# **Supporting Information**

# Atomically dispersed Co<sup>2+</sup> on MgAlO<sub>x</sub> boosting C<sub>4-10</sub>

## alcohols selectivity of ethanol valorization

Wen-Lu Lv, <sup>a</sup> Lei He <sup>a</sup>, Wen-Cui Li <sup>a</sup>, Bai-Chuan Zhou <sup>a</sup>, Shao-Pei Lv <sup>a</sup>, and An-Hui Lu <sup>a</sup> \* State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.

## Contents

| 1.  | Experimental methods                                                                                                                                                                | Page S3  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2.  | Performance of ethanol on $Mg_3AlO_X$ and $Co_{0.15}Mg_{2.85}AlO_x$ at different temperatures                                                                                       | Page S6  |
| 3.  | Performance of ethanol on Mg <sub>3</sub> AlO <sub>X</sub> , Co <sub>0.15</sub> Mg <sub>2.85</sub> AlO <sub>x</sub> and Co <sub>n</sub> Mg <sub>3-n</sub> AlO <sub>x</sub> at 523 K | Page S7  |
| 4.  | Performance of ethanol on $Co_{0.15}Mg_{2.85}AlO_x$ reduced at different temperatures                                                                                               | Page S8  |
| 5.  | TEM images of Co <sub>n</sub> Mg <sub>3-n</sub> AlO <sub>x</sub>                                                                                                                    | Page S9  |
| 6.  | TEM images of used Co <sub>0.15</sub> Mg <sub>2.85</sub> AlO <sub>x</sub>                                                                                                           | Page S10 |
| 7.  | XRD profiles of used Co <sub>n</sub> Mg <sub>3-n</sub> AlO <sub>x</sub>                                                                                                             | Page S11 |
| 8.  | XRD profiles of Co <sub>0.15</sub> Mg <sub>2.85</sub> AlO <sub>x</sub> -IM                                                                                                          | Page S12 |
| 9.  | XP spectra of $Mg_3AlO_x$ and $Co_{0.15}Mg_{2.85}AlO_x$                                                                                                                             | Page S13 |
| 10. | Co 2p and O 1s XP spectra for $Co_nMg_{3-n}AlO_x$                                                                                                                                   | Page S14 |
| 11. | UV-vis DRS profiles of reduced and unreduced Co <sub>0.15</sub> Mg <sub>2.85</sub> AlO <sub>x</sub>                                                                                 | Page S15 |
| 12. | Performance of ethanol on reduced and unreduced $Co_{0.15}Mg_{2.85}AlO_x$                                                                                                           | Page S16 |
| 13. | Surface chemical properties of $Mg_3AlO_x$ and $Co_nMg_{3-n}AlO_x$                                                                                                                  | Page S17 |
| 14  | The comparison of selectivity in ethanol upgrading over $\mathrm{Co}_{0.15}\mathrm{Mg}_{2.85}\mathrm{AlO}_x$ and                                                                    | Page S18 |
|     | Mg <sub>3</sub> AlO <sub>x</sub>                                                                                                                                                    |          |
| 15. | Summary of catalytic activity of ethanol coupling upon different catalysts                                                                                                          | Page S19 |
| 16. | Physical properties of the $Mg_3AlO_X$ , $Co_{0.15}Mg_{2.85}AlO_x$ and $Co_nMg_{3-n}AlO_x$ catalysts                                                                                | Page S21 |
| 17. | Catalytic activity of ethanol coupling upon $Mg_3AlO_X$ and $Co_{0.15}Mg_{2.85}AlO_x$ catalysts                                                                                     | Page S22 |
| 18. | Additional References                                                                                                                                                               | Page S24 |

#### 1. Experimental methods

#### **1.1 Catalyst preparation**

Mg<sub>3</sub>AlO<sub>x</sub> was synthesized by the coprecipitation method. Briefly, 50 mL cation solution containing Mg(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, and Al(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O (Mg/Al molar ratio=3) was added dropwise to 50 mL solution containing Na<sub>2</sub>CO<sub>3</sub>, and NaOH at a speed of 2.5 mL·min<sup>-1</sup>. Then, 3 mol·L<sup>-1</sup> NaOH aqueous solution was added to the solution to adjust an initial system pH to 10. The slurry was stirred for 18 h at 338 K. After filtration, the hydrotalcite was washed with deionized water repeatedly, and then dried at 323 K overnight. Finally, the dry precursor was calcined at 873 K in air for 2 h with a temperature ramp of 5 K min<sup>-1</sup>. The prepared catalyst was denoted by  $Mg_3AlO_x$ .  $Co_{0.15}Mg_{2.85}AlO_x$  catalysts were also prepared by the coprecipitation method. The cation solution containing proportional Mg(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, Al(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O, and Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O was added dropwise to solution containing Na<sub>2</sub>CO<sub>3</sub>, and NaOH at the first step. The other steps are the same as described above. The actual Co content was determined by ICP-OES to be 4.8 wt.%. Co<sub>0.15</sub>Mg<sub>2.85</sub>AlO<sub>x</sub>-IM was prepared by incipient wetness method. In brief, Mg<sub>2.85</sub>AlO<sub>x</sub> was impregnated with an aqueous solution of Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O to achieve incipient wetness and held at room temperature for 120 min. As-prepared catalyst was obtained by drying at 323 K in flowing air overnight and calcining at 623 K for 2 h in static air. The actual Co content was determined by ICP-OES to be 4.8 wt.%.

#### **1.2 Characterization**

Powder X-ray diffraction (XRD) patterns were obtained with a Panalytical X'pert Pro Super X-ray diffractometer using Cu K $\alpha$  radiation (40 kV, 40 mA,  $\lambda$  =0.15418 nm). Transmission electron microscopy (TEM), high angle angular dark field-scanning transmission electron microscopy

(HAADF-STEM), and energy-dispersive X-ray spectroscopy (EDS) elemental mapping were performed using a Tecnai F30 high-resolution transmission electron microscope (FEI Company). The actual Co content of the catalysts was determined using an Optima 2000DV instrument by ICP-OES.

Temperature-programmed reduction under H<sub>2</sub> atmosphere (H<sub>2</sub>-TPR) was carried out on a Micromeritics AutoChem II 2920 apparatus. Each 100 mg catalysts (40-60 meshes) were loaded into quartz U tubes, then heated in 8 vol% H<sub>2</sub>/Ar at a heating rate of 10 °C/min up to 873 K. A thermal conductivity detector (TCD) was used to calculate the amount of hydrogen consumption during the experiment. The type and number of base and acid sites on various catalysts surfaces were determined by temperature programmed desorption mass spectrometry (TPD-MS) of CO<sub>2</sub> and NH<sub>3</sub>, respectively, using a Micromeritics AutoChem II 2920 apparatus as well. Signals for CO<sub>2</sub> (m/z = 44) and NH<sub>3</sub> (m/z = 15) were monitored using on-line mass spectrometry (MS).

X-ray photoelectron spectroscopy (XPS) was performed with a PHI Versaprobe 5000 spectrometer equipped with an Al K $\alpha$  X-ray source. Binding energies were calibrated using the C 1s signal at 284.8 eV. Before the experiments, the samples were pre-treated in 8% H<sub>2</sub>/N<sub>2</sub> at 773 K for 2 h.

The UV–vis diffuse reflectance spectra (UV–vis DRS) were collected using BaSO<sub>4</sub> as a reference on an Agilent Cary 5000 UV–vis–NIR spectrophotometer with a diffuse reflectance integration sphere attachment (Internal DRA 2500). The scanning was performed in a wavelength range of 200-800 nm at room temperature for a sample loaded in a transparent quartz cell.

#### 1.3 Catalytic tests

All experiments were performed in a quartz-tube, packed-bed reactor (8-mm i.d.) under atmospheric pressure. Before reaction, a 200 mg catalyst was pretreated at 673 K for 2 h using 8 vol%  $H_2$  in  $N_2$ . The reaction temperature was maintained using a vertically aligned tube furnace equipped with a YuDian AI controller (series 708P) and a K-type thermocouple.

All experiments were carried out under atmospheric pressure with a total gas flow rate of 30 mL/min. A Gas Chromatograph (GC) with a Flame Ionization Detector (FID) was connected to the reactor outlet to analyze the products. The carbon balance was better than 98%. The retention time for each specific component was determined using the corresponding standard chemicals ( $C_2$ - $C_{10}$  *n*-alcohols, Sinopharm;  $C_2$ ,  $C_6$ ,  $C_8$  *n*-aldehydes, Aladdin; E-2-butenal, AcroSeal ). The identities of products were further confirmed by GC-MS analysis (Agilent 7890A GC interfaced with 5975C MS).

The ethanol conversion and product selectivity (except  $H_2$ ) were calculated based on moles of carbon in the products, as follows:

Ethanol conversion:

$$Con.(\%) = \left(1 - \frac{n_{\text{out},C2H5OH} \times A_{\text{out},C2H5OH} \times f_{\text{out},C2H5OH}}{n_{\text{out},C2H5OH} \times A_{\text{out},C2H5OH} \times f_{\text{out},C2H5OH} + \sum_{i \ge 2} n_i \times A_i \times f_i}\right) \times 100\%$$
(1)

Product selectivity:

$$Sel.(\%) = \frac{n_i \times A_i \times f_i}{\sum_{i \ge 2} n_i \times A_i \times f_i} \times 100\%$$
<sup>(2)</sup>

Sel.(%) of 
$$H_2 = \frac{m_{H_2}}{\sum_{i\ge 1} m_i} \times 100\%$$
 (3)

The carbon number, FID peak area, response factor, and molar yield of each product are designated  $n_i$ ,  $A_i$ ,  $f_i$ , and  $m_i$ , respectively.



**Figure S1.** Comparison of ethanol conversion and product distribution over  $Mg_3AlO_x$  and  $Co_{0.15}Mg_{2.85}AlO_x$  at 498 K (a), 548 K (b), 573 K (c), and 598 K (d). Reaction conditions: 0.2 g catalysts, 5.7 kPa  $C_2H_5OH$ , WHSV=0.96  $g_{C2H5OH}$   $g_{Cat}$  h<sup>-1</sup>,  $V_{total}$ =30 mL/min, N<sub>2</sub> balance.

3. Performance of ethanol on Mg<sub>3</sub>AlO<sub>x</sub>, Co<sub>0.15</sub>Mg<sub>2.85</sub>AlO<sub>x</sub> and Co<sub>0.15</sub>Mg<sub>2.85</sub>AlO<sub>x</sub>-IM at 523 K



Figure S2. Comparison of ethanol conversion and product distribution over Mg<sub>3</sub>AlO<sub>x</sub>,  $Co_{0.15}Mg_{2.85}AlO_x$  and  $Co_{0.15}Mg_{2.85}AlO_x$ -IM at 523 K. Reaction conditions: 0.2 g catalysts, 5.7 kPa  $C_2H_5OH$ , WHSV=0.96 g<sub>C2H5OH</sub> g<sub>Cat</sub> h<sup>-1</sup>, V<sub>total</sub>=30 mL/min, N<sub>2</sub> balance.

4. Performance of ethanol on  $Co_{0.15}Mg_{2.85}AlO_x$  reduced at different temperatures



Figure S3. Comparison of ethanol conversion and product distribution over  $Co_{0.15}Mg_{2.85}AlO_x$ reduced at different temperatures. Reaction conditions: 0.2 g catalysts, 5.7 kPa  $C_2H_5OH$ , WHSV=0.96  $g_{C2H5OH}$   $g_{Cat}$  h<sup>-1</sup>,  $V_{total}$ =30 mL/min, N<sub>2</sub> balance.

## 5. TEM images of Co<sub>0.15</sub>Mg<sub>2.85</sub>AlO<sub>x</sub>



Figure S4. TEM images of  $Co_{0.15}Mg_{2.85}AlO_x$  catalyst.

6. TEM images of used Co<sub>0.15</sub>Mg<sub>2.85</sub>AlO<sub>x</sub>



Figure S5. TEM images of used  $Co_{0.15}Mg_{2.85}AlO_x$  catalyst.

7. XRD profiles of used Co<sub>n</sub>Mg<sub>3-n</sub>AlO<sub>x</sub> catalysts



Figure S6. XRD profiles of  $Co_nMg_{3-n}AlO_x$  catalysts after reaction.

## 8. XRD profiles of Co<sub>0.15</sub>Mg<sub>2.85</sub>AlO<sub>x</sub>-IM



Figure S7. XRD profiles of  $Mg_3AlO_x$ ,  $Co_{0.15}Mg_{2.85}AlO_x$  and  $Co_{0.15}Mg_{2.85}AlO_x$ -IM catalysts.

9. XP spectra of Mg<sub>3</sub>AlO<sub>x</sub> and Co<sub>0.15</sub>Mg<sub>2.85</sub>AlO<sub>x</sub>



Figure S8. Full-range scan of XP spectra for  $Mg_3AlO_x$  and  $Co_{0.15}Mg_{2.85}AlO_x$ 

10. Co 2p and O 1s XP spectra for Co<sub>n</sub>Mg<sub>3-n</sub>AlO<sub>x</sub>



**Figure S9.** Co2p and O1s XP spectra for  $Co_nMg_{3-n}AlO_x$ 

11. UV-vis DRS profiles of reduced and unreduced Co<sub>0.15</sub>Mg<sub>2.85</sub>AlO<sub>x</sub>



Figure S10. UV-vis DRS profiles of reduced and unreduced Co<sub>0.15</sub>Mg<sub>2.85</sub>AlO<sub>x</sub>

12. Performance of ethanol on reduced and unreduced Co<sub>0.15</sub>Mg<sub>2.85</sub>AlO<sub>x</sub>



Figure S11. Comparison of catalytic performance over reduced and unreduced  $Co_{0.15}Mg_{2.85}AlO_x$ . Reaction conditions: 0.2 g catalysts, 5.7 kPa C<sub>2</sub>H<sub>5</sub>OH, WHSV=0.96 g<sub>C2H5OH</sub> g<sub>Cat</sub>. h<sup>-1</sup>, V<sub>total</sub>=30 mL/min, N<sub>2</sub> balance.

13. Surface chemical properties of  $Mg_3AlO_x$  and  $Co_nMg_{3-n}AlO_x$ 



Figure S12. CO<sub>2</sub>- (a) and NH<sub>3</sub>-TPD-MS (b) profiles of  $Mg_3AlO_x$  and  $Co_nMg_{3-n}AlO_x$ .

14. The comparison of selectivity in ethanol upgrading over  ${\rm Co}_{0.15} Mg_{2.85} AlO_x$  and  $Mg_3 AlO_x$ 



Figure S13. The comparison of selectivity in ethanol upgrading over  $Co_{0.15}Mg_{2.85}AlO_x$  and  $Mg_3AlO_x$  at 523 K, showing how product yields depend on the residence time (1/WHSV). The reaction was conducted in a feed gas of 5.6 vol%  $C_2H_5OH/N_2$  with WHSV from 0.96 to 3.85  $g_{C2H5OH}$   $g_{cat}^{-1}$   $h^{-1}$ 

### 15. Summary of catalytic activity of ethanol coupling upon different catalysts

Table S1. Summary of the catalytic data of some representative catalysts used in ethanol coupling reaction at 0.1 MPa

| No. | Catalysts                                              | Т<br>(К) | WHSV<br>(h <sup>-1</sup> ) | Conversion<br>(%) | Reaction rate $(mmol: g^{-1})h^{-1}$ | Selectivity (C-%) |                                                |      | Yield<br>(C <sub>4-10</sub> -OH) | Ref             |
|-----|--------------------------------------------------------|----------|----------------------------|-------------------|--------------------------------------|-------------------|------------------------------------------------|------|----------------------------------|-----------------|
|     |                                                        |          |                            |                   | (minter g <sub>Cat.</sub> 1          | n-butanol         | n-butanol C <sub>6-10</sub> -OH C <sub>4</sub> |      |                                  |                 |
| 1   | Co <sub>0.15</sub> Mg <sub>2.85</sub> AlO <sub>x</sub> | 523      | 0.96                       | 32.9              | 6.8                                  | 46.8              | 48.6                                           | 95.4 | 31.4                             |                 |
|     | C0030Mg2.70AlOx                                        | 523      | 0.96                       | 23.6              | 4.9                                  | 57.6              | 40.7                                           | 98.3 | 23.2                             | In this<br>work |
|     | Co <sub>0.60</sub> Mg <sub>2.40</sub> AlO <sub>x</sub> | 523      | 0.96                       | 15.7              | 3.3                                  | 54.8              | 43.2                                           | 98.0 | 15.4                             |                 |
|     | Nonstoichiometric HAP                                  | 573      | 1.4                        | 14.7              | 4.5                                  | 76.3              | 9.8                                            | 86.1 | 12.7                             | [1]             |
|     | HAP (Ca/P=1.62)                                        | 623      | 1.5                        | 20.0              | 6.5                                  | 39.2              | 3.9                                            | 43.1 | 8.6                              |                 |
| 2   | HAP (Ca/P=1.65)                                        | 569      | 1.5                        | 20.0              | 6.5                                  | 68.6              | 13.0                                           | 81.6 | 16.3                             | [2]             |
|     | HAP (Ca/P=1.67)                                        | 571      | 1.5                        | 20.0              | 6.5                                  | 69.8              | 14.5                                           | 84.3 | 16.9                             |                 |
|     | HAP (Ca/P=1.67)                                        | 598      | 0.7                        | 17.1              | 2.6                                  | 63.2              | 24.5                                           | 87.7 | 15.0                             | [3]             |
| 3   | Mg-Al oxides<br>(Mg/Al=3:1)                            | 623      | 2.0                        | 32.0              | 13.9                                 | 35.0              | -                                              | 35.0 | 11.2                             | [4]             |

|   | Mg-Al oxides<br>(Mg/Al=1:1)                                | 623 | 2.0  | 40.0 | 17.3 | 20.0 | -    | 20.0 | 8.0  |     |
|---|------------------------------------------------------------|-----|------|------|------|------|------|------|------|-----|
|   | MgO-Al <sub>2</sub> O <sub>3</sub>                         | 573 | 0.05 | 45.0 | 0.5  | 50.0 | 7.0  | 57.0 | 25.7 | [5] |
| 4 | 4%NiMgAlO<br>(Mg/Al=4:1)                                   | 523 | 3.2  | 18.8 | 13.1 | 55.2 | 31.1 | 86.3 | 16.2 |     |
|   |                                                            | 523 | 3.2  | 72.0 | 50.1 | 11.1 | 2.1  | 13.2 | 9.5  | [6] |
|   |                                                            | 533 | 3.2  | 7.0  | 4.9  | 42.9 | 2.3  | 45.2 | 3.2  |     |
| 5 | Ru-Mg <sub>3</sub> Al <sub>1</sub> -LDO                    | 623 | 3.2  | 29.6 | 24.4 | 70.1 | 12,5 | 82.6 | 24.4 | [7] |
|   | Ru-Mg <sub>3</sub> Al <sub>0.9</sub> Ga <sub>0.1</sub> LDO | 623 | 3.2  | 27.5 | 19.3 | 63.6 | 6.7  | 70.3 | 19.3 | [/] |

### 16. Physical properties of the Mg<sub>3</sub>AlO<sub>x</sub>, Co<sub>0.15</sub>Mg<sub>2.85</sub>AlO<sub>x</sub> and Co<sub>0.15</sub>Mg<sub>2.85</sub>AlO<sub>x</sub>-IM catalysts

| Catalyst                                                       | Surface area<br>(m <sup>2</sup> ·g <sup>-1</sup> ) | Pore volume<br>(cm <sup>3</sup> ·g <sup>-1</sup> ) | Pore size<br>(nm) |
|----------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------|
| Mg <sub>3</sub> AlO <sub>x</sub>                               | 203                                                | 0.52                                               | 10.64             |
| Co <sub>0.15</sub> Mg <sub>2.85</sub> AlO <sub>x</sub>         | 175                                                | 0.54                                               | 10.54             |
| Co <sub>0.15</sub> Mg <sub>2.85</sub> AlO <sub>x</sub> -<br>IM | 283                                                | 0.24                                               | 3.73              |

**Table S2.** Physical properties of the  $Mg_3AlO_x$ ,  $Co_{0.15}Mg_{2.85}AlO_x$  and  $Co_{0.15}Mg_{2.85}AlO_x$ -IM catalysts

| 17. C | Catalytic | activity of | ethanol | coupling upon | Mg <sub>3</sub> AlO <sub>x</sub> and | Co <sub>0.15</sub> Mg <sub>2.85</sub> | 5AlO <sub>x</sub> catalysts |
|-------|-----------|-------------|---------|---------------|--------------------------------------|---------------------------------------|-----------------------------|
|-------|-----------|-------------|---------|---------------|--------------------------------------|---------------------------------------|-----------------------------|

| Catalwat                  | T (V) | Conv. |                    | Carbon balance     |                    |                     |                       |     |
|---------------------------|-------|-------|--------------------|--------------------|--------------------|---------------------|-----------------------|-----|
| Catalyst                  | I (K) | (%)   | C <sub>4</sub> -OH | C <sub>6</sub> -OH | C <sub>8</sub> -OH | C <sub>10</sub> -OH | C <sub>4-10</sub> -OH | (%) |
|                           | 473   | 8.5   | 78.7               | 14.6               | 1.9                | 0.0                 | 95.2                  | 99  |
|                           | 498   | 24.6  | 57.0               | 23.3               | 11.5               | 4.4                 | 96.2                  | 99  |
|                           | 523   | 32.9  | 46.8               | 20.8               | 14.8               | 13.0                | 95.4                  | 98  |
| $Co_{0.15}Mg_{2.85}AlO_x$ | 548   | 29.7  | 49.7               | 18.1               | 11.5               | 10.9                | 90.2                  | 93  |
|                           | 573   | 29.1  | 46.7               | 14.7               | 7.8                | 13.0                | 82.2                  | 90  |
|                           | 598   | 35.9  | 31.3               | 9.9                | 4.7                | 17.0                | 62.9                  | 90  |
|                           | 623   | 41.4  | 27.9               | 9.3                | 3.6                | 8.4                 | 49.2                  | 88  |
|                           | 473   | 0.6   | 77.5               | 8.3                | -                  | -                   | 85.8                  | 99  |
|                           | 498   | 2.7   | 75.5               | 6.8                | 1.2                | -                   | 83.5                  | 99  |
| Mg2AlO.,                  | 523   | 14.2  | 66.4               | 12.6               | 4.3                | -                   | 83.3                  | 97  |
| 111 <u>5</u> 51110 x      | 548   | 23.7  | 57.3               | 15.2               | 9.0                | -                   | 81.5                  | 92  |
|                           | 573   | 22.4  | 59.0               | 13.3               | 6.9                | 1.1                 | 80.3                  | 90  |
|                           | 598   | 29.2  | 52.5               | 13.7               | 6.4                | 1.3                 | 73.9                  | 85  |

**Table S3.** Distribution of major products over  $Mg_3AlO_x$  and  $Co_{0.15}Mg_{2.85}AlO_x$  in ethanol coupling reaction <sup>*a*</sup>

| Co <sub>0.15</sub> Mg <sub>2.85</sub> AlO <sub>x</sub> -IM | 498 | 10.5 | 78.1 | 17.2 | 1.1 | - | 96.4 | 97 |
|------------------------------------------------------------|-----|------|------|------|-----|---|------|----|
|                                                            | 523 | 12.9 | 68.8 | 18.4 | 8.4 | - | 95.6 | 97 |
|                                                            | 548 | 10.9 | 68.3 | 14.5 | 7.9 | - | 90.7 | 94 |
|                                                            | 573 | 9.9  | 63.2 | 10.8 | 4.4 | - | 78.4 | 93 |
|                                                            | 598 | 12.3 | 51.0 | 8.0  | 2.0 | - | 61.0 | 89 |

 $\overline{a}$  Reaction conditions: 200 mg catalyst, 5.7 kPa C<sub>2</sub>H<sub>5</sub>OH,  $\upsilon_{total} = 30$  mL/min, WHSV = 0.96 h<sup>-1</sup>.

#### 18. Additional References

1. T. Tsuchida, S. Sakuma, T. Takeguchi, W. Ueda, *Industrial & Engineering Chemistry Research*, 2006, **45**, 8634-8642.

 T. Tsuchida, J. Kubo, T. Yoshioka, S. Sakuma, T. Takeguchi, W. Ueda, *Journal of Catalysis*, 2008, 259, 183-189.

3. C. R. Ho, S. Shylesh, A. T. Bell, ACS Catalysis, 2016, 6, 939-948.

4. D. L. Carvalho, R. R. de Avillez, M. T. Rodrigues, L. E. P. Borges, L. G. Appel, *Applied Catalysis A: General*, 2012, **415-416**, 96-100.

K. K. Ramasamy, M. Gray, H. Job, D. Santosa, X. S. Li, A. Devaraj, A. Karkamkar, Y. Wang, *Topics.in Catalysis*, 2016, **59**, 46-54.

 J. Pang, M. Zheng, L. He, L. Li, X. Pan, A. Wang, X. Wang, T. Zhang, *Journal of Catalysis*, 2016, **344**, 184-193.

7. Yuan B , Zhang J , An Z , et al. Atomic Ru Catalysis for Ethanol Coupling to C4+ Alcohols. *Applied Catalysis B: Environmental*, 2022, **309**,121271