s, 2H, *dl*), 3.60 (s, 6H, *meso*), 3.32 (s, 6H, *dl*), 2.75 (s, 2H, *dl*), 2.16 (s, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 131.5, 131.0, 123.8, 123.1, 107.354, 107.4, 107.3, 107.2, 70.4, 69.7, 34.2, 33.8. HRMS (ESI) m/z calcd. for C₁₂H₁₆N₂NaO₂ [M+Na]⁺: 243.1104, found: 243.1100.

1,2-Di(furan-2-yl)ethane-1,2-diol (25).^[9] White solid, 25 mg, 64% yield, *dl : meso* = 1.1:1. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 13.1 Hz, 4H), 6.33-6.25 (m, 8H), 5.01 (s, 2H, *meso*), 4.99 (s, 2H, *dl*), 3.02 (s, 2H, *dl*), 2.65 (s, 2H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 152.7, 142.6, 142.5, 110.5, 110.4, 108.4, 108.1, 70.2, 70.0. HRMS (ESI) m/z calcd. for C₁₀H₁₀NaO₄ [M+Na]⁺: 217.0471, found: 217.0467.

1,2-Bis(5-methylfuran-2-yl)ethane-1,2-diol (26).^[2] White solid, 32 mg, 85% yield, *dl : meso* = 1.5:1. ¹H NMR (400 MHz, CDCl₃) δ 6.20 (d, *J* = 2.8 Hz, 2H, *meso*), 6.12 (d, *J* = 2.8 Hz, 2H, *dl*), 5.92 (d, *J* = 2.8 Hz, 2H, *meso*), 5.86 (d, *J* = 2.8 Hz, 2H, *dl*), 4.91 (s, 4H, *dl* and *meso*), 2.89 (s, 2H, *dl*), 2.43 (s, 2H, *meso*), 2.28 (s, 6H, *meso*), 2.25 (s, 6H, *dl*). ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 152.2, 151.0, 150.9, 109.6, 108.9, 106.5, 106.3, 70.0, 69.9, 13.7, 13.6. HRMS (ESI) m/z calcd. for C₁₂H₁₄NaO₄ [M+Na]⁺: 245.0784, found: 245.0779.

HOH₂C

1,2-Bis(5-(hydroxymethyl)furan-2-yl)ethane-1,2-diol (27). Pale yellow solid, 44 mg, 87% yield, *dI* primary (the product was obtained without extraction). ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.20 (d, *J* = 7.1 Hz, 4H), 5.34 (s, 2H), 5.15 (s, 2H), 4.66 (s, 2H), 4.37 (d, *J* = 4.5 Hz, 4H) ¹³C NMR (100 MHz, DMSO-*d*₆) δ 155.4, 154.0, 107.5, 107.4, 68.9, 55.9. HRMS (ESI) m/z calcd. for C₁₂H₁₄NaO₆ [M+Na]⁺: 277.0683, found: 277.0687.

2,3-Diphenylbutane-2,3-diol (28).^[2] White solid, 46 mg, 95% yield, *dl : meso* = 1.6:1. ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.17 (m, 20 H, *dl* and *meso*), 2.66 (s, 2H, *dl*), 2.35 (s, 2H, *meso*), 1.57 (s, 6H, *meso*), 1.49 (s, 6H, *dl*). ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 143.6, 127.5, 127.4, 127.3, 127.2, 127.1, 127.0, 79.0, 78.7, 25.2, 25.0. HRMS (ESI) m/z calcd. for C₁₆H₁₈NaO₂ [M+Na]⁺: 265.1199, found: 265.1193.

2,3-Di-*p*-tolylbutane-2,3-diol (29).^[12] White solid, 50 mg, 93% yield, *dl* : *meso* = 1.2:1. ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.06 (m, 16 H, *dl* and *meso*), 2.66 (s, 2H, *dl*), 2.36 (s, 6H, *dl*), 2.34 (s, 6H, *meso*), 2.29 (s, 2H, *meso*), 1.56 (s, 6H, *meso*), 1.48 (s, 6H, *dl*). ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 140.7, 136.6, 136.5, 128.1, 128.0, 127.4, 127.0, 78.9, 78.6, 25.3, 25.1, 21.1, 21.0. HRMS (ESI) m/z calcd. for C₁₈H₂₂NaO₂ [M+Na]⁺: 293.1512, found: 293.1504.

2,3-Bis(3-(trifluoromethyl)phenyl)butane-2,3-diol (30). White solid, 66 mg, 87% yield, *dl : meso* = 1.5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.31 (m, 16 H, *dl* and *meso*), 2.69 (s, 2H, *dl*), 2.52 (s, 2H, *meso*), 1.61 (s, 6H, *meso*), 1.54 (s, 6H, *dl*). ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 145.5, 132.0, 131.6, 131.1 (q, *J* = 32.1Hz), 129.1, 129.0, 125.6 (q, *J* = 270.6 Hz), 125.5 (q, *J* = 3.8 Hz), 125.3 (q, *J* = 3.8 Hz), 80.0, 79.8, 26.2, 26.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.63, -62.70. HRMS (ESI) m/z calcd. for C₁₈H₁₆F₆NaO₂ [M+Na]⁺: 401.0947, found: 401.0938.

2,3-Di([1,1'-biphenyl]-2-yl)butane-2,3-diol (31). White solid, 71 mg, 90% yield, *dl* : *meso* = 1.7:1. ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.58 (m, 12H), 7.53-7.50 (m, 6H), 7.47-7.43 (m, 8 H), 7.40-7.32 (m, 10H), 2.66 (s, 2H, *dl*), 2.33 (s, 2H, *meso*), 1.66 (s, 6H, *meso*), 1.59 (s, 6H, *dl*). ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 142.7, 140.8, 139.9, 128.9, 128.0, 127.6, 127.4, 127.23, 127.2, 126.1, 126.0, 79.0, 78.8, 25.4, 25.2. HRMS (ESI) m/z calcd. for C₂₈H₂₆NaO₂ [M+Na]⁺: 417.18 25, found: 417.1825.

3,4-Diphenylhexane-3,4-diol (32).^[2] White solid, 45 mg, 83% yield, *dl : meso* = 1.6:1. ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.15 (m, 20H, *dl* and *meso*), 2.61 (s, 2H, *dl*), 2.35 (dq, *J* = 14.7, 7.4 Hz, 2H), 2.08 (s, 2H, *meso*), 2.07 (dq, *J* = 14.7, 7.4, Hz, 2H), 1.70 (dq, *J* = 17.4, 7.4 Hz, 2H), 1.59 (dq, *J* = 14.7, 7.4 Hz, 2H), 0.61 (t, *J* = 7.3 Hz, 6H), 0.58 (t, *J* = 7.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 140.5, 128.4, 127.8, 127.5, 127.2, 127.0, 126.8, 82.1, 82.0, 28.2, 27.8, 7.8, 7.7. HRMS (ESI) m/z calcd. for C₁₈H₂₂NaO₂ [M+Na]⁺: 293.1512, found: 293.1504.

3,4-Bis(3-chlorophenyl)hexane-3,4-diol (33). White solid, 55 mg, 81% yield, *dl* : *meso* = 1.2:1. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.14 (m, 14 H, *dl* and *meso*), 6.94 (br, 2 H, *dl*), 2.62 (s, 2H, *dl*), 2.29 (dq, *J* = 14.6, 7.4 Hz, 2H), 2.13 (s, 2H, *meso*), 2.07 (dq, *J* = 14.6, 7.4 Hz, 2H), 1.64 (dq, *J* = 14.7, 7.4 Hz, 2H), 1.54 (dq, *J* = 14.7, 7.4 Hz, 2H), 0.62 (t, *J* = 7.1 Hz, 6H), 0.58 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 143.70, 142.53, 133.81, 133.64, 128.68, 128.6, 128.5, 128.2, 127.3, 127.1, 126.5, 126.0, 81.8, 81.7, 28.3, 27.7, 7.7, 7.5. HRMS (ESI) m/z calcd. for C₁₈H₂₀Cl₂NaO₂ [M+Na]⁺: 361.0733, found: 361.0724.

3,3',4,4'-Tetrahydro-[1,1'-binaphthalene]-1,1'(2H,2'H)-diol (34). White solid, 48 mg, 82% yield, *dl* : *meso* = 1.8:1. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 7.6 Hz, 2H), 7.25-7.17 (m, 4H), 7.09 (d, *J* = 7.6 Hz, 2H), 3.18 (s, 2H), 2.72-2.68 (m, 2H), 2.59-2.50 (m, 2H), 1.67-1.58 (m, 6H), 1.30-1.23 (m, 2H). ¹³C NMR of (*dl*)-34 (100 MHz, CDCl₃) δ 140.7, 138.5, 129.2, 129.0, 127.3, 126.5, 77.3, 36.6, 31.3, 20.2. ¹H NMR of (*meso*)-34 (400 MHz, CDCl₃) δ 7.17-7.14 (m, 2 H), 7.03-6.94 (m, 6H), 2.64 (s, 2H), 2.61-2.60 (m, 2H), 2.22-2.16 (m, 2H), 2.14-2.04 (m, 2H), 1.70-1.64 (m, 2H), 1.60-1.51 (m, 2H). ¹³C NMR of (*meso*)-34 (100 MHz, CDCl₃) δ 140.2, 139.3, 128.4, 128.3, 127.3, 125.7, 78.3, 35.6, 31.0, 20.5, HRMS (ESI) m/z calcd. for C₂₀H₂₂NaO₂ [M+Na]⁺: 317.1512, found: 317.1509.

1,1,2,2-Tetraphenylethane-1,2-diol (35).^[2] White solid, 63 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.28 (m, 8 H), 7.16-7.15 (m, 12H), 3.02 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 128.7, 127.4, 127.1, 83.2. HRMS (ESI) m/z calcd. for C₂₆H₂₂NaO₂ [M+Na]⁺: 389.1512, found: 389.1507.

1,1,2,2-Tetrakis(4-methoxyphenyl)ethane-1,2-diol (36).^[13] White solid, 83 mg, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.8 Hz, 8 H), 6.68 (d, *J* = 8.8 Hz, 8 H), 3.76 (s, 2H), 3.73 (s, 12H), 2.93 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 159.7, 138.2, 137.9, 131.3, 129.2, 115.3, 113.9, 84.2, 76.7, 56.7, 56.6. HRMS (ESI) m/z calcd. for C₃₀H₃₀NaO₆ [M+Na]⁺: 509.1935, found: 509.1929.

Ethyl-4-hydroxy-2-methylene-4-phenylbutanoate (37). Colorless oil, 71 mg, 81%

yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.36-7.23 (m, 5H), 6.21 (d, *J* = 0.7 Hz, 1H), 5.57 (d, *J* = 0.7 Hz, 1H), 4.86 (dt, *J* = 8.1, 4.0 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 3.05 (d, *J* = 3.0 Hz, 1H), 2.92 (s, 1H), 2.77 (dd, *J* = 14.0, 3.8 Hz, 1H), 2.65 (dd, *J* = 14.0, 8.4 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.8, 144.1, 137.2, 128.4, 128.2, 127.5, 125.8, 73.2, 61.1, 42.5, 14.2. **HRMS** (ESI) m/z calcd. for C₁₃H₁₆NaO₃ [M+Na]⁺: 243.0992, found: 243.0988.

Ethyl-4-hydroxy-2-methylene-4-(*p*-tolyl)**butanoate (38).**^[14] Colorless oil, 74 mg, 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 7.6 Hz, 2H), 7.13 (d, *J* = 7.6 Hz, 2H), 6.21 (s, 1H), 5.57 (s, 1H), 4.82 (m, 1H), 4.20 (q, *J* = 7.0 Hz, 2H), 2.82 (s, 1H), 2.74 (dd, *J* = 14.0, 3.8 Hz, 1H), 2.65 (dd, *J* = 13.7, 8.4 Hz, 1H), 2.32 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 141.1, 137.3, 137.1, 129.1, 128.1, 125.8, 73.0, 61.1, 42.5, 21.2, 14.2. **HRMS** (ESI) m/z calcd. for C₁₄H₁₈NaO₃ [M+Na]⁺: 257.1148, found: 257.1148.

OH CO₂Et MeC

Ethyl-4-hydroxy-4-(4-methoxyphenyl)-2-methylenebutanoate (39).^[15] Colorless oil, 74 mg, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 6.22 (s, 1H), 5.58 (s, 1H), 4.83 (m, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 2.75 (dd, J = 14.0, 3.9 Hz, 1H), 2.67 (dd, J = 14.2, 8.3 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 159.1, 137.4, 136.3, 128.1, 127.1, 113.9, 72.9, 61.1, 55.4, 42.6, 14.3. HRMS (ESI) m/z calcd. for C₁₄H₁₈NaO₄ [M+Na]⁺: 273.1097, found: 273.1098.

OH CO₂Et

Ethyl-4-(4-fluorophenyl)-4-hydroxy-2-methylenebutanoate (40).^[15] Colorless oil, 73 mg, 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.29 (m, 2H), 7.03-6.98 (m, 2H),

6.22 (d, J = 0.7 Hz 1H), 5.56 (s, 1H), 4.85 (dt, J = 8.1, 4.0 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.05 (d, J = 3.0 Hz, 1H), 2.74 (dd, J = 14.0, 4.2 Hz, 1H), 2.63 (dd, J = 14.0, 8.2 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 167.8, 162.2 (d, J = 245.0 Hz), 139.8 (d, J = 245.0 Hz), 137.0, 128.4, 127.5 (d, J = 8.0 Hz), 115.2 (d, J = 21.3 Hz), 72.6, 61.2, 42.7, 14.2. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -115.36. HRMS (ESI) m/z calcd. for C₁₃H₁₅FNaO₃ [M+Na]⁺: 261.0897, found: 261.0895.

Ethyl-4-hydroxy-2-methylene-4-(o-tolyl)butanoate (41). Colorless oil, 71 mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.6 Hz, 1H), 7.21-7.11 (m, 3H), 6.26 (s, 1H), 5.64 (s, 1H), 5.08 (dt, J = 5.8, 3.0 Hz, 1H), 4.22 (q, J = 6.9 Hz, 2H), 2.75 (dd, J = 14.0, 2.9 Hz, 1H), 2.67 (d, J = 2.8 Hz, 1H), 2.54 (dd, J = 14.0, 9.0 Hz, 1H), 2.36 (s, 3H) 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 142.3, 134.4, 130.4, 128.4, 127.3, 126.3, 125.1, 69.4, 61.1, 41.5, 19.1, 14.3. HRMS (ESI) m/z calcd. for C₁₄H₁₈NaO₃ [M+Na]⁺: 257.1148, found: 257.1148.

Ethyl-4-(2-fluorophenyl)-4-hydroxy-2-methylenebutanoate (42). Colorless oil, 78 mg, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (t, J = 7.5 Hz, 1H), 7.24-7.19 (m, 1H), 7.14-7.10 (m, 1H), 7.01-6.97 (m, 1H), 6.20 (s, 1H), 5.55 (s, 1H), 5.18 (m, 1H), 4.21 (q, J = 7.0 Hz, 2H), 3.34 (d, J = 4.0 Hz, 1H), 2.80 (dd, J = 14.0, 4.2 Hz, 1H), 2.74 (dd, J = 14.0, 7.9 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 159.73 (d, J = 245.3 Hz), 137.0, 131.0 (d, J = 13.2 Hz), 128.8 (d, J = 8.2 Hz), 128.4, 127.4 (d, J = 4.6 Hz), 124.2 (d, J = 3.4 Hz), 115.1 (d, J = 21.7 Hz), 67.7, 67.6, 61.3, 41.1, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -119.21. HRMS (ESI) m/z calcd. for C₁₃H₁₅FNaO₃ [M+Na]*: 261.0897, found: 261.0899.

Ethyl-4-hydroxy-2-methylene-4-(m-tolyl)butanoate (43). Colorless oil, 71 mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.13 (m, 3H), 7.07 (d, J = 7.3 Hz, 1H), 6.23 (s, 1H), 5.6 (s, 1H), 4.83 (m, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.77 (dd, J = 13.8, 3.8 Hz, 1H), 2.65 (dd, J = 14.0, 8.6 Hz, 1H), 2.34 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 144.1, 138.1, 137.4, 128.4, 128.3, 128.1, 126.5, 122. 9, 73.2, 61.1, 42.6, 21.5, 14.3. HRMS (ESI) m/z calcd. for C₁₄H₁₈NaO₃ [M+Na]⁺: 257.1148, found: 257.1147.

Ethyl-4-(3-chlorophenyl)-4-hydroxy-2-methylenebutanoate (44). Colorless oil, 75 mg, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.27-7.21 (m, 3H), 6.24 (s, 1H), 5.59 (s, 1H), 4.85 (m, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.06 (d, J = 3.4 Hz 1H), 2.77 (dd, J = 14.0, 3.8 Hz, 1H), 2.62 (dd, J = 14.0, 8.4 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 146.2, 136.9, 134.4, 129.7, 128.6, 127.6, 126.0, 124.0, 72.7, 61.3, 42.7, 14.3. HRMS (ESI) m/z calcd. for C₁₃H₁₅ClNaO₃ [M+Na]⁺: 277.0602, found: 277.0599.

Ethyl-4-hydroxy-2-methylene-4-(naphthalen-1-yl)butanoate (45).^[14] Colorless oil, 82 mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.4 Hz, 4H), 7.50-7.46 (m, 3H), 6.24 (s, 1H), 5.60 (s, 1H), 5.05 (m, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.04 (d, J = 3.2Hz, 1H), 2.88 (dd, J = 14.0, 4.0 Hz, 1H), 2.75 (dd, J = 14.0, 8.4 Hz, 1H), 1.31 (t, J = 7.1Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 141.5, 137.2, 133.4, 133.0, 128.3, 128.2, 128.1, 127.8, 126.2, 125.9, 124.5, 124.1, 73.3, 61.2, 42.5, 14.2. HRMS (ESI) m/z calcd. for C₁₇H₁₈NaO₃ [M+Na]⁺: 293.1148, found: 293.1149.

Ethyl-4-(2-chloro-4-fluorophenyl)-4-hydroxy-2-methylenebutanoate (46).

Colorless oil, 78 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.52 (m, 1H), 7.06-6.95 (m, 2H), 6.22 (s, 1H), 5.58 (s, 1H), 5.19 (m, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.63 (s, 1H), 2.79 (dd, *J* = 14.1, 3.2 Hz, 1H), 2.61 (dd, *J* = 14.1, 8.6 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 161.6 (d, *J* = 248.7 Hz), 137.4 (d, *J* = 3.4 Hz), 137.0, 132.2 (d, *J* = 10.2 Hz), 128.8, 128.6 (d, *J* = 8.7 Hz), 116.6 (d, *J* = 24.7 Hz), 114.2 (d, *J* = 20.8 Hz), 69.8, 61.5, 40.7, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.69. HRMS (ESI) m/z calcd. for C₁₃H₁₄ClFNaO₃ [M+Na]⁺: 295.0508, found: 295.0507.

Ethyl-4-hydroxy-2-methylene-4-(thiophen-2-yl)butanoate (47).^[14] Colorless oil, 78 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.21 (m, 1H), 6.95-9.94 (m, 2H), 6.25 (s, 1H), 5.63 (s, 1H), 5.13 (dt, J = 8.2, 4.1 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.07 (d, J = 4.0 Hz, 1H), 2.87 (dd, J = 14.0, 4.6 Hz, 1H), 2.79 (dd, J = 14.0, 8.2 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 148.1, 136.7, 128.6, 126.7, 124.5, 123.6, 69.3, 61.2, 42.6, 14.2. HRMS (ESI) m/z calcd. for C₁₁H₁₄NaO₃S [M+Na]⁺: 249.0556, found: 249.0557.

Ethyl-4-(furan-2-yl)-4-hydroxy-2-methylenebutanoate (48).^[14] Colorless oil, 61 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (m, 1H), 6.32-6.31 (m, 1H), 6.25 (m, 2H), 5.64 (s, 1H), 4.90 (dt, J = 8.4, 5.0 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 2.90 (dd, J = 14.1, 4.9 Hz, 1H), 2.82 (dd, J = 14.0, 8.0 Hz, 1H), 2.77 (d, J = 5.0 Hz, 1H), 1.31 (t, J = 7.1Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 156.1, 142.0, 136.7, 128.4, 110.2, 106.2, 67.1, 61.2, 38.9, 14.3. HRMS (ESI) m/z calcd. for C₁₁H₁₄NaO₄ [M+Na]⁺: 233.0784, found: 233.0782.

N,N-dibenzyl-1,2-diphenylethane-1,2-diamine (49).^[2] White solid, 70 mg, 89% yield,

dl : meso = 1.6:1. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.12(m, 32H), 7.04 (dd, *J* = 7.7, 1.8 Hz, 4H, *meso*), 6.97-6.96 (m, 4H, *dl*), 3.75 (s, 2H, *dl*), 3.71 (s, 2H, *meso*), 3.66 (d, *J* = 13.3 Hz, 2H, *meso*), 3.53 (d, *J* = 13.7 Hz, 2H, *dl*), 3.49 (d, *J* = 13.3 Hz, 2H, *meso*), 3.30 (d, *J* = 13.7 Hz, *dl*), 1.92 (br, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 141.0, 140.8, 140.5, 128.7, 128.5, 128.4, 128.3, 128.2, 128.11, 128.10, 128.0, 127.8, 127.0, 126.9, 126.8, 68.5, 67.3, 51.5, 51.1. HRMS (ESI) m/z calcd. for C₂₈H₂₈N₂Na [M+Na]⁺: 415.2145, found: 415.2140.

N,N-dibenzyl-1,2-bis(4-fluorophenyl)ethane-1,2-diamine (50).^[2] White solid, 65 mg, 76% yield, *dl : meso* = 1.5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.17 (m, 20H), 7.01-6.94 (m, 12H), 6.86-6.82(m, 4H), 3.70 (s, 2H, *dl*), 3.64(d, *J* = 13.3 Hz, 2H, *meso*), 3.63 (s, 2H, *meso*), 3.54 (d, *J* = 13.6 Hz, 2H, *dl*), 3.47 (d, *J* = 13.3 Hz, 2H, *meso*), 3.29 (d, *J* = 13.6 Hz, 2H, *dl*), 1.89 (br, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, *J* = 245.6 Hz), 162.0 (d, *J* = 245.0 Hz), 140.5, 140.2, 136.8 (d, *J* = 2.9 Hz), 136.3 (d, *J* = 3.0 Hz), 130.1 (d, *J* = 7.9 Hz), 129.5 (d, *J* = 8.0 Hz), 128.5, 128.4, 128.2, 128.0, 127.1, 127.0, 115.3 (d, *J* = 21.2 Hz), 115.0 (d, *J* = 21.2 Hz), 67.9, 66.5, 51.4, 51.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.89, -115.62. HRMS (ESI) m/z calcd. for $C_{28}H_{26}F_2N_2Na$ [M+Na]⁺: 451.1956, found: 451.1955.

N,N-Dibenzyl-1,2-bis(4-chlorophenyl)ethane-1,2-diamine (51).^[16] White solid, 65 mg, 71% yield, *dl : meso* = 1.8:1. ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.13 (m, 28H), 7.01 (d, *J* = 6.7 Hz, 4H), 6.95 (d, *J* = 8.3 Hz, 4H), 3.71 (s, 2H, *dl*), 3.65 (d, *J* = 13.3 Hz, 2H, *meso*), 3.63 (s, 2H, *meso*), 3.54 (d, *J* = 13.6 Hz, 2H, *dl*), 3.46 (d, *J* = 13.3 Hz, 2H, *meso*), 3.30 (d, *J* = 13.6 Hz, 2H, *dl*), 1.87 (br, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 140.0, 139.5, 139.0, 133.4, 132.9, 130.0, 129.4, 128.6, 128.5, 128.4, 128.2, 128.0, 127.1, 127.0, 67.7, 66.4, 51.3, 51.1. HRMS (ESI) m/z calcd. for C₂₈H₂₆Cl₂N₂Na [M+Na]⁺:

483.1365, found: 483.1360.

Dimethyl 4,4'-(1,2-bis(benzylamino)ethane-1,2-diyl)dibenzoate (52).^[17] White solid, 85 mg, 84% yield, *dl : meso* = 1.2:1. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.2 Hz, 4H, *dl*), 7.82 (d, *J* = 8.2 Hz, 4H, *meso*), 7.28-7.19 (m, 20H), 7.09 (d, *J* = 8.1 Hz, 4H, *dl*), 7.01 (d, *J* =6.6 Hz, 4H, *meso*), 3.90 (s, 6H, *dl*), 3.87 (s, 2H, *dl*), 3.85 (s, 6H, *meso*), 3.76 (s, 2H, *meso*), 3.63 (d, *J* = 13.2 Hz, 2H, *meso*), 3.56 (d, *J* = 13.6 Hz, 2H, *dl*), 3.47 (d, *J* = 13.2 Hz, 2H, *meso*), 3.32 (d, *J* = 13.6 Hz, 2H, *dl*), 2.10 (br, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 166.9, 146.4, 145.9, 140.1, 139.9, 129.6, 129.5, 128.6, 128.5, 128.4, 128.1, 128.0, 127.9, 127.1, 127.0, 68.1, 66.7, 52.1, 52.0, 51.4, 51.1. HRMS (ESI) m/z calcd. for $C_{32}H_{32}N_2NaO_4$ [M+Na]⁺: 531.2254, found: 531.2250.

4,4'-(1,2-Bis(benzylamino)ethane-1,2-diyl)dibenzonitrile (53).^[2] White solid, 80mg, 90% yield, *dl* : *meso* = 1.2:1. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 6.7 Hz, 4H, *dl*), 7.47 (d, *J* = 6.7 Hz, 4H, *meso*), 7.31-7.19 (m, 20H), 7.13 (d, *J* = 6.7 Hz, 4H, *dl*), 7.05 (d, *J* = 8.3 Hz, 4H, *meso*), 3.88 (s, 2H, *dl*), 3.72 (s, 2H, *meso*), 3.64 (d, *J* = 13.3 Hz, 2H, *meso*), 3.59 (d, *J* = 13.6 Hz, 2H, *dl*), 3.47 (d, *J* = 13.3 Hz, 2H, *meso*), 3.35 (d, *J* = 13.6 Hz, 2H, *dl*), 3.47 (d, *J* = 13.3 Hz, 2H, *meso*), 3.35 (d, *J* = 13.6 Hz, 2H, *dl*), 3.47 (d, *J* = 13.7, 139.6, 139.5, 132.1, 129.3, 128.7, 128.6, 128.1, 128.0, 127.3, 118.8, 118.7, 111.7, 111.4, 67.9, 66.4, 51.4, 51.2. **HRMS** (ESI) m/z calcd. for C₃₀H₂₆N₄Na [M+Na]⁺: 465.2050, found: 465.2050.

N,N-Dibenzyl-1,2-bis(4-(tert-butyl)phenyl)ethane-1,2-diamine (54). White solid obtained by filtration, 61 mg, 61% yield, *dI* primary. ¹H - NMR (400 MHz, CDCl₃) δ

7.35-7.16 (m, 14H), 6.93-6.91 (m, 4H), 3.66 (s, 2H), 3.52 (d, J = 13.9 Hz, 2H), 3.28 (d, J = 13.9 Hz, 2H), 1.72 (br, 2H), 1.35 (s, 18H). ¹³**C** NMR (100 MHz, CDCl₃) δ 150.6, 140.7, 138.1, 128.3, 128.2, 127.9, 126.7, 125.4, 67.1, 51.0, 34.7, 31.6. HRMS (ESI) m/z calcd. for C₃₆H₄₄N₂Na [M+Na]⁺: 527.3397, found: 527.3388.

N,N-Dibenzyl-1,2-bis(4-methoxyphenyl)ethane-1,2-diamine (55).^[2] White solid obtained by filtration, 40 mg, 44% yield, *dI* primary. ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.16 (m, 10H), 6.97 (d, *J* = 6.7 Hz, 4H), 6.87 (d, *J* = 8.6 Hz, 4H), 3.82 (s, 6H), 3.65 (s, 2H), 3.52 (d, *J* = 13.8 Hz, 2H), 3.27 (d, *J* = 13.8 Hz, 2H), 1.68 (br, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 140.5, 132.9, 129.7, 128.3, 128.0, 126.8, 113.9, 66.7, 55.4, 51.0. HRMS (ESI) m/z calcd. for C₃₀H₃₂N₂NaO₂ [M+Na]⁺: 475.2356, found: 475.2350.

N,N'-((1,2-Bis(benzylamino)ethane-1,2-diyl)bis(4,1-phenylene))diacetamide

(56).^[2] White solid obtained by filtration, 67 mg, 66% yield, *dI* primary. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.87 (s, 2H), 7.47 (d, *J* = 6.7 Hz, 4H), 7.24-7.06 (m, 14H), 3.67 (s, 2H), 3.47 (d, *J* = 13.6 Hz, 2H), 3.28 (d, *J* = 13.6 Hz, 2H), 2.15 (br, 2H), 2.03 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.1, 140.6, 138.1, 135.7, 128.4, 128.0, 127.6, 126.5, 118.4, 66.1, 50.3, 24.0. HRMS (ESI) m/z calcd. for C₃₂H₃₄N₄NaO₂ [M+Na]⁺: 529.2574, found: 529.2568.

N,N-Dibenzyl-1,2-di(naphthalen-2-yl)ethane-1,2-diamine (57).^[2] White solid

obtained by filtration, 80 mg, 81% yield, *dI* primary. ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.81 (m, 8H), 7.55-7.51 (m, 6H), 7.17-7.15 (m, 6H), 6.90 (d, *J* = 3.2 Hz, 4H), 4.02 (s, 2H), 3.54 (d, *J* = 13.8 Hz, 2H), 3.30 (d, *J* = 13.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 138.5, 133.5, 133.4, 128.6, 128.5, 128.3, 128.1, 128.0, 127.9, 126.8, 126.2, 126.1, 126.0, 67.1, 51.0. HRMS (ESI) m/z calcd. for C₃₆H₃₂N₂Na [M+Na]⁺: 515.2458, found: 515.2449.

1,2-Di([1,1'-biphenyl]-2-yl)-N,N-dibenzylethane-1,2-diamine (58). White solid, 81 mg, 74% yield, *dl : meso* = 1.4:1. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.00 (m, 52H), 6.75-6.45 (br, 4H), 4.16 (s, 2H, *dl*), 4.16 (s, 2H, *meso*), 3.70 (d, *J* = 13.0 Hz, 2H, *meso*), 3.66 (d, *J* = 13.0 Hz, 2H, *meso*), 3.57 (d, *J* = 13.7 Hz, 2H, *dl*), 3.38 (d, *J* = 13.7 Hz, 2H, *dl*), 2.24 (br, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 143.2, 141.4, 141.3, 141.1, 138.9, 138.1, 129.8, 129.7, 129.4, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.5, 127.2, 126.8, 126.7, 126.6, 126.5, 126.5, 126.3, 63.7, 60.7, 51.4, 50.9. HRMS (ESI) m/z calcd. for C₄₀H₃₆N₂Na [M+Na]⁺: 567.2771, found: 567.2764.

N,N-Dibenzyl-1,2-bis(2-(trifluoromethyl)phenyl)ethane-1,2-diamine (59). White solid, 75 mg, 71% yield, *dl : meso* = 1:1.2. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.8 Hz, 2H), 7.73 (d, *J* = 7.8 Hz, 2H), 7.61 (d, *J* = 7.8 Hz, 2H), 7.54-7.47 (m, 6H), 7.36-7.16 (m, 20H), 7.08 (d, *J* = 7.8 Hz, 4H), 4.48 (s, 2H, *dl*), 4.42 (s, 2H, *meso*), 3.61 (d, *J* = 12.5 Hz, 2H, *meso*), 3.63-3.40 (m, 6H), 2.09 (br, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 141.2 (q, *J* = 9.8 Hz), 140.7 (q, *J* = 2.1 Hz), 132.4 (q, *J* = 3.1 Hz), 132.1 (q, *J* = 7.7 Hz), 130.0 (m), 129.0 (m), 128.5, 128.3, 128.2, 127.7, 127.5, 127.4, 127.1, 126.8, 125.5, 123.2 (m), 123.0 (m), 62.6, 62.4, 51.6, 51.3. HRMS (ESI) m/z calcd. for C₃₀H₂₆F₆N₂Na [M+Na]⁺: 551.1892, found: 551.1883.

N, **N**-Dibenzyl-1,2-di(furan-2-yl)ethane-1,2-diamine (60). White solid, 47 mg, 63% yield, *dl* primary. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.15 (m, 12H), 6.32 (m, 2H), 6.13 (d, *J* = 2.8 Hz, 2H), 4.04 (s, 2H), 3.71 (d, *J* = 13.5 Hz, 2H), 3.49 (d, *J* = 13.5 Hz, 2H), 1.94 (br, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 142.1, 140.2, 128.4, 128.2, 127.0, 110.1, 108.6, 58.9, 51.2. HRMS (ESI) m/z calcd. for C₂₄H₂₄N₂NaO₂ [M+Na]⁺: 395.1730, found: 395.1726

N,N,1,2-Tetraphenylethane-1,2-diamine (61).^[18] White solid, 45 mg, 62% yield, *dl* : *meso* = 1:1. ¹H NMR (400 MHz, CDCl₃) δ 7.22-6.94 (m, 28H), 6.67-6.34 (m, 4H), 6.52-6.49 (m, 8H), 4.96 (br, 2H, meso), 4.55 (br, 2CH, 4NH). ¹³C NMR (100 MHz, CDCl₃) δ 147.2, 146.6, 140.1, 138.4, 129.4, 129.2, 128.5, 128.4, 127.7, 127.5, 118.2, 118.0, 114.2, 113.9, 64.1, 62.1. HRMS (ESI) m/z calcd. for C₂₆H₂₄N₂ Na [M+ Na]⁺: 387.1832, found: 387.1830.

N,N-Diphenethyl-1,2-diphenylethane-1,2-diamine (62). Yellowish brown solid, 49 mg, 58% yield, *meso* primary. ¹H NMR (400 MHz, CDCl₃) δ 7.25-6.94 (m, 20H), 3.72 (s, 2H), 2.57-2.45 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 140.97, 140.14, 128.66, 128.41, 127.62, 126.00, 68.54, 48.68, 36.15. HRMS (ESI) m/z calcd. for C₃₀H₃₃N₂ [M+H]⁺: 421.2638, found: 421.2646.

1,2-Diphenyl-N,N-dipropylethane-1,2-diamine (63).^[19] White solid, 41 mg, 69% yield, *dl : meso* = 1:6.6. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.02 (m, 20H), 3.73 (s, 2H, *meso*), 3.61 (s, 2H, *dl*), 2.41-2.33 (m, 4H, *dl*), 2.27-2.16 (m, 4H, *meso*), 1.47-1.38 (m, 4H, *dl*), 1.30-1.23 (m, 4H, *meso*), 0.85 (t, *J* = 7.4 Hz, 6H, *dl*), 0.67 (t, *J* = 7.4 Hz, 6H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 142.0, 141.6, 128.5, 128.4, 128.0, 127.9, 127.6, 126.8, 69.5, 68.7, 49.8, 49.4, 23.4, 22.9, 11.9, 11.6. HRMS (ESI) m/z calcd. for C₂₀H₂₉N₂ [M+H]⁺: 297.2325, found: 297.2324.

N,N-Dicyclopentyl-1,2-diphenylethane-1,2-diamine (64).^[20] White solid, 54 mg, 78% yield, *dl : meso* = 1:1.7. ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.03 (m, 20H), 3.80 (s, 2H, *meso*), 3.64 (s, 2H, *dl*), 2.81 (t, *J* = 6.1 Hz, 2H, *dl*), 2.67 (t, *J* = 6.1 Hz, 2H, *meso*), 1.69-1.01 (m, 32H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 141.7, 128.6, 128.3, 128.1, 127.8, 127.5, 126.7, 67.9, 67.1, 57.4, 57.1, 34.2, 33.8, 32.4, 32.1, 23.8, 23.7, 23.6, 23.5. HRMS (ESI) m/z calcd. for C₂₄H₃₃N₂ [M+H]⁺: 349.2638, found: 349.2645.

N,N-Diisopropyl-1,2-diphenylethane-1,2-diamine (65).^[20] White solid, 49 mg, 83% yield, *dl : meso* = 1:1.6. ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.00 (m, 20H), 3.90 (s, 2H, *meso*), 3.71 (s, 2H, *dl*), 2.53 (q, *J* = 6.1 Hz, 2H, *dl*), 2.46 (q, *J* = 6.1 Hz, 2H, *meso*), 1.00-0.91 (m, 12H, *dl*), 0.90-0.75 (m, 12H, *meso*). ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 141.5, 128.4, 128.1, 128.0, 127.8, 127.2, 126.7, 66.8, 65.6, 46.1, 45.5, 24.6, 24.3, 22.2,

22.0. HRMS (ESI) m/z calcd. for C₂₀H₂₉N₂ [M+H]⁺: 297.2325, found: 297.2329.

1,2-Diphenyl-N,N-bis((S)-1-phenylethyl)ethane-1,2-diamine (66).^[21,22] White solid, 70 mg, 83% yield, *dl : meso* = 2.6:1. ¹H NMR of (R, S + S, S)-66 (400 MHz, CDCl₃) δ 7.28-6.88(m, 40H), 3.87 (s, 2H, S, S), 3.73 (d, *J* = 6.8 Hz, 2H, R, S), 3.58 (q, *J* = 6.6 Hz, 2H, S, S), 3.57 (d, *J* = 6.8 Hz, 2H, R, S), 3.37 (q, *J* = 6.7 Hz, 2H, R, S), 3.27 (q, *J* = 6.7 Hz, 2H, R, S), 1.77 (br, 4H), 1.29 (d, *J* = 6.5 Hz, 6H, S, S), 1.16 (d, *J* = 6.7 Hz, 3H, R, S), 1.07 (d, *J* = 6.5 Hz, 3H, R, S). ¹³C NMR of (R, S + S, S)-66 (100 MHz, CDCl₃) δ 146.7, 146.1, 145.6, 141.7, 141.6, 141.0, 128.6, 128.5, 128.3, 128.2, 128.1, 127.9, 127.4, 127.3, 126.86, 126.82, 126.76, 126.64, 126.60, 66.5, 65.7, 64.2, 54.9, 54.8, 54.5, 24.7, 22.6, 22.1. ¹H NMR of (R, R)-66 (400 MHz, CDCl₃) δ 7.27-6.91 (m, 20H), 3.42 (q, *J* = 6.6 Hz, 2H), 3.37 (s, 2H), 2.02 (br, 2H), 1.25 (d, *J* = 6.6 Hz, 6H). ¹³C NMR of (R, R)-66 (100 MHz, CDCl₃) δ 145.7, 141.8, 128.5, 128.1, 128.0, 126.8, 126.7, 65.9, 55.2, 25.4. HRMS (ESI) m/z calcd. for C₃₀H₃₃N₂ [M+H]⁺: 421.2638, found: 421.2639.

9. References

[1] J. Zhang, Y. Li, F. Zhang, C. Hu and Y. Chen, *Angew. Chem., Int. Ed.*, 2016, 55, 1872–1875.

[2] M. Nakajima, E. Fava, S. Loescher, Z. Jiang and M. Rueping, *Angew. Chem., Int. Ed.,* 2015, **54**, 8828–8832.

[3] Y.-X. Liao, C.-H. Xing, P. He and Q.-S. Hu, Org. Lett., 2008, 10, 2509–2512.

[4] S. Zhang, L. Li, J. Li, J. Shi, K. Xu, W. Gao, L. Zong, G. Li and M. Findlater, *Angew. Chem., Int. Ed.,* 2021, **60**, 7275–7282.

- [5] A. L. Berger, K. Donabauer and B. König, Chem. Sci., 2018, 9, 7230-7235.
- [6] T. Duhamel and K. Muñiz, Chem. Commun., 2019, 55, 933–936.

[7] N. C. Mamillapalli and G. Sekar, RSC Adv., 2014, 4, 61077–61085.

[8] K. Li, Q. Wan, C. Yang, X.-Y. Chang, K.-H. Low and C.-M. Che, *Angew. Chem., Int. Ed.,* 2018, **57**, 14129–14133.

[9] C. Liu, R. Li, W. Zhou, Y. Liang, Y. Shi, R-L. Li, Y. Ling, Y. Yu, J. Li and B. Zhang, *ACS Catal.*, 2021, **11**, 8958–8967.

[10] Y.-B. Huang, Z. Yang, J.-J. Dai, Q.-X. Guo and Y. Fu, RSC Adv., 2012, 2, 11211– 11214.

[11] A. Caron, É. Morin and S. K. Collins, ACS Catal., 2019, 9, 9458–9464.

[12] H. Ito and A. Sudo, *Results Chem.*, 2021, **3**, 100123.

[13] J. Jo, S. Kim, J.-H. Choi and W.-J. Chung, *Chem. Commun.*, 2021, **57**, 1360–1363.

[14] L. Qi and Y. Chen, Angew Chem., Int. Ed., 2016, 55, 13312–13315.

[15] D. Liu, J. Zhang and Y. Chen, *Synlett*, 2021, **32**, 356–361.

[16] S. Okamoto, R. Ariki, H. Tsujioka and A. Sudo, *J. Org. Chem.*, 2017, 82, 9731– 9736.

[17] H. Wang, J.-P. Qu and Y.-B. Kang, Org. Lett., 2021, 23, 2900–2903.

[18] L. Leng and J. M. Ready, ACS Catal., 2020, 10, 13196–13201.

[19] M. P. Dutta, B. Baruah, A. Boruah, D. Prajapati and J. S. Sandhu, *Synlett*, 1998,**8**, 857–858.

[20] P.-Q. Huang, Q.-W. Lang, A.-E Wang and J.-F. Zheng, *Chem. Commun.*, 2015, **51**, 1096–1099.

[21] K. Bambridge, M. J. Begley and N. S. Simpkins, *Tetrahedron Lett.*, 1994, **35** 3391– 3394.

[22] G. Martelli, S. Mori and D. Savoia, Tetrahedron, 2000, 56, 8367-8374.

S35
10. Copies of NMR Spectra.

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 1b

		$\int_{-1}^{1} \frac{132.36}{28.98}$ $\int_{-1}^{-1} \frac{128.9}{26.79}$ -118.92			-75.72							
				ОН								
		i IÌ		1b	CN							
			l									
180 170 160	150 14	0 130 120	110	100 90 fl (nnm)	80 70	60	50	40	30	20	10	0

f1 (ppm)

S40

 $<^{159.52}_{159.26}$ 78.89 77.88 <55.38 55.31 .OMe ŌН Ġн MeO 100 90 f1 (ppm)

-132.21 -132.14 -128.46 -128.29

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of compound 4

<77.02 <76.57

 $<^{14.93}_{14.77}$

¹⁹F NMR (376 MHz, CDCI₃) spectrum of compound 7

-170 -190

¹⁹F NMR (376 MHz, CDCI₃) spectrum of compound 8

S50

¹³C NMR (100 MHz, CDCI₃) spectrum of compound 9

~78.59 ~77.20

^{19}F NMR (376 MHz, CDCl₃) spectrum of compound 11

S56

^{19}F NMR (376 MHz, CDCl_3) spectrum of compound 13

13

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

¹H NMR (400 MHz, CDCI₃) spectrum of compound 15

S60

 $^{\rm 13}\text{C}$ NMR (100 MHz, CDCl_3) spectrum of compound 17

53.33 50.89 17.28	12.81	33.04 23.01 2.93 2.93 2.93	33	5.28
0 0 7 7	<u> </u>	222222	82	200
SSY	Ý.	YSZ	ſ	\sim

^{19}F NMR (376 MHz, CDCl₃) spectrum of compound 17

^{19}F NMR (376 MHz, CDCl_3) spectrum of compound 18

¹H NMR (400 MHz, CDCI₃) spectrum of compound 19

. 190 100 90 f1 (ppm)

S78

S85

S86

S88

^{19}F NMR (376 MHz, CDCl₃) spectrum of compound 40

S90

^{19}F NMR (376 MHz, CDCl₃) spectrum of compound 42

^{19}F NMR (376 MHz, CDCl₃) spectrum of compound 50

S105

S107

S108

¹H NMR (400 MHz, CDCI₃) spectrum of compound 57

¹H NMR (400 MHz, CDCI₃) spectrum of compound 58

¹⁹F NMR (376 MHz, CDCl₃) spectrum of compound 59

f1 (ppm) . 20 Ó

¹H NMR (400 MHz, CDCI₃) spectrum of compound 62

62

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 62

S116

S118

¹H NMR (400 MHz, CDCl₃) spectrum of compound (R, S + S, S)-66

