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1 Experimental Procedures

1.1 Materials and instruments

All chemicals including Pluronic P123 (EO,,PO70EO,, EO = ethylene oxide, PO= propylene
oxide), tetraethyl orthosilicate (TEOS), n-butanol, 1-methylimidazole, 2-phenylethyl bromide,
guanine, malononitrile, tetraethyl orthoformate, sulfuric acid (98%), hydrochloric acid (37%),
hydrofluoric acid (48%) and also solvents were purchased from Merck and Sigma-Aldrich

company. All the chemicals were used without further purification.

Philips CM-200 and Titan Krios transmission electron microscopes were utilized for studying
the pore structure of the samples. The nitrogen adsorption-desorption isotherms were obtained
using a Belsorp (BELMAX, Japan) analyzer at 77 K. All the samples were first degassed at 353 K
for 10 h before the measurements. Specific surface area of the materials was determined from the
linear part of the BET plot at the relative pressure range (P/Py) of 0.05-0.15, and the pore size
distribution (PSD) was calculated from the adsorption branch using the Barrett-Joyner-Halenda
(BJH) method. Additionally, total pore volumes were assigned using the adsorbed volume at P/P,,
~ 0.995. Surface morphology of the materials was investigated using a TeScan-Mira III ultrahigh
resolution cold field emission scanning electron microscope (Fe-SEM). XPS spectra of the
materials were recorded on Kratos Analytical X-ray photoelectron spectrometer. To correct
possible deviation caused by electric charge, the Cls line at 285.0 eV was used as the internal
standard. The main elemental composition was measured using vario-EL CHNS instrument.
Thermogravimetric analysis (TGA) was performed using a NETZSCH STA 409 PC/PG
instrument (Germany) at the temperature range of 25 to 800 °. Fourier transform infrared (FTIR)
spectrum was attained by a Bruker vector 22 instrument in the range of 400 and 4000 cm™!. High
liquid chromatography analysis was achieved using the KNAUER system equipped with UV (K-
2600) and RI (K-2301) detectors. NMR spectra were recorded using a Bruker instrument ('H
frequency: 400 MHz, 13C frequency: 100 MHz).

1.2 Synthesis of the ordered mesoporous silica template (KIT-6)

The KIT-6 template was prepared according to the procedure reported in literature.! Typically, 6
g of triblock copolymer P123 was dissolved in 220 g of deionized water and 12 g of hydrochloric
acid (37 wt%) with stirring for 6 h at 35 °C. After complete dissolution, 6 g of n-butanol was added
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into the solution at once and after 1 h of stirring, 12.48 g of TEOS was also added to it. The mixture
was left under vigorous stirring for 24 h at 35 °C. Then, the mixture was placed under static
condition at 100 °C for 24 h. The solid product obtained after the hydrothermal treatment was
filtered and dried at 100 °C without washing. Finally, KIT-6 was obtained as a white solid by

removing P123 through the calcination at 550 °C for 5 h under the air atmosphere.

1.3 Preparation of Ordered Mesoporous Silica (SBA-15)

Briefly, 24 g of Pluronic P123 was dissolved in 505 mL of H,O and 101 mL of concentrated HCI
at 35 °C. Consequently, tetraethyl orthosilicate (TEOS) (54.2 g) was added to the solution. The
mixture was stirred vigorously at 35 °C for 20 h followed by an aging step at 80 °C for 24 h. The
solid material was separated by filtration, washed with deionized water, and dried at room
temperature. The surfactant was removed by solvent extraction with anhydrous ethanol in a

Soxhlet apparatus for 24 h.>

1.4  Synthesis of 1-methyl-3-phenethyl-1H-imidazolium hydrogen sulfate (MPIHS)
Typically, a solution of dry toluene (50 mL), 1-methylimidazole (73.1 mmol), and 2-bromo-1-

phenylethane (80.3 mmol) was refluxed for 24 h under an argon atmosphere. Then, the reaction
mixture was allowed to cool at room temperature resulting in a two-phase solution. The separated
ionic liquid (1-methyl-3-phenethyl-1H-imidazolium bromide) layer was washed with dry toluene
and dry Et,O and then dried under vacuum. 1-methyl-3-phenethyl-1H-imidazolium bromide (1
mmol) and H,SO, (1 mmol) were added to a flask containing dry methylene chloride to perform
the anion-exchange reaction. The resulting solution was refluxed for 48 h until all the hydrogen
bromide by-product was removed. Finally, after evaporation of the solvent under vacuum, the

MPIHS ionic liquid was isolated in good yield.

1.5 Measurement of ionic liquid density using a pycnometer

Measurement of the ionic liquid density was necessary to determine the amount of MPIHS
required for filling all the pores of KIT-6 and therefore perform a perfect nanocasting. In this
regard, the ionic liquid density was obtained using a pycnometer. Briefly, the pycnometer was first
cleaned and dried carefully. Then, the weight of the pycnometer and the weight of the pycnometer
filled with MPIHS were measured. The weight of MPIHS was obtained from the difference

between two measured weights. The ionic liquid density was calculated by substituting the weight
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of MPIHS and the known volume of the pycnometer into the density formula (d = m/V). It should
be noted that density is a temperature-dependent parameter and the density obtained indicates the
MPIHS density at room temperature. Hence, the following equation was used to determine the
density of the ionic liquid at the temperature applied for the synthesis of IBOMC (100 °C). The
approximate amount of the ionic liquid density at 100 °C was estimated to be 1.35 g.mL"!' by
substituting the density of water at 100 °C into the below equation (d (H,0)=0.965 g.mL™").

m (H,0) _ m(IL)
dH,0) dr)

1.6  Synthesis of Ionic liquid-derived Bimodal cubic Ordered Mesoporous Carbon (IBOMC)

IBOMC was obtained as follows: 2 g of the 1-methyl-3-phenethyl-1H-imidazolium hydrogen
sulfate (MPIHS) ionic liquid and 0.3 g guanine were added to an HCI solution (5 mL, 2 M). This
mixture was combined with 2 g of the degassed KIT-6 template and then stirred for 3h. The
appropriate amount of the ionic liquid precursor was determined according to the total pore volume
of KIT-6 and the MPIHS density. The resulting mixture was dried by increasing the temperature
to 130 °C. The composite was then carbonized at 900 °C under an argon flow for 3 h. To remove
the silica template, the obtained black powder was stirred in a solution of HF (3 M) for 24 h. The

filtered mesoporous carbon was washed with deionized water several times and dried at 100 °C.

1.7 Synthesis of The L-IBOMC material

L-IBOMC was obtained as follows: 1.5 g MPIHS and 0.225 g guanine were added to an HCI
solution (5 mL, 2 M). This mixture was combined with 2 g of the degassed KIT-6 template and
then stirred for 3h. The resulting mixture was dried by increasing the temperature to 130 °C. The
composite was then carbonized at 900 °C under an argon flow for 3 h. To remove the silica
template, the obtained black powder was stirred in a solution of HF (3 M) for 24 h. The filtered

mesoporous carbon was washed with deionized water several times and dried at 100 °C.

1.8 Synthesis of The H-IBOMC material

H-IBOMC was obtained as follows: 2.5 g MPIHS and 0.375 g guanine were added to an HCI
solution (5 mL, 2 M). This mixture was combined with 2 g of the degassed KIT-6 template and
then stirred for 3h. The resulting mixture was dried by increasing the temperature to 130 °C. The

composite was then carbonized at 900 °C under an argon flow for 3 h. To remove the silica
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template, the obtained black powder was stirred in a solution of HF (3 M) for 24 h. The filtered

mesoporous carbon was washed with deionized water several times and dried at 100 °C.

1.9 Synthesis of The Br-IBOMC material

Br-IBOMC was obtained as follows: 2 g of the 1-methyl-3-phenethyl-1H-imidazol-3-ium bromide
ionic liquid and 0.3 g guanine were added to an HCI solution (5 mL, 2 M). This mixture was
combined with 2 g of the degassed KIT-6 template and then stirred for 3h. The appropriate amount
of the ionic liquid precursor was determined according to the total pore volume of KIT-6 and the
ionic liquid density. The resulting mixture was dried by increasing the temperature to 130 °C. The
composite was then carbonized at 900 °C under an argon flow for 3 h. To remove the silica
template, the obtained black powder was stirred in a solution of HF (3 M) for 24 h. The filtered

mesoporous carbon was washed with deionized water several times and dried at 100 °C.

1.10 Preparation of Nitrogen-doped Ordered Mesoporous Carbon from Iran (NMCI)

The NMCI was prepared as follows: At first, 1 mL of MPIHS was heated at 100 °C and 0.15
g guanine was added slowly and the mixture was stirred until the dissolution of guanine in IL.
In the next step, SBA-15 (1 g) was added slowly to form an SBA-15/IL paste. As described
above, the final composite was transferred into the oven, and the carbonization procedure was
performed under argon 5 L.min"! at 900 °C. Subsequently, the hard template was removed by
dissolution in a sodium hydroxide (2 M) solution for 24 h at 50 °C. Filtration of the
carbonized NMCI material and washing with deionized water up to neutralizing point and ethanol
gives the final NMCI material in ~10 wt % yield with respect to the weight of IL and

Guanine.?

1.11 Preparation of CMK-3

The template-free SBA-15 material was used as a mold for the synthesis of CMK-3 according to
the literature.* Typically, the resulted template-free SBA-15 was impregnated with an aqueous
solution of sucrose (1.25 g of sucrose in 5 g of H,0) containing 0.14 g of sulfuric acid and placed
at 100 °C in a vacuum drying oven for 6 h. Consequently, the oven temperature was increased to
160 °C and maintained for 6 h, at that temperature to afford a dark brown or black powder. The
impregnation step was repeated once with 0.8 g of sucrose. The resulted composite was then kept

in an argon flow at 900 °C for 2 h to carbonize the sucrose. Afterward, to remove the silica
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template, the generated black powder was stirred in a solution of ethanol and 1 M sodium
hydroxide at 50 °C for 8 h. The CMK-3 carbon was afforded after filtration, washed several times

with ethanol, and dried.

1.12 Preparation of CMK-8

The template-free KIT-6 material was used as a mold for the synthesis of CMK-8 according to the
literature.! Typically, the resulted template-free KIT-6 was impregnated with an aqueous solution
of sucrose (1.25 g of sucrose in 5 g of H,0) containing 0.14 g of sulfuric acid and placed at 100
°C in a vacuum drying oven for 6 h. Consequently, the oven temperature was increased to 160 °C
and maintained for 6 h to afford a dark brown or black powder. The impregnation step was repeated
once with 0.8 g of sucrose. The resulted composite was then kept in an argon flow at 900 °C for 2
h to carbonize the sucrose. Afterward, to remove the silica template, the generated black powder
was stirred in a solution of ethanol and 1 M sodium hydroxide at 50 °C for 8 h. The CMK-8 carbon

was afforded after filtration, washed several times with ethanol, and dried.

1.13 General procedure for the catalytic Knoevenagel/deacetalization-Knoevenagel
condensation reaction

The substrate (aldehyde, ketone, or acetal) (1 mmol), malononitrile (1.2 mmol), and IBOMC (5
mg in the case of aldehydes and 15 mg in the case of ketones and acetals) were placed into a flask.
The resulting mixture was kept with stirring under the solvent-free condition at an appropriate
temperature (room temperature in the case of aldehydes and 80 °C in the case of ketones and
acetals). After completion of the reaction, 5 mL EtOH was added to the flask, and the catalyst was
separated from the reaction mixture. Final products were further purified by recrystallization from

EtOH.

1.14 General procedure for 5S-HMF synthesis

In a 25 mL home-designed high-pressure Teflon-lined reactor, a mixture of carbohydrate (Merck)
(0.277 mmol), catalyst (10-30 mg), and a single phase such as DMSO, isopropanol, H,O (3 ml) or
a biphasic solvent comprising DMSO, H,0O/2-butanol, methyl isobutyl ketone (0.7, 0.3 /0.6, 1.4
ml) was prepared. The sealed reactor was then placed in an oil bath at 140 to 180 °C. After
completing the reaction, the carbocatalyst was filtered, and the consequent solution was

investigated by HPLC for HMF yield and conversion calculation.
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Reaction samples were analyzed by the KNAUER High Performance Liquid Chromatography
(HPLC) system equipped with UV (K-2600) and RI (K-2301) detectors. Sugars were monitored
with a Eurokat H (C-54-1181H) column, using H,SO, (5 mM) as the mobile phase with a flow
rate of 1 mL.min!and a column temperature of 333 K. Also, 5-HMF was measured for the organic
and aqueous phases with a Nucleosil-100 (C18) column, using a 7:3 v/v (H,O: CH;CN) gradient
at a flow rate of 0.6 mL.min! and a column temperature of 303 K with a UV detector (282 nm). It
was presumed that the changes of volume are negligible after the reaction for all experiments.
Conversion of carbohydrates was determined as moles of hexose or pentose reacted per mole of
carbohydrate fed according to an external standard. Also, 5-HMF yield was determined as moles
of 5-HMF produced based on 5-HMF external standard. Conversions of cellulose were determined
according to the wt% of the consumed substrate. For this purpose, after the reaction, the unreacted
substrate was filtered, thoroughly washed, and dried to constant weight.

Calculation of conversion and yield for biphasic reactions

To calculate the carbohydrate conversion in biphasic reaction systems, 100 pL of the aqueous
phase was diluted in 1 mL H,O and then examined by using a Eurokat H (C-54-1181H) column,
an aqueous solution of H,SO,4 (5 mM) as the mobile phase with a flow rate of 0.8 mL.min"! and a
column temperature of 30 °C through an RI detector. To estimate 5S-HMF yield in biphasic system,
10 pL organic or aqueous phases separately were diluted in in a solution of water and acetonitrile
(7:3 v/v), and evaluated by using a Nucleosil-100 (C18) column, with a 7:3 v/v of water and
CH3CN as a mobile phase at a flow rate of 0.6 mL.min"! and a column temperature of 30 °C through
a UV detector (282 nm).

Calculation of conversion and yield for single phase reactions

To determine carbohydrate conversion in a single solvent system, 20 pL. of mixture was analyzed
by using a Eurokat H (C-54-1181H) column, H,SO,4 (5 mM) as the mobile phase at a flow rate of
0.8 mL.min"! and a column temperature of 30 °C. To calculate the 5-HMF yield in the single phase
systems, 100 pL of the mixture was diluted with 1 mL of H,O and then analyzed through the same
method as explained for organic phase analysis in biphasic systems.

It was presumed that the changes of volume are negligible after the reactions for all experiments.
Carbohydrate conversion was determined as moles of reacted carbohydrate per mole of
carbohydrate-fed according to external carbohydrate standard. Also, 5S-HMF yield was determined

as moles of 5-HMF produced according to the external standard of 5-HMF. Conversions of
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cellulose were determined according to the wt% of the consumed substrate. For this purpose, after

the reaction, the unreacted substrate was filtered, thoroughly washed, and dried to constant weight.

1.15 Acidity and Basicity Measurements

To evaluate the amount of the acidic sites on carbon materials, the back titration technique has
been performed with a standard hydrochloric acid solution in the presence of the phenolphthalein
indicator has been performed. Also, the existence of basic sites has been assessed with acid-base
titration using a standard sodium hydroxide solution and phenolphthalein indicator. In addition,
the temperature-programmed desorption (TPD) of carbon dioxide and ammonia was carried out
with an Autochem II chemisorption analyzer (Micromeritics, 2920) to assess the strength and exact
amount of the basic and acidic sites, respectively. Before examination, the samples were exposed
to heat-treatment at 200 °C for 1 h under a Helium atmosphere. When the temperature was
decreased to 50 °C, the samples were soaked by carbon dioxide for 1 h, and then the gas was
changed to Helium to eliminate the physisorbed carbon dioxide molecules until the baseline was
flat. Then, the temperature was increased to 800 °C (heating rate: 10 mL.min") to obtain the CO,-
TPD curves. In the same manner for NH;-TPD, the samples were preheated at 200 °C for 1 h under
a flow of Helium gas at a rate of 30 mL.min"! and chilled to 100 °C. Ammonia gas was adsorbed
using 10% NHj; in He for 1 h. Desorption process was performed by increasing temperature from
100 to 800 °C with the rate of 10 °C.min"! under a flow of He gas at the rate of 30 mL.min"!. The

NH; and CO, desorption profiles of different carbon samples are shown in Figure S10.
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Table S1: Characterization of carbocatalysts

Topology e ..
) . Tp BIH Acidity Basicity
Entry | Material | (symmetric | Sggr(m2.g')? | Vi (cm3.g!)P N%¢4
(nm)° (mmol.g'")® | (mmol.g!)f
al structure)
Cubic
1 KIT-6 1103 1.33 3.53 - - -
(la3d)
Cubic 1.18 ,
2 IBOMCe 965 7.89/1.851 | 11.20 | 1.01 (0.8%) 0.45 (0.4%)
(la3d)
L- Cubic 1.12 ‘
3 818 4.6/1.85) - - -
IBOMCh (la3d)
H- Cubic 0.716 _
4 _ 452 5.28/1.64 - - -
IBOMC! (la3d)
Br- Cubic ‘
5 856 1.58 6/1.85 11 04 0.42
IBOMC (la3d)
Cubic
6 CMK-8 768 0.937 1.85 - 0.23 -
(la3d)
Hexagonal
7 NMCI 768 0.629 1.21 12.6 1.30 0.79
(p6mm)
Carbon
8 _ Disorder 647 0.570 1.21 0.0 0.58 -
Active
Recovered Cubic
9 577 0.89 1.21 9.11 - -
IBOMC(! (la3d)

@ Sger = specific surface area, bV, = total pore volume, ¢ Dy = pore size distribution calculated from the adsorption branch using
BJH methods, ¢ Calculated from elemental (CHNS) analysis, ¢ Calculated by NH;-TPD analysis, f Calculated by CO,-TPD analysis, ¢
The amount of MPIHS (cm?.g!)/V,of KIT-6 (cm3.g™!) = 1, " The amount of MPIHS (cm?.g')/V,of KIT-6 (cm3.g") < 1, ! The amount
of MPIHS (cm?.g")/V,of KIT-6 > 1, Dpy = pore size distribution calculated from the adsorption branch using DH methods, ¥
Calculated by back titration, ! Recovered IBOMC in dehydration of fructose into 5-HMF.
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Figure S2: TEM image of the KIT-6 as template
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Figure S3: TEM images of IBOMC
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SEM MAG: 250 kx WD: 5.97 mm | I MIRA3 TESCAN

Det: SE SEM HV: 15.0 kV 100 nm

Date(m/dly): 11/08/21

F

e
SEM MAG: 70.0 kx WD: 5.97 mm | | MIRA3 TESCAN

Det: SE SEM HV: 15.0 kV 500 nm
Date{m/d/y}): 11/0¢
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Figure S4: FESEM images of IBOMC
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Figure S5: XRD of KIT-6, IBOMC and Recovered IBOMC

Table S2: XRD Peak List of IBOMC and Recovered IBOMC

Material Pos.[°2Th.] Height [cts] d-spacing [A] Rel. Int. [%]
IBOMC 1.8 (2) 755 (873) 49.47 100.00
Re-IBOMC? 1.31(5) 744(2396) 67.27929 100.00

a Recovered IBOMC from dehydration reaction of fructose into 5S-HMF
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Figure S6: Raman spectrum of IBOMC
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Figure S7: Thermal gravimetric analysis of IBOMC under oxygen (left), and nitrogen

(right)

S19




Counta &

é

transmittance (%o)

3900 3400 2900 2400 1900 1400 00 400
wavenumber (cm?)

Figure S8: FT-IR spectrum of IBOMC

7

E

3.00E+0E

Z00E+0E

1300 200 10 jix ] 20 oo ™ [ave] 0 410 30 0 o]

Bnding Ensgy{2\)
Positon = BIOMG X = 2528 pm, ' = 172004 prn

Figure S9: XPS of IBOMC

S20



Courts / s

Courts/ s

4.00E+04

3.00E+04

2.00E+04

1.00E+04

0.00E-+H0r
306 302 301 300 200 208 207 206 205 204 293 2P 291 200 280 288 287 285 285 284 283 28 231 280

Binding Enemgy (V)

Figure S10: C1s XPS spectrum of IBOMC

1.30E+04
1.20E+04

1.10E+041

9.00E+051

8.00E+03;

7.00E+031

6.00E+03
545 544 543 542 541 6540 530 G538 537 536 6535 534 533 532 531 530 520 &8 527 5%

Birding Energy (V)

Figure S11: O1s XPS spectrum of IBOMC

S21



Figure S12: Elemental mapping (C, N, O, and S elements) of IBOMC

Table S3: CHNS of carbocatalyst

Entry Carbon% Nitrogen% Sulfur% Hydrogen%
IBOMC 70 11.2 1.91 0.616
Recovered-IBOMC? 63.4 9.12 1.43 0.496

S22

2 Recovered IBOMC in dehydration of fructose into 5S-HMF




0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

Br-IBOMC (NH3 TPD)
Br-IBOMC (CO2 TPD)

TCD out (Volt)

T (o]
o ™RGS 200 300 400 500 600
Figure S13: NH; and CO, TPDs of Br-IBOMC

Table S4: Optimization of the reaction condition for the Knoevenagel condensation between
benzaldehyde and malononitrile in the presence of IBOMC catalyst

QCHO + <CN IBOMC (xmg) _ H
cN T (°C), Solvent-free N CN

(1 mmol) (1.2 mmol) NC

Entry [Catalyst (mg) |T (°C) Time Yield (%)>b
1 30 80 24 h 100
2 30 60 24 h 100
3 25 60 24 h 100
4 25 r.t. 24 h 100
5 15 r.t. 24 h 100
6 10 r.t. 24 h 100
7 5 r.t. 24 h 100
8 3 r.t. 24 h 82
9 5 r.t. 12h 100
10 5 r.t. 6h 100
11 5 r.t. 4h 100
12 5 r.t. 2h 100
13 3 r.t. lh 100
14 5 r.t. 30 min 100
15 5 r.t. 15 min 94
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16 5 r.t. 10 min 91

@ Reaction conditions: Substrates (1 mmol), Malononitrile (1.2 mmol),
IBOMC (X mg), T °C, solvent free condition. ® Isolated yield by flash
chromatography and/or recrystallization from EtOH.

Table S5: Optimization of the reaction condition for the Knoevenagel condensation between
acetophenone and malononitrile in the presence of IBOMC catalyst

@_/(O . <CN IBOMC (xmg) _ Me
Me cN T (°C), Solvent-free A\ CN

(1 mmol) (1.2 mmol) NG
Entry |Catalyst (mg) [T (°C) |Time |Yield (%)*P

1 5 r.t. 24 h 45
2 10 r.t. 24 h 63
3 15 r.t. 24 h 76
4 25 r.t. 24 h 54
5 5 60 24 h 62
6 10 60 24 h 70
7 15 60 24 h 67
8 5 80 24 h 76
9 10 80 24 h 80
10 15 80 24 h 90
11 100 24 h 76
12 5 100 24 h 77
13 15 80 12 h 90
14 15 80 10h 90
15 15 80 8h 90
16 15 80 7h 63

@ Reaction conditions: Substrates (1 mmol), Malononitrile (1.2
mmol), IBOMC (X mg), T °C, solvent free condition. ® Isolated
yield by flash chromatography and/or recrystallization from EtOH.
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Table S6: The Knoevenagel condensation between ketones and malononitrile in the
presence of IBOMC catalyst

CN

)OJ\ <CN IBOMC R\ /
R OR O\, R,/ N\

Solvent-free

CN
1 mmol 1.2 mmol
Entry | Substrate Catalyst (mg) | T (°C) Time | Yield (%)*°
1 Acetophenone 5 r.t. 24h |45
2 Acetophenone 10 r.t. 24h |63
3 Acetophenone 15 r.t. 24h |76
4 Acetophenone 25 r.t. 24h |54
5 Acetophenone 15 60 24h | 67
6 Acetophenone 15 80 24h |90
7 Acetophenone 5 100 24h |77
8 Acetophenone 15 80 12h |90
9 Acetophenone 15 80 8h 90
10 Acetophenone 15 80 7h 63
11 Cyclopentanone 15 80 8h 82
12 Cyclohexanone 15 80 5h 88
13 Cycloheptanone 15 80 6.5h | 84

@ Reaction conditions: Substrates (1 mmol), Malononitrile (1.2 mmol), IBOMC (15
mg), 80 °C, solvent free condition. ° Isolated yield by flash chromatography and/or
recrystallization from EtOH.
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Table S7: Optimization of the reaction condition for the deacetalization-Knoevenagel
reaction between benzaldehyde dimethyl acetal and malononitrile in the presence of IBOMC

catalyst
©_<OMe . <CN IBOMC (x mg) _ H
OMe cn T (°C), Solvent-free NN

(1 mmol) (1.2 mmol) NC
Entry |Catalyst (mg) |T(°C) |Time [Yield (%)?
1 30 80 24 h 100
2 15 80 24 h 100
3 12 80 24 h 83
4 15 60 24 h 68
5 15 r.t. 24 h 6
6 15 80 12h 100
7 15 80 10h 100
8 15 80 8h 100
9 15 80 4h 98
10 15 80 3h 81

]solated yield by flash chromatography and/or recrystallization
from EtOH.
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Table S8: Solvent optimization in fructose dehydration

Conversion HMF yield Selectivity
Entry Solvent (3 mL)

(%0)* (%0)* (%)
1 H,0 100 13 13
2 H,0:MIBK (1:2) 46 18 39
3 H,0: Choline Chloride: MIBK (1:1:2) 78 16.5 21

Dumesic Solvent [H,O:DMSO (0.3:0.7)
4 100 65 65
mL / 2-butanol:MIBK (0.7:1.3) mL]

5 2-propanol 38.5 11 29
6 H,O:THF (1:4) 100 11 11
7 NMP 21 12 57
8 DMF 40 11.4 29
9 DMSO 96 72 75

Reaction conditions: 0.277 mmol (50 mg) fructose, 20 mg IBOMC, 160 °C, 1 h, in 3 mL various

solvent systems. ® HMF yield, and fructose conversion were calculated by HPLC using the

calibration curve method.

Table S9: Catalyst optimization in fructose dehydration

Entry | IBOMC (mg) | Conversion (%)* | HMF yield (%)? | Selectivity (%)
1 10 81 59 72
2 20 96 72 75
3 30 97 67 70

Reaction conditions: 0.277 mmol (50 mg) fructose, 160 °C, 3 mL DMSO, 1 h, with

different contents of IBOMC. ® HMF yield and fructose conversion were calculated by

HPLC using the calibration curve method.
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Table S10: Solvent optimization for glucose dehydration

Entry Solvent Conversion (%)?* | HMF yield (%)? | Selectivity (%)
1 Dumesic ® 63 13 21
2¢ DMSO 36.5 11 30
3 H,0:MIBK (1:2) 35.5 3.7 10
H,0:ChCIl:MIBK
4 _€ 5 _€
(1:1:2)4

Reaction conditions: 0.277 (50 mg) mmol glucose, 20 mg IBOMC, 160 °C, 3 h in 3 mL
different solvent systems. * HMF yield, and glucose conversion were calculated by HPLC
using the calibration curve method. ® The Dumesic biphasic solvent: [H,O: DMSO (0.3:0.7)
mL / 2-Butanol: MIBK (0.7:1.3) mL]. © The reaction occurred in 6 h. 4 Weight ratio. ¢ Not
detected.

Table S11: Effect of H,O and DMSO ratio in the queues phase of Dumesic solvent for glucose

dehydration
Entry DMSO : H,O Conversion HMF yield Selectivity

(mL) (%) (%) (%)
1 0.3:0.7 70 6 8.5
2 0.5:0.5 74 14 19
3 0.7:0.3 95 45 47
4 0.8:0.2 100 12 12
5 1:0.0 36.5 11 30

Reaction conditions: 0.277 mmol (50 mg) glucose, 20 mg IBOMC, 160 °C, 6 h

with various ratio of DMSO to H,O of 3 mL Dumesic solvent system

[DMSO/H,0 (volume ratio) + 2-butanol/MIBK (0.6 mL/ 1.4 mL)]. * HMF yield

and glucose conversion were calculated by HPLC using the calibration curve

method.
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Table S12: Dehydration of sucrose and cellulose

T | Conversion | HMF yield | Selectivity
Entry | Precursor (mg)
(°O) (%0)* (%0)* (%0)
1 Sucrose (96) 160 100 40 40
2 Sucrose (96) 180 100 27 27
3 Cellulose (50) | 160 70> <1 <1
4 Cellulose (50) | 180 100° 28 28

Reaction conditions: 0.277 mmol (0.96 mg) sucrose or 50 mg cellulose, 20 mg IBOMC as
carbocatalyst in 3 mL Dumesic biphasic system and temperatures at 6 h; » Conversion and 5-HMF
yield was determined by HPLC through the calibration curve method for sucrose. ® Conversion
was calculated with gravimetric method.

Table S13: Comparison between various catalysts in fructose dehydration

Entry Catalyst Solvent Conversion (%)? | HMF yield (%)?* | Selectivity (%)
1 IBOMC Dumesic 100 65 65
2 NMCI Dumesic 98 56 57
3 CMK-8 Dumesic 97 51 53
4 Carbon Active Dumesic 89 43.5 49
5 IBOMC DMSO 90 72 80
6 NMCI DMSO 100 42 42
7 CMK-8 DMSO 52 30 57
8 Carbon Active DMSO 80 17 21

9b IBOMC DMSO 100 98 98
10°® NMCI DMSO 100 52 52
11°b CMK-8 DMSO 93 40 43
12° | Carbon Active DMSO 100 37 37

Reaction conditions: 0.277 mmol (50 mg) fructose, 20 mg IBOMC, 3 mL solvent (DMSO or
Dumesic solvent system [DMSO/H,0 (0.7 mL/0.3 mL) + 2-butanol/MIBK (0.6 mL/ 1.4 mL)]), 160
°C, 1 h. *HMF yield and fructose conversion were calculated by HPLC using the calibration curve

method. ® Reaction was occurred at 180 °C.
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Table S14: Comparison between various carbocatalysts and IBOMC in dehydration of
glucose at the same conditions

Conversion | HMF yield | Selectivity
Entry Catalyst N% Structure
(%0)* (%) (%)
1 IBOMC 11.2 3D-Cubic 95 45 47
2 CMK-8 0 3D-Cubic 66 7 11
3 Carbon Active 0 Disorder 80 4 1
4 NMCI 12.6 | 2D-Hexagonal 85 15 17

Reaction conditions: 0.277 mmol (50 mg) glucose, 20 mg catalyst, 3 mL Dumesic biphasic solvent

system, 160 °C, 6 h; *HMF yield and glucose conversion were calculated by HPLC using the

calibration curve method.
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Figure S14: Porosimetry diagrams of recovered IBOMC
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Figure S15: Thermal gravimetric analysis of recovered-IBOMC in dehydration of fructose
into S-HMF
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Figure S17: HPLC chromatogram of S-HMF in Eurokat-H column
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Figure S18: HPLC chromatogram of fructose in Eurokat-H column

S32

sl



Fetertbn Tie

o z + g 2 10 1z 1+ 15 12 m
RI Resulis
Exterdior Time Airea Doy % Height Height %
T.517 712221 100.00 s0004 100.00
Tortals
112321 100.00 S0004 100.00
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Figure S21: Detection of glucose through fructose dehydration with IBOMC as an acid-
base bifunctional carbocatalyst
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Figure S22: Fructose calibration curve. Stock solution included 0.051 g fructose in 3 mL
H,O, and every dilution was involved 50 pl of stock in 1 mL H,O
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Figure S23: Glucose calibration curve. Stock solution: 0.05 g glucose in 3 mL H,0, and
every dilution was involved 50 pl of stock in 1 mL H,0
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Figure S24: 5S-HMF calibration curve-1. Stock solution included 0.036 g 5-HMF in 3.36 mL
DMSO; every dilution was involved 50 pl of solution in 1 mL H,O
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Figure S25: 5S-HMF calibration curve-2. Stock solution included 0.0411 g 5S-HMF in 1 mL
H,O; every dilution was involved 100 pl of solution in 1 mL H,0
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2 Spectroscopic Data for Knoevenagel/deacetalization-Knoevenagel condensation
Products

2-benzylidenemalononitrile: White solid; 'H NMR (400 MHz, CDCl;): 65,=7.95 2H, d, J= 7.7
Hz), 7.82 (1H, s), 7.66 (1H, m), 7.57 (2H, t, J = 6 Hz); 3C NMR (100 MHz, CDCl;): = 160.8,
135.5, 131.7, 131.6, 130.5, 114.5, 113.4, 83.7.

Qs

H CN

2-(4-nitrobenzylidene)malononitrile: Yellow solid; '"H NMR (400 MHz, CDCl5): 65 = 8.45 (2H,
d, J=72Hz),8.11 (2H, d, J = 7.2 Hz), 7.92 (1H, s); *C NMR (100 MHz, CDCl;): 6= 157.7,
151.2,136.6, 132.1, 125.5, 113.4, 112, 4, 88.3.

Q .
H CN

2-(4-cyanobenzylidene)malononitrile: Yellow solid; 'TH NMR (400 MHz, CDCl;): o= 8.03 (2H,
d, J= 6.8 Hz), 7.87 (1H, s), 7.85 (2H, d, J = 6.8 Hz); *C NMR (100 MHz, CDCl;): .= 158.1,
135.0, 134.0, 131.5, 118.1, 117.1, 113.5, 112.5, 87.7.

NC
QCN
H CN

2-(3-bromobenzylidene)malononitrile: White solid; '"H NMR (400 MHz, CDCl;): 6= 8.02-7.99
(1H, m), 7.94-7.92 (1H, m), 7.80-7.77 (1H, m), 7.74 (1H, s), 7.46 (1H, t, J= 8 Hz); *C NMR (100
MHz, CDCly): 6= 158.9, 138.1, 134.3, 133.4, 131.9, 129.4, 124.5, 114.0, 112.8, 85.5.

Br
: N
H CN
2-(2,4-dichlorobenzylidene)malononitrile: White solid; 'H NMR (400 MHz, CDCl;): oy = 8.22

(1H, s), 8.18 (1H, d, J = 8.4 Hz), 7.60 (1H, d, J = 2.4 Hz), 7.46 (1H, dd, J, = 8.4, J,= 2.4 Hz); 13C
NMR (100 MHz, CDCLy): dc= 155.4, 141.9, 138.0, 131.6, 130.9, 129.2, 128.3, 113.8, 112.6, 86.8.
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Cl

CN
Cl —
H CN

2-(4-methoxybenzylidene)malononitrile: White solid; '"H NMR (400 MHz, CDCls): 6= 7.95 (2H,
d,J=9.2 Hz), 7.70 (1H, s), 7.05 (2H, d, /= 9.2 Hz), 4(3H, S); *C NMR (100 MHz, CDCl;): 0=

165.6, 159.7, 134.3, 124.8, 116.0, 115.3, 114.2, 79.4, 56.6.
MeO

CN

H CN
2-(4-Methylbenzylidene)malononitrile: White solid; '"H NMR (400 MHz, CDCls): 65= 7.85 (2H,

d,J=8 Hz), 7.75 (1H, s), 7.37 (2H, d, J = 8 Hz), 2.49 (3H, s); 13C NMR (100 MHz, CDCLs): 6, =
160.6, 147.2, 1317, 131.2, 129.3, 114.8, 113.7, 82.0, 22.9.

2-(naphthalen-1-ylmethylene)malononitrile: White solid; '"H NMR (400 MHz, CDCls): 6= 8.70
(1H, s), 8.35 (1H, d, J="7.6 Hz), 8.15 (1H, d, J = 8 Hz), 8.00 (2H,d, J = 8 Hz), 7.75-7.63 (3H, m);
BC NMR (100 MHz, CDCly): dc= 157.7, 134.9, 133.5, 131.1, 129.4, 128.6, 128.5, 127.5, 127.3,
125.4,122.3,113.7, 112.5, 85.2.

54 g

H CN

2-(3-pyridylmethylene)malononitrile: Yellow solid; '"H NMR (400 MHz, CDCls): 6= 8.93 (1H,
s), 8.87-8.85 (1H, m), 8.53-8.51 (1H, m), 7.86 (1H, s), 7.58-7.55 (1H, m); *C NMR (100 MHz,
CDCly): 0¢=156.4, 154.6, 152.4, 135.6, 124.3, 112.9, 111.9, 85.7, 77.3.

Ny

H ©CN
2-(furan-2-ylmethylene)malononitrile: Red solid; '"H NMR (400 MHz, CDCl;): 6;=7.85 (1H, d,

J=1.6Hz),7.55 (1H, s), 7.40 (1H, d, J= 3.6 Hz), 6.75-6.73 (1H, m); '*C NMR (100 MHz, CDCl5):
Sc=150.4, 148.9, 143.9, 124.4, 115.3, 114.7, 113.4, 78.3.

CN
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O/ CN

H CN

2-(1-phenylethylidene)malononitrile: White solid; 'TH NMR (400 MHz, CDCls): oy = 7.59-7.54
(5H, m), 2.7 (3H, s); *C NMR (100 MHz, CDCl;): 6= 175.5, 135.9, 132.3, 129.1, 127.3, 112.8,

112.7, 84.7, 24.3.
Qs

H,C  CN

2-Cyclopentylidenemalononitrile: Colorless liquid; "H NMR (400 MHz, CDCls): 65 = 2.86-2.82
(4H, m), 2.00-1.94 (4H, m); 3*C NMR (100 MHz, CDCl;): 6c=192.3, 111.7, 81.4, 36.2, 26.0.

_CN
: CN
2-Cyclohexylidenemalononitrile: Colorless liquid; 'H NMR (400 MHz, CDCly): 6 ;= 2.7 (4H, m),

1.84-1.79 (4H, m), 1.69-1.66 (2H, m); 3C NMR (100 MHz, CDCl;): 0= 185.2, 111.7, 82.4, 34.7,
27.9,25.0.

__CON
C CN

2-Cycloheptylidenemalononitrile: Colorless liquid; "H NMR (400 MHz, CDCls): 6= 2.86-2.83

(4H, m), 1.84-1.79 (4H, m), 1.66-1.61 (4H, m); 3C NMR (100 MHz, CDCls): o= 188.5, 111.9,

85.0, 36.3, 29.0, 26.2.
C>=<CN
CN
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Figure S26: "H-NMR and '*C-NMR spectra of the 2-
benzylidenemalononitrile product in CDCl;
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Figure S27: "TH-NMR and '*C-NMR spectra of the 2-(4-
nitrobenzylidene)malononitrile product in CDCl;
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Figure S28: '"H-NMR and '*C-NMR spectra of the 2-(4-
cyanobenzylidene)malononitrile product in CDCl;
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Figure S29: 'TH-NMR and *C-NMR spectra of the 2-(3-bromobenzylidene)malononitrile
product in CDCl;
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Figure S30: '"H-NMR and 3C-NMR spectra of the 2-(2,4-

dichlorobenzylidene)malononitrile product in CDCl;
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Figure S31: "H-NMR and '3C-NMR spectra of the 2-(4-
methoxybenzylidene)malononitrile product in CDCl;
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Figure S32 : 'TH-NMR and 3C-NMR spectra of the 2-(4-
methylbenzylidene)malononitrile product in CDCl;
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Figure S33: 'H-NMR and '*C-NMR spectra of the 2-(naphthalen-1-
ylmethylene)malononitrile product in CDCl;
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Figure S34: 'H-NMR and '*C-NMR spectra of the 2-(3-
pyridylmethylene)malononitrile product in CDCl;
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Figure S35: 'H-NMR and '3C-NMR spectra of the 2-(furan-2-
ylmethylene)malononitrile product in CDCl;
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Figure S36: '"H-NMR and '*C-NMR spectra of the 2-(1-
phenylethylidene)malononitrile product in CDCl;
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Figure S37: 'H-NMR and '*C-NMR spectra of the 2-cyclopentylidenemalononitrile product in
CDCl,
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Figure S38: "H-NMR and '*C-NMR spectra of the 2-
cyclohexylidenemalononitrile product in CDCl3
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Figure S39: "TH-NMR and '3C-NMR spectra of the 2-
cycloheptylidenemalononitrile product in CDCl;
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Figure S40: '"H-NMR spectrum (400 MHz, CDCl;) of 1-methyl-3-phenethyl-1H-
imidazolium hydrogen sulfate (MPIHS)
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Figure S41: 3C-NMR spectrum (100 MHz, DSMO-dg) of 1-methyl-3-phenethyl-7H-
imidazolium hydrogen sulfate (MPIHS)
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Figure S42: "TH-NMR spectrum (400 MHz, CDCl;) of 5-HMF

S56



N —

[98)

Figure S43: BC-NMR spectrum (100 MHz, CDCls) of 5-HMF
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