Supporting Information

Consecutively Cross-dehydrogenative C-O and C-N Construction for

Synthesis of Polyarene with AIE Properties under Electrochemical

Condition involving Oxgen Radical Species.

Zhicheng Zhang,¹ Linzi Wen,¹ Shihai Xu,¹ Yu Tang,^{*1} Xiaohui Cao^{*2} and Pengju Feng^{*1}

1. Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China

2. School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China

* Corresponding author.

Yu Tang Email: tytang@jnu.edu.cn;

Xiaohui Cao Email: nkallwar@126.com;

Pengju Feng Email: pfeng@jnu.edu.cn;

1. Materials and Methods:

All commercially available reagents were used without further purification. Analytical grade solvents were bought from Energy Chemical Co., LTD and used without processed. The reactions were carried out under constant cell potential (otherwise noted), an ambient atmosphere, magnetically stirred, and monitored by thin layer chromatography (TLC), visualized by fluorescence quenching under UV light. Flash chromatography was performed on silica gel (200-300 mesh). Cyclic voltammograms were recorded on a CHI 660E potentiostat. The UV spectrum was recorder on a UV-visible absorption instrument (Model: FLA4000, Version: VER 6.0). The instrument for electrolysis is dual display potentiostat (DJS-292B) (made in China). The Both anode electrode and cathode electrode are platinum plate electrodes (10 mm×10 mm×0.1 mm or 30 mm×30 mm×0.1 mm). All deuterated solvents were purchased from Meryer (Shanghai) chemical technology Co., LTD. NMR spectra were recorded on a Bruker Ascend 300 spectrometer operating at 300 MHz for ¹H acquisitions, 75 MHz for ¹³C acquisitions and 282 MHz for ¹⁹F acquisitions. Chemical shifts were referenced to the residual proton solvent peaks (¹H: CDCl₃, δ 7.26; (CD₃)₂SO, δ 2.50; CD₃OD, δ 3.31; CD₃CN, δ 1.94), solvent ¹³C signals (CDCl₃, δ 77.16; (CD₃)₂SO, δ 39.52;CD₃OD, δ 49.00), dissolved or external neat PhCF₃ (¹⁹F, δ -63.3 relative to CFCl₃). Signals are listed in ppm, and multiplicity identified as s = singlet, br = broad, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constants in Hz; integration. High-resolution mass spectra were obtained using Agilent LC-UV-TOF mass spectrometer. Yields refer to purified and spectroscopically pure compounds. All the calculations in this study were performed with Gaussian09 D.01.¹ The structures were optimized by the density functional theory (DFT) with (U)B3LYP²-D3^{3,4} functional with basis set def2-SVP⁵ using SMD⁶ continuum solvent model (solvent =HFIP, using the parameters of 2-propanol, except for∑set at the HFIP value of 16.77). Frequency analyses (at 298.15 K and 1 atm) were carried out to confirm that each structure is a local minimum (no imaginary frequency) or a transition state (only one imaginary frequency). All transition states were confirmed by intrinsic reaction coordinate (IRC) calculations were performed to confirm the connection between two correct minima for a transition state. In order to get more accurate electronic energies, the single point energy were calculated at the M06-2x⁸-D3 /def2-TZVP level of theory. The solvation effect of HFIP (using the parameters of 2-propanol, except for ε set at the HFIP value of 16.7) was simulated by SMD continuum solvent model at the M06-2x-D3 /def2-TZVP level of theory.

2. Information for reaction set up:

2.1. Small scale reaction:

The detail process for home-made electrolysis equipment: 1) Prepare the materials in picture 1 according to the specific information displayed. 2) push the electrode to pass through the rubber stopper and set the distance between the two platinum sheet in 1.2 cm as shown in picture 2. 3) using the rubber stopper to cap on the glass test tube as in picture 3. 4) the reaction set-up was shown in picture 4.

2.2. Large scale reaction:

The large scale reaction setup was using the commercially available equipment bought in Stony-lab (stonyLab.com).

3. Genaral Procedure for Electro-oxidative Azolation

A solution of *phenols* (1) (0.25 mmol), *azoles* (2) (0.25 mmol) and *n*Bu₄NBF₄ (0.5 mmol) in HFIP/DCM = 7/3 (5 mL) was stirred at room temperature in a test tube which was equipped with platinum plate electrodes (1.0 cm×1.0 cm×0.1 mm) as both the anode and cathode. The reaction mixture was stirred and electrolyzed at a constant cell potential of 2.5 V untile the disappearance of 1 (detacted by TLC plate under UV lamp) about 7 hours. The electricity was firstly disconnected and the electrode was removed from the test tube before rinsing twice with EtOAc. The reaction mixture was transformed to round bottom flask and was directly concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with Petroleum ether (PE):EtOAc (EA), to afford pure product.

4. Further investigation about this electrochemical transformation.

Table S1 Optimization of Reaction Conditions

Replacing the anode or cathode materials was found crucial for achieving a sufficient consecutive coupling transformation.

Scheme S1 Tested other Nucleophile for this electrochemical transformation. We also explored the reaction with sulfonamide, morpholine and other nucleophiles. Unfortunately, no desired product was obtained.

5. Procedure for synthesis of compound 4

A solution of 2-(benzo[d]thiazol-2-yl)-4-methoxyphenol (1a) (0.25 mmol), and nBu_4NBF_4 (0.5 mmol) in HFIP/DCM = 7/3 (5 mL) was stirred at room temperature in a test tube which was equipped with platinum plate electrodes (1.0 cm×1.0 cm×0.1 mm) as both the anode and cathode. The reaction mixture was stirred and electrolyzed at a constant cell potential of 2.5 V about 2.5 h. Compound 1a was still left a lot in the mixed solvent (detacted by TLC plate under UV lamp). We found that compound 4 will be over-oxidized if electrolysis is not stopped. The electricity was firstly disconnected and the electrode was removed from the test tube before rinsing twice with EtOAc. The reaction mixture was transformed to round bottom flask and was directly concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with Petroleum ether (PE):EtOAc (EA), to afford pure product 4 as a yellow solid in 45% yield.

6. Procedure for Gram Scale Synthesis

A solution of 2-(benzo[d]thiazol-2-yl)-4-methoxyphenol (1.03g, 4.0 mmol), 1H-benzo[d]imidazole (0.47g, 4.0 mmol) and nBu_4NBF_4 (1.0 g, 3.04 mmol) in HFIP/DCM = 7/3 (20 mL) was stirred at room temperature in a test tube which was equipped with platinum plate electrodes (30 mm×30 mm×0.1 mm) as both the anode and cathode. A balloon was connected to the electrolytic cell for collecting H₂. The

reaction mixture was stirred and electrolyzed at a constant cell potential of 2.5 V until the disappearance of *2-(benzo[d]thiazol-2-yl)-4-methoxyphenol* (detacted by TLC plate under UV lamp). The reaction mixture was directly concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with Petroleum ether: EtOAc, to afford pure the title product as yellow solid (1.27 g, 99%).

7. Cyclic voltametry studies

Cyclic voltammograms were recorded on a CHI 660E potentiostat. The cyclic voltammograms of compounds **1a (SM1)**, **2j (SM2)**, **3j** and **4** were recorded in an electrolyte of nBu_4NBF_4 (0.1 M) in HFIP/DCM (7:3) using a Pt working electrode (diameter, 2 mm), a Pt wire auxiliary electrode and a SCE reference electrode. The scan rate is 100 mV/s (T = 20 °C, c = 0.01M).

The structure of **1a**, **2j**, **3j** and **4**

Figure S1 Cyclic voltametry studies of selected compounds

Figure S2 Cyclic voltametry studies of effect of HFIP

8. Radical capture experiment

A solution of 2-(benzo[d]thiazol-2-yl)-4-methoxyphenol (64.3 mg, 0.25 mmol), 2,6-di-tert-butyl-4-methylphenol **1a** (275.2 mg, 1.25 mmol), bromopyrozole **2a** (36.7 mg, 0.25 mmol) and nBu_4NBF_4 (165 mg, 0.5 mmol) in HFIP/DCM = 7/3 (5 mL) was stirred at room temperature in a test tube which was equipped with platinum plate electrodes (10 mm×10 mm×0.1 mm) as both the anode and cathode. The reaction mixture was stirred and electrolyzed at a constant cell potential of 2.5 V for about 5 hours. The reaction solution was directly draw with a syringe and dilute with methanol. The diluted solution was injected to High resolution liquid chromatography mass spectrometry. Compound **5** was detected by HRMS. We also did CV study about BHT and we found it show higher oxidation potential than the starting materials.

Figure S3 Cyclic voltametry studies of BHT and 1a

Figure S4 HRMS of compound 5

9. Computational details

Scheme S2 the corresponding structures for calculation.

	Table S2.	Calculated	energy d	lata and	imaginary	freque	ncies t	for all	structure.
--	-----------	------------	----------	----------	-----------	--------	---------	---------	------------

	Energy (au)	Thermal correction	Thermal correction to	Imaginary
		to Enthalpy (au)	Gibbs Free Energy	frequency (cm ⁻¹)
			(au))	
	(U)M06-2x-D3	(U)B3LYP-D3	(U)B3LYP-D3	(U)B3LYP-D3
	/def2-TZVP/SMD	/def2-SVP/SMD	/def2-SVP/SMD	/def2-SVP/SMD
CR-S3x	-820.334926	0.238786	0.182779	None
CR'-S3x	-820.340569	0.239364	0.182800	None
CR-S3af	-3220.393027	0.191947	0.138885	None
CR'-S3af	-3220.391695	0.191916	0.138789	None
Pyrazol	-226.204388	0.075993	0.045155	None

S3x	-820.544937	0.238621	0.181923	None
TS-S3x-pyr	-1046.527126	0.315933	0.248059	-329.30
TS'-S3x-pyr	-1046.526359	0.315708	0.247607	-283.04
TS-S3af-pyr	-3446.581868	0.269773	0.20298	-323.97
TS-S3x-OC	-1640.68117	0.480476	0.393385	-273.15
TS-S3x-CC	-1640.673057	0.480735	0.389531	-245.79
TS-S3x-CR-Sub	-1640.858689	0.478238	0.386149	-375.32
TS-S3af-OC	-6440.780306	0.388632	0.304183	-339.75
TS'-S3af-OC	-6440.772798	0.387282	0.301272	-423.24
TS-S3af-CC	-6440.774223	0.388866	0.301426	-325.89

 Table S3.
 Calculated spin populations

	01	C2	C3	C5	08
CR-S3x	0.160028	0.227554	0.065545	0.247669	0.164111
CR'-S3x	0.254375	-0.012449	0.223829	0.304585	0.132333
CR-S3af	0.178901	0.258505	0.035044	0.239552	0.140669
CR'-S3af	0.277759	0.059546	0.172797	0.296995	0.120983

Figure S5 The optimized structures and calculated Mulliken spin population for the radical cations.

Figure S6 Structure and Relative Free Energies of Catonic Radicals and Transition states.

Cartesian coordinates for all calculated structure

CR-S3x

1	6	0	3.672728	0.776040	0.000039
2	6	0	2.804286	1.836194	0.000019
3	6	0	1.392190	1.625248	-0.000022
4	6	0	0.875247	0.268910	-0.000023
5	6	0	1.755435	-0.792513	-0.000015
6	6	0	3.159813	-0.560350	0.000016
7	1	0	4.747741	0.954397	0.000066
8	1	0	3.162583	2.867076	0.000023
9	1	0	1.399161	-1.823567	-0.000020
10	8	0	0.607460	2.664189	-0.000085
11	1	0	-0.367483	2.356372	-0.000163
12	8	0	3.910826	-1.638590	0.000028
13	6	0	5.348344	-1.566569	0.000061
14	1	0	5.702443	-1.049273	0.904682
15	1	0	5.693872	-2.606627	0.000067
16	1	0	5.702483	-1.049271	-0.904544
17	6	0	-0.563366	0.099562	-0.000018
18	6	0	-2.477685	-0.901183	-0.000028
19	6	0	-2.673035	0.493473	0.000026
20	6	0	-3.512264	-1.826532	-0.000054
21	6	0	-3.969777	1.025723	0.000061
22	6	0	-4.800580	-1.282883	-0.000021
23	1	0	-3.327084	-2.901619	-0.000098
24	6	0	-5.023506	0.112779	0.000035
25	1	0	-4.137613	2.104169	0.000104
26	1	0	-5.659890	-1.957801	-0.000040
27	1	0	-6.051532	0.482755	0.000060
28	7	0	-1.421364	1.087526	0.000035
29	8	0	-1.123550	-1.130187	-0.000048

CR'-S3x

Center	Atomic	Atomic	Coord	linates (Angstr	roms)
Number	Number	Туре	Х	Y	Z
	6		2 701026	0 745476	0.000042
1	0	0	2 872250	1 925511	0.000042
2	0	0	1 422042	1.055511	0.000071
5	0	0	0.802(25	0.227227	-0.000023
4	0	0	0.893023	0.337227	-0.000018
5	6	0	1./4388/	-0./55249	-0.000034
6	6	0	3.149773	-0.571835	-0.000021
7	1	0	4.782971	0.887055	0.000083
8	1	0	3.274571	2.850871	0.000148
9	1	0	1.358411	-1.776437	-0.000056
10	8	0	0.679218	2.716079	0.000168
11	1	0	-1.194279	2.092397	-0.000095
12	8	0	3.869154	-1.683858	-0.000042
13	6	0	5.302989	-1.640390	-0.000019
14	1	0	5.674541	-1.131766	0.903472
15	1	0	5.632505	-2.686337	-0.000042
16	1	0	5.674569	-1.131717	-0.903470
17	6	0	-0.530444	0.152015	-0.000019
18	6	0	-2.462428	-0.873399	-0.000002
19	6	0	-2.717969	0.503396	-0.000039
20	6	0	-3.459485	-1.836469	0.000025
21	6	0	-4.022080	0.999733	-0.000056
22	6	0	-4.767110	-1.340217	0.000013
23	1	0	-3.231151	-2.902951	0.000055
24	6	0	-5.040252	0.044295	-0.000027
25	1	0	-4.226320	2.071206	-0.000087
26	1	0	-5.600444	-2.046490	0.000034
27	1	0	-6.080263	0.378267	-0.000037
28	7	0	-1.462566	1.099131	-0.000054
-0 29	, 8	ů 0	-1.092564	-1.054360	0.000001
2)	0	v	1.072301	1.00 1000	0.000001

CR-S3af

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	3.972125	0.419477	0.000010
2	6	0	3.309041	1.617075	-0.000243
3	6	0	1.883497	1.681533	-0.000248
4	6	0	1.121551	0.441177	0.000064
5	6	0	1.794763	-0.760554	0.000272
6	6	0	3.213736	-0.793167	0.000225
7	1	0	5.061134	0.395090	0.000016
8	1	0	3.846419	2.567113	-0.000445
9	1	0	1.274020	-1.717798	0.000544
10	8	0	1.323656	2.858052	-0.000605
11	8	0	3.748793	-1.994729	0.000408
12	6	0	5.174088	-2.190052	0.000373
13	1	0	5.620816	-1.751047	0.905223
14	1	0	5.320888	-3.276435	0.000464
15	1	0	5.620752	-1.751204	-0.904584
16	6	0	-2.434728	0.056915	0.000074
17	6	0	-2.208601	1.459347	0.000947
18	7	0	-0.911541	1.702585	0.001094
19	7	0	-0.282438	0.496130	0.000185
20	6	0	-1.186876	-0.531015	-0.000368
21	1	0	-2.935342	2.271262	0.001505
22	1	0	-0.892968	-1.576400	-0.001103
23	35	0	-4.093541	-0.816966	-0.000434
24	1	0	0.304908	2.731245	-0.000443

CR'-S3af

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-3.983959	0.423578	0.000050
2	6	0	-3.326878	1.626605	0.000105
3	6	0	-1.884240	1.730119	0.000155
4	6	0	-1.148500	0.458291	0.000044
5	6	0	-1.809801	-0.746759	-0.000018
6	6	0	-3.229257	-0.783808	0.000006
7	1	0	-5.073357	0.395735	0.000033
8	1	0	-3.874966	2.571130	0.000118
9	1	0	-1.287033	-1.703662	-0.000087
10	8	0	-1.308072	2.850845	0.000101
11	8	0	-3.759444	-1.997463	-0.000038
12	6	0	-5.181121	-2.184225	0.000011
13	1	0	-5.631605	-1.744748	-0.903643
14	1	0	-5.337874	-3.269813	0.000004
15	1	0	-5.631539	-1.744768	0.903708
16	6	0	2.442924	0.069342	-0.000041
17	6	0	2.245345	1.459467	-0.000036
18	7	0	0.932738	1.672861	-0.000025
19	7	0	0.270152	0.495707	0.000010
20	6	0	1.178928	-0.511200	0.000002
21	1	0	2.953811	2.286482	-0.000038
22	1	0	0.883241	-1.556346	0.000029
23	35	0	4.085423	-0.828968	-0.000064
24	1	0	0.308781	2.524379	0.000059

Pyrazol

Center	Atomic	Atomic	Coord	linates (Angsti	roms)
Number	Number	Туре	Х	Y	Z
				0.0205.47	0.000064
I	6	0	0.679925	0.929547	-0.000064
2	6	0	-0.706373	0.974087	0.000143
3	6	0	-1.099261	-0.386825	-0.000162
4	7	0	1.017505	-0.383337	-0.000048
5	1	0	1.956838	-0.772972	-0.000098
6	1	0	1.435222	1.714008	-0.000101
7	1	0	-1.340093	1.859048	0.000272
8	1	0	-2.109477	-0.798975	-0.000211
9	7	0	-0.044397	-1.202659	0.000139

S3x

Center Number	Atomic Number	Atomic Type	Coordi X	inates (Angstr Y	oms) Z
			2 (5722)	0.719010	0.000005
1	6	0	2.805061	1.822351	-0.000085

3	6	0	1.412280	1.669890	0.000075
4	6	0	0.879425	0.349887	0.000108
5	6	0	1.743891	-0.759082	0.000100
6	6	0	3.129320	-0.587761	0.000006
7	1	0	4.734626	0.885442	-0.000159
8	1	0	3.213450	2.835513	-0.000075
9	1	0	1.336276	-1.771178	0.000126
10	8	0	0.636449	2.771242	0.000318
11	1	0	-0.315063	2.490643	0.000585
12	8	0	3.880261	-1.724158	-0.000016
13	6	0	5.293943	-1.615613	-0.000113
14	1	0	5.665357	-1.092709	0.899527
15	1	0	5.684192	-2.642913	-0.000111
16	1	0	5.665238	-1.092758	-0.899830
17	6	0	-0.559499	0.176949	0.000088
18	6	0	-2.450056	-0.891020	0.000063
19	6	0	-2.684843	0.495247	-0.000131
20	6	0	-3.456542	-1.846845	0.000116
21	6	0	-3.997719	0.982139	-0.000288
22	6	0	-4.765064	-1.347717	-0.000035
23	1	0	-3.237148	-2.915937	0.000263
24	6	0	-5.028118	0.037631	-0.000233
25	1	0	-4.200236	2.055110	-0.000444
26	1	0	-5.601757	-2.050803	-0.000005
27	1	0	-6.066275	0.379531	-0.000351
28	7	0	-1.451631	1.135112	-0.000128
29	8	0	-1.090852	-1.078349	0.000158

TS-S3x-pyr

S16

Center	Atomic	Atomic	Coord	linates (Angstr	coms)
Number	Number	Туре	Х	Y	Z
	6	0	-2.798121	1.167388	0.850380
2	6	0	-2.272288	-0.093884	1.246455
3	6	0	-0.803808	-0.350569	1.168327
4	6	0	-0.029625	0.615855	0.416372
5	6	0	-0.628795	1.774612	-0.110723
6	6	0	-2.001274	2.052236	0.125720
7	1	0	-3.835352	1.398801	1.089340
8	1	0	-2.757505	-0.611122	2.077430
9	1	0	-0.044635	2.499230	-0.679463
10	8	0	-0.332461	-1.392522	1.678753
11	8	0	-2.420146	3.231753	-0.363975
12	6	0	-3.780448	3.619584	-0.201001
13	1	0	-4.030982	3.756865	0.864544
14	1	0	-3.890328	4.578335	-0.724875
15	1	0	-4.466064	2.879430	-0.647326
16	6	0	1.356455	0.360744	0.231335
17	6	0	3.425914	0.635168	-0.445116
18	6	0	3.380165	-0.557376	0.286283
19	6	0	4.581512	1.129081	-1.027728
20	6	0	4.523458	-1.331904	0.476474
21	6	0	5.731475	0.351510	-0.839065
22	1	0	4.586877	2.062091	-1.592836
23	6	0	5.701140	-0.849385	-0.104079
24	1	0	4.495101	-2.261410	1.046832
25	1	0	6.675643	0.688046	-1.273283
26	1	0	6.624290	-1.420774	0.017514
27	7	0	2.054771	-0.682913	0.688398
28	8	0	2.155037	1.181305	-0.460970
29	1	0	1.586940	-1.410009	1.243067
30	6	0	-3.005818	-3.411766	-0.924789
31	6	0	-3.817663	-2.549641	-1.655399
32	6	0	-3.668454	-1.291434	-1.039469
33	7	0	-2.432920	-2.680913	0.054283

34	1	0	-1.748723	-2.955845	0.761280
35	1	0	-2.795385	-4.474819	-1.030556
36	1	0	-4.432637	-2.796556	-2.518005
37	1	0	-4.118121	-0.327735	-1.277339
38	7	0	-2.826350	-1.406192	-0.015632

TS'-S3x-pyr

Center Atomic Atomic		Atomic	Coord	linates (Angstr	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.811577	1.122062	0.869141
2	6	0	-2.233938	-0.116735	1.285800
3	6	0	-0.790960	-0.289554	1.166158
4	6	0	-0.037003	0.637509	0.403149
5	6	0	-0.665741	1.763617	-0.124574
6	6	0	-2.053325	2.014599	0.129447
7	1	0	-3.856187	1.313156	1.109139
8	1	0	-2.691992	-0.640379	2.127870
9	1	0	-0.106824	2.490869	-0.714771
10	8	0	-0.277756	-1.376356	1.712613
11	8	0	-2.495435	3.174573	-0.371386
12	6	0	-3.860106	3.545778	-0.189556
13	1	0	-4.093593	3.680390	0.879946
14	1	0	-3.989088	4.501243	-0.714245
15	1	0	-4.539247	2.793192	-0.624156
16	6	0	1.378757	0.374829	0.222332
17	6	0	3.410615	0.672330	-0.460454
18	6	0	3.333262	-0.509703	0.297177

19	6	0	4.579629	1.143744	-1.041764	
20	6	0	4.478591	-1.287858	0.504427	
21	6	0	5.717482	0.357328	-0.828296	
22	1	0	4.604325	2.066162	-1.624175	
23	6	0	5.666582	-0.832443	-0.071521	
24	1	0	4.436790	-2.208011	1.090409	
25	1	0	6.670240	0.674597	-1.259181	
26	1	0	6.583459	-1.410682	0.066923	
27	7	0	2.014937	-0.657001	0.712402	
28	8	0	2.151728	1.223613	-0.496631	
29	6	0	-2.926062	-3.417732	-0.971266	
30	6	0	-3.596139	-2.502474	-1.776668	
31	6	0	-3.484776	-1.269261	-1.106347	
32	7	0	-2.465097	-2.739367	0.100432	
33	1	0	-1.905882	-3.078913	0.882424	
34	1	0	-2.746634	-4.486196	-1.079962	
35	1	0	-4.098413	-2.699617	-2.721140	
36	1	0	-3.853947	-0.280426	-1.376384	
37	7	0	-2.804548	-1.448472	0.023888	
38	1	0	0.709909	-1.412373	1.500389	

TS-S3af-pyr

Center	Atomic	Atomic	Coord	inates (Angstr	oms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.941051	1.349764	0.776690
2	6	0	-2.580019	0.042796	1.226092

3	6	0	-1.171819	-0.342259	1.241940
4	6	0	-0.229800	0.455210	0.541628
5	6	0	-0.639332	1.656043	-0.017948
6	6	0	-1.993142	2.111608	0.120782
7	1	0	-3.963446	1.692296	0.923876
8	1	0	-3.173048	-0.406217	2.026298
9	1	0	0.050839	2.305395	-0.555235
10	8	0	-0.893566	-1.496021	1.827752
11	8	0	-2.204582	3.324726	-0.405006
12	6	0	-3.511010	3.893046	-0.347383
13	1	0	-3.824053	4.061474	0.696577
14	1	0	-3.449414	4.856448	-0.869538
15	1	0	-4.247600	3.246782	-0.853586
16	6	0	3.264643	-0.198235	0.032392
17	6	0	2.784260	-1.298729	0.779545
18	7	0	1.490201	-1.146619	1.018645
19	6	0	-3.531572	-3.146547	-1.071812
20	6	0	-4.074358	-2.167040	-1.897102
21	6	0	-3.847417	-0.950367	-1.225780
22	7	0	-3.028566	-2.518373	0.011200
23	1	0	-2.526710	-2.910482	0.807942
24	1	0	-3.467380	-4.228545	-1.174760
25	1	0	-4.568759	-2.312230	-2.855049
26	1	0	-4.100791	0.071218	-1.506708
27	7	0	-3.219183	-1.197846	-0.078377
28	1	0	0.095151	-1.677677	1.686677
29	1	0	2.091659	1.582411	-0.686557
30	6	0	2.175290	0.632896	-0.165583
31	7	0	1.119354	0.025653	0.446795
32	1	0	3.324832	-2.171950	1.142480
33	35	0	5.022378	0.082647	-0.568943

TS-S3x-OC

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.305279	-1.605293	-1.924888
2	6	0	-1.813352	-0.556841	-1.169265
3	6	0	-0.458596	-0.148837	-1.253288
4	6	0	0.399694	-0.895336	-2.139085
5	6	0	-0.100681	-1.951898	-2.906943
6	6	0	-1.449911	-2.319000	-2.804477
7	1	0	-3.357257	-1.876502	-1.835982
8	1	0	-2.468390	-0.011499	-0.486793
9	1	0	0.544153	-2.499034	-3.595957
10	8	0	0.003535	0.852916	-0.547676
11	8	0	-1.843531	-3.344777	-3.569508
12	6	0	-3.200638	-3.786054	-3.537381
13	1	0	-3.887287	-2.986266	-3.861032
14	1	0	-3.263279	-4.624798	-4.242591
15	1	0	-3.484062	-4.133729	-2.529890
16	6	0	1.785875	-0.532978	-2.243201
17	6	0	3.914655	-0.701509	-2.738066
18	6	0	3.741154	0.499500	-2.040764
19	6	0	5.148252	-1.159458	-3.173999
20	6	0	4.820255	1.329899	-1.738372
21	6	0	6.232037	-0.328926	-2.870651
22	1	0	5.259339	-2.105437	-3.704582
23	6	0	6.071100	0.885944	-2.171608
24	1	0	4.687453	2.263294	-1.190391
25	1	0	7.233972	-0.635424	-3.178123
26	1	0	6.953266	1.492789	-1.956671
27	7	0	2.379836	0.554405	-1.757371
28	8	0	2.678030	-1.311363	-2.851812
29	6	0	0.530152	1.724590	1.947522

30	6	0	0.221100	0.482889	1.337943
31	6	0	1.280590	-0.524285	1.088193
32	6	0	2.676155	-0.063702	1.274419
33	6	0	2.926762	1.181829	1.785451
34	6	0	1.852778	2.087236	2.131834
35	1	0	-0.287204	2.385344	2.232991
36	1	0	-0.784756	0.077698	1.453960
37	1	0	3.948857	1.529023	1.951391
38	8	0	0.997832	-1.648636	0.669063
39	8	0	2.280671	3.231137	2.652986
40	6	0	1.335886	4.223289	3.066540
41	1	0	0.686024	3.831256	3.865658
42	1	0	1.927730	5.063725	3.449265
43	1	0	0.722834	4.556412	2.213126
44	6	0	3.756800	-0.944065	0.910458
45	6	0	5.797616	-1.585463	0.456397
46	6	0	4.942807	-2.642774	0.124584
47	6	0	7.169804	-1.621697	0.266962
48	6	0	5.429756	-3.825265	-0.432620
49	6	0	7.660042	-2.805359	-0.292261
50	1	0	7.810492	-0.778661	0.526753
51	6	0	6.809947	-3.879353	-0.634167
52	1	0	4.766488	-4.649755	-0.696816
53	1	0	8.732852	-2.899380	-0.474505
54	1	0	7.246511	-4.780040	-1.071296
55	7	0	3.668754	-2.185618	0.445482
56	8	0	5.024161	-0.550921	0.948425
57	1	0	2.763376	-2.652971	0.325109
58	1	0	1.851252	1.266880	-1.241065

TS-S3x-CC

Center Atomic		Atomic	Coord	Coordinates (Angstroms)		
	Number	Number	Туре	Х	Y	Z
					1 400505	0.051005
	l	6	0	-0.269622	1.423727	0.971235
	2	6	0	-0.600925	0.043161	1.019406
	3	6	0	-2.014512	-0.384770	0.992520
	4	6	0	-2.973758	0.634039	0.507457
	5	6	0	-2.571860	1.934619	0.320777
	6	6	0	-1.217808	2.349318	0.570996
	7	1	0	0.757153	1.721526	1.175495
	8	1	0	0.067086	-0.641270	1.547426
	9	1	0	-3.279534	2.698471	-0.009628
	10	8	0	-2.358677	-1.524535	1.317387
	11	8	0	-1.005145	3.654082	0.387002
	12	6	0	0.317830	4.172004	0.528831
	13	1	0	1.010944	3.661652	-0.161356
	14	1	0	0.258108	5.237825	0.275189
	15	1	0	0.676127	4.060277	1.565773
	16	6	0	-4.336643	0.240069	0.276532
	17	6	0	-6.433670	0.377345	-0.328250
	18	6	0	-6.212588	-0.928561	0.125070
	19	6	0	-7.659349	0.828260	-0.792671
	20	6	0	-7.235675	-1.876945	0.137572
	21	6	0	-8.686036	-0.121598	-0.781632
	22	1	0	-7.804033	1.852074	-1.139561
	23	6	0	-8.478051	-1.441219	-0.327228
	24	1	0	-7.068543	-2.895518	0.490190
	25	1	0	-9 678204	0 168405	-1 134710
	-c 26	1	0	-9 314607	-2 143526	-0 340077
	20	7	0	-4 872477	-0.955560	0.495456
	27	, 8	0	5 24/330	1.074594	0.210286
	20 20	0	0	0 521402	2 107626	0.217200
	29	0	0	-0.321492	-2.10/030	-0.090119
	30	6	0	-0.190160	-0./2/0/5	-0.944264

31	6	0	1.223437	-0.299175	-0.917423
32	6	0	2.182689	-1.318023	-0.432471
33	6	0	1.780775	-2.618599	-0.245806
34	6	0	0.426698	-3.033260	-0.495967
35	1	0	-1.548279	-2.405409	-1.100359
36	1	0	-0.858153	-0.042614	-1.472266
37	1	0	2.488455	-3.382478	0.084530
38	8	0	1.567612	0.840594	-1.242267
39	8	0	0.214026	-4.338031	-0.312031
40	6	0	-1.108968	-4.855927	-0.453796
41	1	0	-1.467316	-4.744182	-1.490718
42	1	0	-1.049252	-5.921753	-0.200168
43	1	0	-1.802036	-4.345572	0.236435
44	6	0	3.545600	-0.924091	-0.201653
45	6	0	5.642685	-1.061439	0.402900
46	6	0	5.421567	0.244511	-0.050277
47	6	0	6.868405	-1.512410	0.867157
48	6	0	6.444661	1.192888	-0.062791
49	6	0	7.895099	-0.562558	0.856105
50	1	0	7.013113	-2.536256	1.213938
51	6	0	7.687079	0.757107	0.401847
52	1	0	6.277503	2.211496	-0.415294
53	1	0	8.887299	-0.852603	1.209057
54	1	0	8.523642	1.459406	0.414681
55	7	0	4.081419	0.271553	-0.420529
56	8	0	4.453335	-1.758667	0.293993
57	1	0	-4.313972	-1.721707	0.890631
58	1	0	3.522894	1.037740	-0.815588

TS-S3x-CR-Sub

Center Atomic		Atomic	Coord	Coordinates (Angstroms)		
	Number	Number	Туре	Х	Y	Z
					1 400505	0.051005
	l	6	0	-0.269622	1.423727	0.971235
	2	6	0	-0.600925	0.043161	1.019406
	3	6	0	-2.014512	-0.384770	0.992520
	4	6	0	-2.973758	0.634039	0.507457
	5	6	0	-2.571860	1.934619	0.320777
	6	6	0	-1.217808	2.349318	0.570996
	7	1	0	0.757153	1.721526	1.175495
	8	1	0	0.067086	-0.641270	1.547426
	9	1	0	-3.279534	2.698471	-0.009628
	10	8	0	-2.358677	-1.524535	1.317387
	11	8	0	-1.005145	3.654082	0.387002
	12	6	0	0.317830	4.172004	0.528831
	13	1	0	1.010944	3.661652	-0.161356
	14	1	0	0.258108	5.237825	0.275189
	15	1	0	0.676127	4.060277	1.565773
	16	6	0	-4.336643	0.240069	0.276532
	17	6	0	-6.433670	0.377345	-0.328250
	18	6	0	-6.212588	-0.928561	0.125070
	19	6	0	-7.659349	0.828260	-0.792671
	20	6	0	-7.235675	-1.876945	0.137572
	21	6	0	-8.686036	-0.121598	-0.781632
	22	1	0	-7.804033	1.852074	-1.139561
	23	6	0	-8.478051	-1.441219	-0.327228
	24	1	0	-7.068543	-2.895518	0.490190
	25	1	0	-9 678204	0 168405	-1 134710
	-c 26	1	0	-9 314607	-2 143526	-0 340077
	20	7	0	-4 872477	-0.955560	0.495456
	27	, 8	0	5 24/330	1.074594	0.210286
	20 20	0	0	0 521402	2 107626	0.217200
	29	0	0	-0.321492	-2.10/030	-0.090119
	30	6	0	-0.190160	-0./2/0/5	-0.944264

31	6	0	1.223437	-0.299175	-0.917423
32	6	0	2.182689	-1.318023	-0.432471
33	6	0	1.780775	-2.618599	-0.245806
34	6	0	0.426698	-3.033260	-0.495967
35	1	0	-1.548279	-2.405409	-1.100359
36	1	0	-0.858153	-0.042614	-1.472266
37	1	0	2.488455	-3.382478	0.084530
38	8	0	1.567612	0.840594	-1.242267
39	8	0	0.214026	-4.338031	-0.312031
40	6	0	-1.108968	-4.855927	-0.453796
41	1	0	-1.467316	-4.744182	-1.490718
42	1	0	-1.049252	-5.921753	-0.200168
43	1	0	-1.802036	-4.345572	0.236435
44	6	0	3.545600	-0.924091	-0.201653
45	6	0	5.642685	-1.061439	0.402900
46	6	0	5.421567	0.244511	-0.050277
47	6	0	6.868405	-1.512410	0.867157
48	6	0	6.444661	1.192888	-0.062791
49	6	0	7.895099	-0.562558	0.856105
50	1	0	7.013113	-2.536256	1.213938
51	6	0	7.687079	0.757107	0.401847
52	1	0	6.277503	2.211496	-0.415294
53	1	0	8.887299	-0.852603	1.209057
54	1	0	8.523642	1.459406	0.414681
55	7	0	4.081419	0.271553	-0.420529
56	8	0	4.453335	-1.758667	0.293993
57	1	0	-4.313972	-1.721707	0.890631
58	1	0	3.522894	1.037740	-0.815588

TS-S3af-OC

Center Atomic		Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.103318	-1.864847	-1.807300
2	6	0	-1.708328	-0.790087	-1.029508
3	6	0	-0.425192	-0.208903	-1.145110
4	6	0	0.477764	-0.803559	-2.084445
5	6	0	0.082690	-1.859642	-2.893432
6	6	0	-1.205677	-2.408722	-2.754219
7	1	0	-3.104784	-2.275378	-1.683147
8	1	0	-2.391839	-0.356393	-0.296601
9	1	0	0.740950	-2.280373	-3.653360
10	8	0	-0.070507	0.843010	-0.423650
11	8	0	-1.488703	-3.433371	-3.567919
12	6	0	-2.771835	-4.056856	-3.514924
13	1	0	-3.575434	-3.338254	-3.745595
14	1	0	-2.757665	-4.843113	-4.280837
15	1	0	-2.951368	-4.512250	-2.526725
16	6	0	3.961895	0.042234	-2.595615
17	6	0	3.423471	1.187275	-1.992832
18	7	0	2.127356	0.952808	-1.789163
19	6	0	0.602177	1.849043	1.925887
20	6	0	0.179809	0.590665	1.412187
21	6	0	1.147808	-0.511598	1.214321
22	6	0	2.575972	-0.141555	1.266073
23	6	0	2.941095	1.104954	1.665492
24	6	0	1.951157	2.110207	2.013018
25	1	0	-0.149927	2.586535	2.200723
26	1	0	-0.837838	0.256128	1.619527
27	1	0	3.984682	1.411781	1.743831
28	8	0	0.743028	-1.638706	0.900695
29	8	0	2.504747	3.246361	2.426980
30	6	0	1.668479	4.349462	2.787322

31	1	0	1.032683	4.091557	3.649878
32	1	0	2.346177	5.168200	3.058711
33	1	0	1.037769	4.654489	1.936160
34	6	0	5.366451	-2.222476	0.288107
35	6	0	4.247618	-3.054328	0.129310
36	7	0	3.178884	-2.356549	0.506027
37	1	0	2.159088	-2.569092	0.532132
38	1	0	1.405452	1.466108	-1.249155
39	7	0	3.545499	-1.116549	0.901488
40	6	0	4.891391	-1.007338	0.773363
41	1	0	5.426877	-0.095856	1.026029
42	1	0	4.155790	-4.082226	-0.217968
43	35	0	7.148243	-2.661227	-0.078181
44	7	0	1.802168	-0.288944	-2.211965
45	6	0	2.916126	-0.871178	-2.718986
46	1	0	3.878584	2.130871	-1.696858
47	1	0	2.907914	-1.883366	-3.115191
48	35	0	5.741498	-0.220239	-3.113311

TS'-S3af-OC

Center	Atomic	Atomic	Coordinat	es (Angstroms))
Number	Number	Туре	Х	Y	Z

1	6	0	-2.110340	-1.883982	-1.777111
2	6	0	-1.699005	-0.850803	-0.955262
3	6	0	-0.417168	-0.269100	-1.074742
4	6	0	0.467151	-0.807020	-2.064023
5	6	0	0.058100	-1.823322	-2.910379
6	6	0	-1.230266	-2.381248	-2.767812
7	1	0	-3.109957	-2.299495	-1.655288
8	1	0	-2.365307	-0.454608	-0.186168
9	1	0	0.702092	-2.206581	-3.701779
10	8	0	-0.039422	0.759325	-0.326261
11	8	0	-1.528172	-3.362774	-3.618474
12	6	0	-2.812249	-3.991094	-3.577415
13	1	0	-3.615499	-3.262712	-3.775064
14	1	0	-2.801684	-4.748820	-4.371128
15	1	0	-2.980410	-4.481510	-2.604671
16	6	0	3.959158	-0.005088	-2.568811
17	6	0	3.426793	1.175648	-2.032832
18	7	0	2.125765	0.967768	-1.832774
19	6	0	0.601702	1.826854	1.916828
20	6	0	0.206730	0.542589	1.406849
21	6	0	1.221521	-0.501541	1.240915
22	6	0	2.617322	-0.134022	1.265987
23	6	0	2.947390	1.138782	1.643675
24	6	0	1.939667	2.123183	1.990734
25	1	0	-0.175199	2.541232	2.181722
26	1	0	-0.781652	0.167666	1.683423
27	1	0	3.986501	1.465499	1.700132
28	8	0	0.802611	-1.670303	0.918596
29	8	0	2.472195	3.278667	2.389145
30	6	0	1.609369	4.358975	2.750012
31	1	0	0.986678	4.089154	3.618933
32	1	0	2.265143	5.198462	3.012440
33	1	0	0.962859	4.642772	1.902928
34	6	0	5.371353	-2.229853	0.319316
35	6	0	4.214263	-3.029926	0.157435
36	7	0	3.144312	-2.335860	0.513799
37	1	0	1.426851	1.553993	-1.359153
38	7	0	3.576556	-1.107572	0.905479

39	6	0	4.931703	-1.006753	0.795149
40	1	0	5.478803	-0.103391	1.052189
41	1	0	4.129242	-4.057991	-0.192668
42	35	0	7.144661	-2.726446	-0.033490
43	7	0	1.790503	-0.291357	-2.192857
44	6	0	2.903920	-0.910385	-2.656360
45	1	0	3.887786	2.130276	-1.785152
46	1	0	2.880733	-1.942147	-2.998193
47	35	0	5.740251	-0.308315	-3.051808
48	1	0	1.658206	-2.256629	0.669342

TS-S3af-CC

Center	Atomic	Atomic	Coord	linates (Angstr	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.170144	1.339918	0.874927
2	6	0	-0.565534	-0.032335	0.885547
3	6	0	-2.000234	-0.388748	0.871808
4	6	0	-2.911407	0.673200	0.397796
5	6	0	-2.462292	1.950247	0.251747
6	6	0	-1.083601	2.301546	0.507523
7	1	0	0.868793	1.589449	1.081181
8	1	0	0.047365	-0.744441	1.444135
9	1	0	-3.122710	2.766809	-0.044340
10	8	0	-2.388882	-1.516957	1.203056
11	8	0	-0.835638	3.605698	0.358215

1310 1.172207 3.564183 -0.21 1410 0.475699 5.150880 0.27 1510 0.871082 3.925224 1.52 1660 -6.056255 -0.943873 0.134 1870 -4.769015 0.871384 0.4661 1960 -0.547987 2.196706 -0.957 2060 -0.195319 -0.813126 -0.999 2160 1.226074 -0.412882 -1.010 2260 2.173712 -1.433113 -0.520 2360 1.767154 -2.720986 -0.342 2460 0.399287 -3.121769 -0.88027 2510 -1.580305 -2.481932 -1.148 2610 -0.834439 -0.129243 -1.564 2710 2.456455 -3.50785 -0.332 2880 1.574813 0.71993 -1.37 2980 0.194358 -4.430850 -0.400 3060 -1.29316 -4.948148 -0.537 3110 -1.814356 -4.448398 0.16742 3310 -1.814356 -0.902143 0.298 3310 -1.272813 0.344084 0.15742 3460 5.256606 1.081888 -0.402 356<	12	6	0	0.504138	4.076921	0.497717
1410 0.475699 5.150880 0.27 15 10 0.871082 3.92524 1.52 16 60 -6.056255 -0.943873 0.136 17 60 -6.056255 -0.943873 0.136 18 70 -4.769015 0.871384 0.466 19 60 -0.547987 -2.196706 -0.957 20 60 -0.195319 0.813126 -0.999 21 60 1.226074 -0.412882 -1.016 22 60 2.173712 -1.433113 -0.520 23 60 1.767154 2.720986 -0.342 24 60 0.399287 -3.121769 -0.580 7 10 -1.580305 -2.481932 -1.148 26 10 -0.834439 -0.129243 -1.564 27 10 2.456465 -3.507785 -0.33 28 80 1.574813 0.719993 -1.37 29 80 0.194358 -4.430850 -0.400 30 60 -1.129316 4.948148 -0.537 31 10 -1.65950 -6.017328 -0.298 33 10 -1.814356 -4.448398 0.167 34 60 5.265060 1.07328 -0.298 35 60 3.278880 0.806287 -1.097 </td <td>13</td> <td>1</td> <td>0</td> <td>1.172207</td> <td>3.564183</td> <td>-0.215138</td>	13	1	0	1.172207	3.564183	-0.215138
1510 0.871082 3.92524 1.52 1660 -6.411640 0.292069 -0.423 1760 -6.056265 -0.943873 0.136 1870 -4.769015 0.871384 0.666 1960 -0.547987 2.196706 -0.957 2060 -0.195319 -0.813126 -0.999 2160 1.226074 -0.412882 -1.010 2260 2.173712 -1.433113 -0.524 2360 1.767154 -2.720986 -0.342 2460 0.399287 -3.121769 -0.884 2510 -1.580305 2.481932 -1.148 2610 -0.834439 -0.129243 -1.564 2710 2.456465 -3.507785 -0.03 2880 1.574813 0.71993 -1.37 2980 0.194358 -4.43050 -0.406 3060 -1.129316 4.948148 -0.537 3110 -1.65950 -6.017328 -0.2986 3310 -1.814356 -4.448398 0.1663 3460 5.262092 0.29703 -0.32 3560 3.27880 0.806287 -1.09 3970 -4.272813 0.344084 0.15742 4110 </td <td>14</td> <td>1</td> <td>0</td> <td>0.475699</td> <td>5.150880</td> <td>0.273840</td>	14	1	0	0.475699	5.150880	0.273840
16 6 0 -6.411640 0.292069 -0.423 17 6 0 -6.056265 -0.943873 0.130 18 7 0 -4.769015 -0.871384 0.463 19 6 0 -0.195319 -0.813126 0.999 20 6 0 -1.226074 -0.412882 -1.010 22 6 0 2.173712 -1.433113 -0.520 23 6 0 1.767154 -2.720986 -0.342 24 6 0 0.399287 -3.121769 -0.880 24 6 0 0.399287 -3.121769 -0.880 24 6 0 0.399287 -3.121769 -0.880 25 1 0 -1.580305 -2.481932 -1.148 26 1 0 -0.834439 -0.129243 -1.564 27 1 0 2.456465 -3.507785 -0.332 28 8 0 1.574813 0.719993 -1.37 29 8 0 0.194358 -4.430850 -0.400 30 6 0 -1.507149 -4.823489 -1.567 31 1 0 -1.65950 -6.017328 -0.298 33 1 0 -1.65950 -6.017328 -0.298 33 1 0 -1.65950 -0.17328 -0.298 34 6 0 5.262092 0.297003 -0.32 <td>15</td> <td>1</td> <td>0</td> <td>0.871082</td> <td>3.925224</td> <td>1.526499</td>	15	1	0	0.871082	3.925224	1.526499
1760 -6.056265 -0.943873 0.134 18 70 -4.769015 -0.871384 0.467 19 60 -0.547987 -2.196706 -0.957 20 60 -0.195319 -0.813126 -0.995 21 60 1.226074 -0.412882 -1.016 22 60 2.173712 -1.433113 -0.526 23 60 1.767154 -2.720986 -0.342 24 60 0.399287 -3.121769 -0.886 7 10 -1.580305 -2.481932 -1.148 26 10 -0.834439 -0.129243 -1.564 27 10 2.456465 -3.507785 -0.03 28 80 1.574813 0.719993 -1.37 29 80 0.194358 -4.430850 -0.400 30 60 -1.501749 -4.823489 -1.567 31 10 -1.65950 -6.017328 -0.298 33 10 -1.814356 -4.448398 0.167 34 60 5.262092 0.29703 -0.32 35 60 3.278880 0.806287 -1.09 37 10 -4.093283 -1.548149 0.883 38 10 3.278880 0.806287 -1.09 39 70 -5.265060 1.081888 -0	16	6	0	-6.411640	0.292069	-0.423456
18 7 0 -4.769015 -0.871384 0.464 19 6 0 -0.547987 -2.196706 -0.957 20 6 0 -0.195319 -0.813126 -0.999 21 6 0 1.226074 -0.412882 -1.010 22 6 0 2.173712 -1.433113 -0.520 23 6 0 1.767154 -2.720986 -0.342 24 6 0 0.399287 -3.121769 -0.580 24 6 0 -0.834439 -0.129243 -1.564 26 1 0 -1.580305 -2.481932 -1.148 26 1 0 -0.834439 -0.129243 -1.564 27 1 0 2.456465 -3.507785 -0.03 28 8 0 1.574813 0.719993 -1.37 29 8 0 -1.65750 -6.017328 -0.298 31 1 0 -1.65950 -6.017328 -0.298 33 1	17	6	0	-6.056265	-0.943873	0.136300
1960 -0.547987 -2.196706 -0.957 2060 -0.195319 -0.813126 -0.999 2160 1.226074 -0.412882 -1.010 2260 2.173712 -1.433113 -0.520 2360 1.767154 -2.720986 -0.342 2460 0.399287 -3.121769 -0.580 2510 -1.580305 -2.481932 -1.148 2610 -0.834439 -0.129243 -1.56445 2710 2.456465 -3.507785 -0.033 2880 1.574813 0.719993 -1.37 2980 0.194358 -4.430850 -0.406 3060 -1.65950 -6.017328 -0.298 3310 -1.814356 -4.48398 0.16613 3460 5.656855 -0.902143 0.297 3560 5.262092 0.297003 -0.32 3670 3.979504 0.167542 -0.65337 3810 3.278880 0.806287 1.097 3970 -4.272813 0.344084 0.1574443 4110 -6.633928 -1.849847 0.3124464 4110 -5.102076 2.099761 -0.7444444433 4470 3.523970 -1.05960 -0.2944446477	18	7	0	-4.769015	-0.871384	0.468867
2060 -0.195319 -0.813126 -0.995 21 60 1.226074 -0.412882 -1.016 22 60 2.173712 -1.433113 -0.526 23 60 1.767154 -2.720986 -0.342 24 60 0.399287 -3.121769 -0.580 24 60 0.399287 -3.121769 -0.580 24 60 0.399287 -3.121769 -0.580 26 10 -0.834439 -0.129243 -1.564 27 10 2.456465 -3.507785 -0.033 28 80 1.574813 0.719993 -1.37 29 80 0.194358 4.430850 -0.400 30 60 -1.129316 4.948148 -0.537 31 10 -1.501749 4.823489 -1.567 32 10 -1.065950 -6.017328 -0.298 33 10 -1.814356 -4.448398 0.167 34 60 5.262092 0.297003 -0.32 36 70 3.979504 0.167542 -0.65 37 10 -4.093283 -1.548149 0.883 38 10 3.278880 0.806287 -1.09 39 70 -4.272813 0.344084 0.15742 41 10 -6.633928 -1.849847	19	6	0	-0.547987	-2.196706	-0.957645
2160 1.226074 -0.412882 -1.010 22 60 2.173712 -1.433113 -0.520 23 60 1.767154 -2.720986 -0.342 24 60 0.399287 -3.121769 -0.580 24 60 -1.580305 -2.481932 -1.148 26 10 -0.834439 -0.129243 -1.56445 27 10 2.456465 -3.507785 -0.033 28 80 1.574813 0.719993 -1.37 29 80 0.194358 4.430850 -0.406 30 60 -1.129316 4.948148 -0.537 31 10 -1.65950 -6.017328 -0.298 33 10 -1.814356 -4.448398 0.163366 34 60 5.262092 0.297003 -0.322 36 70 3.979504 0.167542 -0.65835 37 10 -4.093283 -1.548149 $0.88336666666666666666666666666666666666$	20	6	0	-0.195319	-0.813126	-0.999876
2260 2.173712 -1.433113 -0.524 23 60 1.767154 -2.720986 -0.342 24 60 0.399287 -3.121769 -0.586 24 60 -1.580305 -2.481932 -1.148 26 10 -0.834439 -0.129243 -1.564 27 10 2.456465 -3.507785 -0.033 28 80 1.574813 0.719993 -1.37 29 80 0.194358 -4.430850 -0.400 30 60 -1.501749 -4.823489 -1.567 31 10 -1.501749 -4.823489 -1.567 32 10 -1.665950 -6.017328 -0.298 33 10 -1.814356 -4.448398 0.1663 34 60 5.262092 0.297003 -0.32 36 70 3.979504 0.167542 -0.655 37 10 -4.093283 -1.548149 0.883 38 10 3.278880 0.806287 -1.09 39 70 -4.272813 0.344084 0.157442 41 10 -6.633928 -1.849847 0.31276860 41 10 -5.102076 2.099761 -0.74876466 41 10 -5.32970 -1.059606 $-0.29666666666666666666666666666666666666$	21	6	0	1.226074	-0.412882	-1.010736
2360 1.767154 -2.720986 -0.342 2460 0.399287 -3.121769 -0.586 2510 -1.580305 -2.481932 -1.148 2610 -0.834439 -0.129243 -1.564 2710 2.456465 -3.507785 -0.037 2880 1.574813 0.719993 -1.37 2980 0.194358 -4.430850 -0.406 3060 -1.129316 -4.948148 -0.537 3110 -1.065950 -6.017328 -0.298 3310 -1.814356 -4.448398 0.166 3460 5.262092 0.297003 -0.32 3560 3.278880 0.806287 -1.09 3810 3.278880 0.806287 -1.09 3970 -4.272813 0.344084 0.15748 4110 -6.633928 -1.849847 0.31278880 4470 3.523970 -1.059606 $-0.29666666666666666666666666666666666666$	22	6	0	2.173712	-1.433113	-0.520384
24 6 0 0.399287 -3.121769 -0.580 25 1 0 -1.580305 -2.481932 -1.148 26 1 0 -0.834439 -0.129243 -1.564 27 1 0 2.456465 -3.507785 -0.033 28 8 0 1.574813 0.719993 -1.37 29 8 0 0.194358 -4.430850 -0.400 30 6 0 -1.129316 -4.948148 -0.537 31 1 0 -1.65950 -6.017328 -0.298 33 1 0 -1.814356 -4.448398 0.163 34 6 0 5.656855 -0.902143 0.297 35 6 0 5.262092 0.297003 -0.32 36 7 0 3.278880 0.806287 -1.09 39 7 0 -4.272813 0.344084 0.15 40 6 0 -5.265060 1.081888 -0.403 41 1 <t< td=""><td>23</td><td>6</td><td>0</td><td>1.767154</td><td>-2.720986</td><td>-0.342312</td></t<>	23	6	0	1.767154	-2.720986	-0.342312
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	6	0	0.399287	-3.121769	-0.580771
2510 -1.580305 -2.481932 -1.148 26 10 -0.834439 -0.129243 -1.564 27 10 2.456465 -3.507785 -0.033 28 80 1.574813 0.719993 -1.37 29 80 0.194358 -4.430850 -0.400 30 60 -1.129316 -4.948148 -0.537 31 10 -1.501749 -4.823489 -1.567 32 10 -1.065950 -6.017328 -0.298 33 10 -1.814356 -4.448398 0.163928 34 60 5.656855 -0.902143 0.297 35 60 5.262092 0.297003 -0.327 36 70 3.979504 0.167542 -0.657 37 10 -4.093283 -1.548149 0.887 38 10 3.278880 0.806287 -1.097 39 70 -4.272813 0.344084 0.15742 41 10 -6.633928 -1.849847 0.3177 42 10 -5.102076 2.099761 -0.7487 43 350 -8.097018 0.783770 -1.0772 44 70 3.523970 -1.050960 -0.2967 45 60 4.538224 -1.731348 0.29764 45 60 4.538224 -1.7313						
26 1 0 -0.834439 -0.129243 -1.564 27 1 0 2.456465 -3.507785 -0.033 28 8 0 1.574813 0.719993 -1.37 29 8 0 0.194358 -4.430850 -0.400 30 6 0 -1.129316 -4.948148 -0.537 31 1 0 -1.501749 -4.823489 -1.567 32 1 0 -1.065950 -6.017328 -0.298 33 1 0 -1.814356 -4.448398 0.166 34 6 0 5.656855 -0.902143 0.29 35 6 0 5.262092 0.297003 -0.32 36 7 0 3.979504 0.167542 -0.65 37 1 0 -4.093283 -1.548149 0.88 38 1 0 3.278880 0.806287 -1.09 39 7 0 -4.272813 0.344084 0.15 40 6 0	25	1	0	-1.580305	-2.481932	-1.148576
2710 2.456465 -3.507785 -0.031 28 80 1.574813 0.719993 -1.37 29 80 0.194358 -4.430850 -0.406 30 60 -1.129316 -4.948148 -0.537 31 10 -1.501749 -4.823489 -1.567 32 10 -1.065950 -6.017328 -0.298 33 10 -1.814356 -4.448398 0.164 34 60 5.656855 -0.902143 0.29 35 60 5.262092 0.297003 -0.32 36 70 3.979504 0.167542 -0.65 37 10 -4.093283 -1.548149 0.883 38 10 3.278880 0.806287 -1.09 39 70 -4.272813 0.344084 0.15742 41 10 -6.633928 -1.849847 0.31242 43 350 -8.097018 0.783770 -1.073444444444477 44 70 3.523970 -1.050960 -0.2904444444477444477 $0.3.523970$ -1.050960 $-0.2904444447744477474747777777777777777777$	26	1	0	-0.834439	-0.129243	-1.564470
28 8 0 1.574813 0.719993 -1.37 29 8 0 0.194358 -4.430850 -0.400 30 6 0 -1.129316 -4.948148 -0.537 31 1 0 -1.501749 -4.823489 -1.567 32 1 0 -1.065950 -6.017328 -0.298 33 1 0 -1.814356 -4.448398 0.163 34 6 0 5.656855 -0.902143 0.29 35 6 0 5.262092 0.297003 -0.32 36 7 0 3.979504 0.167542 -0.65 37 1 0 -4.093283 -1.548149 0.883 38 1 0 3.278880 0.806287 -1.09 39 7 0 -4.272813 0.344084 0.15 40 6 0 -5.102076 2.099761 -0.743 43 35	27	1	0	2.456465	-3.507785	-0.031515
2980 0.194358 -4.430850 -0.406 30 60 -1.129316 -4.948148 -0.537 31 10 -1.501749 -4.823489 -1.567 32 10 -1.065950 -6.017328 -0.298 33 10 -1.814356 -4.448398 0.168 34 60 5.656855 -0.902143 0.29 35 60 5.262092 0.297003 -0.32 36 70 3.979504 0.167542 -0.65 37 10 -4.093283 -1.548149 0.883 38 10 3.278880 0.806287 -1.09 39 70 -4.272813 0.344084 0.15742 41 10 -6.633928 -1.849847 0.3127666 41 10 -6.633928 -1.849847 0.3127666 44 70 3.523970 -1.050960 -0.2997666 45 60 4.538224 -1.731348 0.297666 45 60 4.538224 -1.731348 0.297666 47 10 5.810659 1.213124 $-0.537666666666666666666666666666666666666$	28	8	0	1.574813	0.719993	-1.370875
3060 -1.129316 -4.948148 -0.537 31 10 -1.501749 -4.823489 -1.567 32 10 -1.065950 -6.017328 -0.298 33 10 -1.814356 -4.448398 0.168 34 60 5.656855 -0.902143 0.29 35 60 5.262092 0.297003 -0.32 36 70 3.979504 0.167542 -0.655 37 10 -4.093283 -1.548149 0.883 38 10 3.278880 0.806287 -1.09 39 70 -4.272813 0.344084 0.155742 40 60 -5.265060 1.081888 -0.4027646 41 10 -6.633928 -1.849847 0.31276766 41 10 -5.102076 2.099761 -0.74877666 44 70 3.523970 -1.050960 $-0.296766666666666666666666666666666666666$	29	8	0	0.194358	-4.430850	-0.406055
3110 -1.501749 -4.823489 -1.567 32 10 -1.065950 -6.017328 -0.298 33 10 -1.814356 -4.448398 0.168 34 60 5.656855 -0.902143 0.29 35 60 5.262092 0.297003 -0.32 36 70 3.979504 0.167542 -0.65 37 10 -4.093283 -1.548149 0.883 38 10 3.278880 0.806287 -1.09 39 70 -4.272813 0.344084 0.15 40 60 -5.265060 1.081888 -0.402 41 10 -6.633928 -1.849847 0.312 43 350 -8.097018 0.783770 -1.0736 44 70 3.523970 -1.050960 -0.290 45 60 4.538224 -1.731348 0.29 46 10 4.408497 -2.739739 0.68 47 10 5.810659 1.213124 -0.53 48 350 7.353462 -1.307722 0.97	30	6	0	-1.129316	-4.948148	-0.537020
3210 -1.065950 -6.017328 -0.298 33 10 -1.814356 -4.448398 0.168 34 60 5.656855 -0.902143 0.29 35 60 5.262092 0.297003 -0.32 36 70 3.979504 0.167542 -0.65 37 10 -4.093283 -1.548149 0.883 38 10 3.278880 0.806287 -1.09 39 70 -4.272813 0.344084 0.15 40 60 -5.265060 1.081888 -0.402 41 10 -6.633928 -1.849847 0.312 43 350 -8.097018 0.783770 -1.0726 44 70 3.523970 -1.050960 -0.290 45 60 4.538224 -1.731348 0.29 46 10 5.810659 1.213124 -0.53 48 350 7.353462 -1.307722 0.97	31	1	0	-1.501749	-4.823489	-1.567578
3310 -1.814356 -4.448398 0.168 34 60 5.656855 -0.902143 0.29 35 60 5.262092 0.297003 -0.32 36 70 3.979504 0.167542 -0.65 37 10 -4.093283 -1.548149 0.883 38 10 3.278880 0.806287 -1.09 39 70 -4.272813 0.344084 0.15 40 60 -5.265060 1.081888 -0.402 41 10 -6.633928 -1.849847 0.312 42 10 -5.102076 2.099761 -0.748 43 350 -8.097018 0.783770 -1.072 44 70 3.523970 -1.050960 -0.290 45 60 4.538224 -1.731348 0.29 46 10 5.810659 1.213124 -0.53 48 350 7.353462 -1.307722 0.97	32	1	0	-1.065950	-6.017328	-0.298220
3460 5.656855 -0.902143 0.29 35 60 5.262092 0.297003 -0.32 36 70 3.979504 0.167542 -0.65 37 10 -4.093283 -1.548149 0.883 38 10 3.278880 0.806287 -1.09 39 70 -4.272813 0.344084 0.15 40 60 -5.265060 1.081888 -0.402 41 10 -6.633928 -1.849847 0.312 42 10 -5.102076 2.099761 -0.748 43 350 -8.097018 0.783770 -1.072 44 70 3.523970 -1.050960 -0.290 45 60 4.538224 -1.731348 0.29 46 10 5.810659 1.213124 -0.53 48 350 7.353462 -1.307722 0.97	33	1	0	-1.814356	-4.448398	0.168733
3560 5.262092 0.297003 -0.32 36 70 3.979504 0.167542 -0.65 37 10 -4.093283 -1.548149 0.8833 38 10 3.278880 0.806287 -1.09 39 70 -4.272813 0.344084 0.15 40 60 -5.265060 1.081888 -0.402 41 10 -6.633928 -1.849847 0.312 42 10 -5.102076 2.099761 -0.748 43 350 -8.097018 0.783770 -1.072 44 70 3.523970 -1.050960 -0.290 45 60 4.538224 -1.731348 0.29 46 10 5.810659 1.213124 -0.53 48 350 7.353462 -1.307722 0.97	34	6	0	5.656855	-0.902143	0.290271
3670 3.979504 0.167542 -0.65 37 10 -4.093283 -1.548149 0.8835 38 10 3.278880 0.806287 -1.09 39 70 -4.272813 0.344084 0.15 40 60 -5.265060 1.081888 -0.4025 41 10 -6.633928 -1.849847 0.3125 42 10 -5.102076 2.099761 -0.7485 43 350 -8.097018 0.783770 -1.07555666 44 70 3.523970 -1.050960 $-0.29666666666666666666666666666666666666$	35	6	0	5.262092	0.297003	-0.320681
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	7	0	3.979504	0.167542	-0.654061
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	1	0	-4.093283	-1.548149	0.885478
39 7 0 -4.272813 0.344084 0.15 40 6 0 -5.265060 1.081888 -0.402 41 1 0 -6.633928 -1.849847 0.312 42 1 0 -5.102076 2.099761 -0.748 43 35 0 -8.097018 0.783770 -1.072 44 7 0 3.523970 -1.050960 -0.290 45 6 0 4.538224 -1.731348 0.29 46 1 0 5.810659 1.213124 -0.53 48 35 0 7.353462 -1.307722 0.97	38	1	0	3.278880	0.806287	-1.090816
40 6 0 -5.265060 1.081888 -0.402 41 1 0 -6.633928 -1.849847 0.312 42 1 0 -5.102076 2.099761 -0.748 43 35 0 -8.097018 0.783770 -1.072 44 7 0 3.523970 -1.050960 -0.290 45 6 0 4.538224 -1.731348 0.29 46 1 0 5.810659 1.213124 -0.53 48 35 0 7.353462 -1.307722 0.97	39	7	0	-4.272813	0.344084	0.151787
41 1 0 -6.633928 -1.849847 0.312 42 1 0 -5.102076 2.099761 -0.748 43 35 0 -8.097018 0.783770 -1.073 44 7 0 3.523970 -1.050960 -0.290 45 6 0 4.538224 -1.731348 0.29 46 1 0 5.810659 1.213124 -0.53 48 35 0 7.353462 -1.307722 0.97	40	6	0	-5.265060	1.081888	-0.402822
42 1 0 -5.102076 2.099761 -0.743 43 35 0 -8.097018 0.783770 -1.073 44 7 0 3.523970 -1.050960 -0.290 45 6 0 4.538224 -1.731348 0.29 46 1 0 4.408497 -2.739739 0.68 47 1 0 5.810659 1.213124 -0.53 48 35 0 7.353462 -1.307722 0.97	41	1	0	-6.633928	-1.849847	0.312688
43 35 0 -8.097018 0.783770 -1.073 44 7 0 3.523970 -1.050960 -0.290 45 6 0 4.538224 -1.731348 0.29 46 1 0 4.408497 -2.739739 0.68 47 1 0 5.810659 1.213124 -0.53 48 35 0 7.353462 -1.307722 0.97	42	1	0	-5.102076	2.099761	-0.748356
44703.523970-1.050960-0.29045604.538224-1.7313480.2946104.408497-2.7397390.6847105.8106591.213124-0.53483507.353462-1.3077220.97	43	35	0	-8.097018	0.783770	-1.073372
45 6 0 4.538224 -1.731348 0.29 46 1 0 4.408497 -2.739739 0.68 47 1 0 5.810659 1.213124 -0.53 48 35 0 7.353462 -1.307722 0.97	44	7	0	3.523970	-1.050960	-0.290160
46 1 0 4.408497 -2.739739 0.68 47 1 0 5.810659 1.213124 -0.53 48 35 0 7.353462 -1.307722 0.97	45	6	0	4.538224	-1.731348	0.295960
47 1 0 5.810659 1.213124 -0.53 48 35 0 7.353462 -1.307722 0.97	46	1	0	4.408497	-2.739739	0.680033
48 35 0 7.353462 -1.307722 0.97	47	1	0	5.810659	1.213124	-0.533283
	48	35	0	7.353462	-1.307722	0.970601

S31

10.Fluorescence properties of the selected products

11.Characterization of Products

2-(Benzo[*d*]thiazol-2-yl)-6-(2-(benzo[d]thiazol-2-yl)-4-methoxyphenoxy)-3-(4-bro mo-1*H*-pyrazol-1-yl)-4-methoxyphenol (3a)

Yellow solid (72 mg, 88 % yield, electrolysis time: 6.5 h, $R_f = 0.17$ (petroleum ether/ethyl acetate = 10 : 1 (v/v)); M.P. 292.5-295.2 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 13.95 (s, 1H), 8.18 – 8.17 (m, 1H), 8.13 (d, J = 8.1 Hz, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.86 (s, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.63 (s, 1H), 7.53 - 7.47 (m, 2H), 7.43 - 7.34 (m, 2H), 7.07 - 7.00 (m, 2H), 6.82 (s, 1H), 3.97 (s, 3H), 3.61 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.3, 162.4, 156.2, 152.3, 149.1, 149.1, 148.5, 146.8, 145.2, 142.7, 136.5, 133.9, 133.8, 126.9, 126.2, 125.3, 125.2, 123.1, 122.3, 121.9, 121.6, 121.4, 119.9, 119.3, 116.4, 112.7, 106.9, 95.5, 57.1, 56.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₂BrN₄O₄S₂⁺ ([M + H]⁺), 657.0260, found, 657.0248.

2-(Benzo[*d*]thiazol-2-yl)-6-(2-(benzo[*d*]thiazol-2-yl)-4-methoxyphenoxy)-3-(4-fluo ro-1*H*-pyrazol-1-yl)-4-methoxyphenol (3b)

Yellow solid (17 mg, 23 % yield, electrolysis time: 6.8 h, $R_f = 0.25$ (petroleum ether/ethyl acetate = 10 : 1 (v/v)); M.P. 287.3-288.5 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 13.95 (s, 1H), 8.17 (d, J = 0.9 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 7.97 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 3.9 Hz, 1H), 7.52 - 7.47 (m, 3H), 7.43 - 7.34 (m, 2H), 7.07 - 7.00 (m, 2H), 6.82 (s, 1H), 3.96 (s, 3H), 3.61 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.5, 162.4, 156.2, 152.8, 152.3, 149.3, 149.2, 148.5, 146.7, 145.2, 136.5, 133.9, 129.9 (d, J = 13.5 Hz, 1C), 126.9, 126.2, 125.3, 125.2, 123.1, 122.6, 122.3, 121.6, 121.3, 119.9, 119.5, 119.3, 116.6, 112.7, 107.1, 57.2, 56.1. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C, δ): -174.8 (s). Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₂FN₄O₄S₂⁺ ([M + H]⁺), 597.1061, found, 597.1070.

2-(Benzo[*d*]thiazol-2-yl)-6-(2-(benzo[*d*]thiazol-2-yl)-4-methoxyphenoxy)-3-(4-chlo ro-1*H*-pyrazol-1-yl)-4-methoxyphenol (3c)

Yellow solid (32 mg, 42 % yield, electrolysis time: 7.5 h, $R_f = 0.20$ (petroleum ether/ethyl acetate = 10 : 1 (v/v)); M.P. 265.6-268.2 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 13.86 (s, 1H), 8.16 (d, J = 1.5 Hz, 1H), 8.12 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.84 (s, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.62 (s, 1H), 7.51 - 7.46 (m, 3H), 7.42 - 7.34 (m, 2H), 7.07 - 7.03 (m, 2H), 6.83 (s, 1H), 3.95 (s, 3H), 3.60 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.3, 162.4, 156.2, 152.3, 149.1, 148.5, 146.8, 145.1, 140.7, 136.5, 133.9, 131.7, 126.9, 126.2, 125.3, 125.2, 123.1, 122.3, 122.0, 121.6, 121.4, 119.9, 119.3, 116.5, 112.7, 112.4, 106.9, 57.1, 56.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₂ClN₄O₄S₂⁺ ([M + H]⁺), 613.0766, found, 613.0775.

2-(Benzo[*d*]thiazol-2-yl)-6-(2-(benzo[*d*]thiazol-2-yl)-4-methoxyphenoxy)-3-(4-iodo -1*H*-pyrazol-1-yl)-4-methoxyphenol (3d)

Yellow solid (38 mg, 43 % yield, electrolysis time: 7.3 h, $R_f = 0.35$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 283.3-285.2 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 13.96 (s, 1H), 8.17 (d, J = 1.8 Hz, 1H), 8.12 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.91 – 7.87 (m, 2H), 7.79 (d, J = 8.1 Hz, 1H), 7.66 (s, 1H), 7.52 - 7.45 (m, 2H), 7.41 - 7.33 (m, 2H), 7.06 – 6.99 (m, 2H), 6.84 (s, 1H), 3.95 (s, 3H), 3.59 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.4, 162.4, 156.2, 152.3, 149.1, 149.0, 148.5, 147.1, 146.7, 145.2, 138.0, 136.5, 133.9, 126.9, 126.2, 125.3, 125.2, 123.1, 122.3, 121.9, 121.6, 121.4, 119.9, 119.3, 116.4, 112.7, 107.0, 57.1, 56.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₂IN₄O₄S₂⁺ ([M + H]⁺), 705.0122, found, 705.0131.

2-(Benzo[*d*]thiazol-2-yl)-6-(2-(benzo[*d*]thiazol-2-yl)-4-methoxyphenoxy)-4-methoxy-3-(1*H*-pyrazol-1-yl)phenol (3e)

Yellow solid (51 mg, 70 % yield, electrolysis time: 7.0 h, $R_f = 0.3$ (petroleum ether/ethyl acetate = 5 : 1 (v/v)); M.P. 280.3-281.2 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 14.01 (s, 1H), 8.17 (d, J = 1.8 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 7.97 - 7.88 (m, 3H), 7.75 (d, J = 7.5 Hz, 1H), 7.60 (d, J = 2.4 Hz, 1H), 7.53 - 7.44 (m, 2H), 7.37 (t, J = 7.8 Hz, 2H), 7.07 - 7.00 (m, 2H), 6.86 (s, 1H), 6.86 (t, J = 2.1 Hz, 1H), 3.96 (s, 3H), 3.59 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.9, 162.5, 156.1, 152.3, 149.3, 149.1, 148.7, 146.3, 145.3, 142.1, 136.5, 134.1, 133.8,

126.8 126.2, 126.0, 125.2, 125.1, 123.1, 122.9, 122.2, 121.6, 121.3, 119.8, 119.3, 116.7, 112.7, 108.1, 107.5, 57.3, 56.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for $C_{31}H_{23}N_4O_4S_2^+$ ([M + H]⁺), 579.1155, found, 579.1170. Crystal structure determination of **3e**: $C_{31}H_{22}N_4O_4S_2$, light yellow block crystal, CCDC number: 2142731.

Datablock: zzc-1

Bond precision: $C-C = 0.0040$ A		A	Wavelength=1.54184		
Cell:	a=10.3322(2)	b=10.7	423(2) c=14.	3583 (2)	
	alpha=97.245	(2) beta=1	00.734(2) gamma	a=116. 704 (2)	
Temperature:	298 К				
	C	alculated		Reported	
Volume	1	358.21(5)		1358. 21 (5)	
Space group	Р	-1		P -1	
Hall group	-1	P 1		-P 1	
Moiety formu	la C	31 H22 N4 O4 S	2	0.33(C31 H22 N4 O4 S2)	
Sum formula	C	31 H22 N4 O4 S	2	C10. 33 H7. 33 N1. 33 O1. 33 SO. 67	
Mr	5	78.65		192.88	
Dx,g cm-3	1.	. 415		1.415	
Ζ	2			6	
Mu (mm-1)	2.	. 157		2.157	
F000	6	00. 0		600. 0	
F000'	6	03. 00			
h,k,lmax	1:	2, 13, 17		12, 13, 17	
Nref	5	506		5313	
Tmin, Tmax				0. 736, 1. 000	
Tmin'					
Correction method= # Reported T Limits: Tmin=0.736 Tmax=1.000 AbsCorr = MULTI-SCAN					
Data complet	eness= 0.965		Theta(max) = 74.179		
R(reflections)= 0.0683(4260)		wR2 531	2(reflections)= 0.2069(13)		
S = 1.049		Npar= 373			

2-(Benzo[*d*]thiazol-2-yl)-6-(2-(benzo[*d*]thiazol-2-yl)-4-methoxyphenoxy)-4-methoxy-3-(4-methyl-1*H*-pyrazol-1-yl)phenol (3f)

Yellow solid (49 mg, 67 % yield, electrolysis time: 7.5 h, $R_f = 0.21$ (petroleum ether/ethyl acetate = 5 : 1 (v/v)); M.P. 272.4-274.2 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 13.96 (s, 1H), 8.18 – 8.17 (m, 1H), 8.13 (d, J = 7.8 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 7.5 Hz, 1H), 7.77 (d, J = 7.5 Hz, 1H), 7.73 (s, 1H), 7.52 - 7.43 (m, 2H), 7.39 - 7.34 (m, 3H), 7.06 - 7.00 (m, 2H), 6.86 (s, 1H), 3.96 (s, 3H), 3.60 (s, 3H), 2.27 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.9, 162.5, 155.9, 152.3, 149.3, 149.1, 148.8, 145.9, 145.2, 142.9, 136.5, 134.2, 132.0, 126.7, 126.1, 125.9, 125.1, 123.3, 123.1, 122.1, 121.6, 121.3, 119.6, 119.2, 118.6, 116.8, 112.6, 107.6, 57.3, 56.1, 9.3. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₂H₂₆N₄O₄S₂⁺ ([M + H]⁺), 593.1312, found, 593.1327.

2-(Benzo[d]thiazol-2-yl)-6-(2-(benzo[d]thiazol-2-yl)-4-methoxyphenoxy)-4-methoxy-3-(4-nitro-1*H*-pyrazol-1-yl)phenol (3g)

Yellow solid (50 mg, 64 % yield, electrolysis time: 6.3 h, $R_f = 0.16$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 286.5-289.6 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 13.80 (s, 1H), 8.42 (d, J = 3.3 Hz, 2H), 8.14 (d, J = 2.7 Hz, 1H), 8.11 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.52 - 7.41 (m, 3H), 7.39 - 7.31 (m, 1H), 7.07 - 6.98 (m, 2H), 6.84 (s, 1H), 3.93 (s, 3H), 3.59 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 163.4, 162.2, 156.3, 152.2, 149.1, 148.6, 147.9, 147.1, 145.0, 137.7, 136.3, 133.8, 133.3, 127.2, 126.5, 126.2, 125.5, 125.2, 123.1, 122.4, 121.5, 121.4, 120.2, 119.2, 115.8, 112.7, 106.3, 56.9, 56.0. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₂N₅O₆S₂⁺ ([M + H]⁺), 624.1006, found, 624.1005.

1-(2-(Benzo[*d*]thiazol-2-yl)-4-(2-(benzo[*d*]thiazol-2-yl)-4-methoxyphenoxy)-3-hyd roxy-6-methoxyphenyl)-1*H*-pyrazole-4-carbonitrile (3h)

Yellow solid (52 mg, 68 % yield, electrolysis time: 7.1 h, $R_f = 0.10$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 267.2-271.4 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 13.86 (s, 1H), 8.15 (s, 2H), 8.12 (d, J = 8.1 Hz, 1H), 8.08 (s, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 7.5 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.54 - 7.46 (m, 2H), 7.45 - 7.40 (m, 1H), 7.38 - 7.33 (m, 1H), 7.07 - 6.99 (m, 2H), 6.80 (s, 1H), 3.95 (s, 3H), 3.58 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 163.6, 162.3, 156.4, 152.3, 149.2, 148.8, 148.0, 147.6, 145.1, 144.1, 139.6, 136.4, 133.4, 127.2, 126.5, 126.3, 125.5, 125.2, 123.2, 122.4, 121.6, 121.4, 120.3, 120.2, 119.3, 116.1, 113.2, 112.8, 106.4, 94.9, 57.0, 56.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₂H₂₂N₅O₄S₂⁺ ([M + H]⁺), 604.1108, found, 604.1120.

Ethyl1-(2-(benzo[d]thiazol-2-yl)-4-(2-(benzo[d]thiazol-2-yl)-4-methoxyphenoxy)-3 -hydroxy-6-methoxyphenyl)-1*H*-pyrazole-4-carboxylate (3i)

Yellow solid (37 mg, 46 % yield, electrolysis time: 6.4 h, $R_f = 0.32$ (petroleum ether/ethyl acetate = 5 : 1 (v/v)); M.P. 265.1-269.8 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 13.93 (s, 1H), 8.29 (s, 1H), 8.16 (d, J = 2.1 Hz, 1H), 8.12 (d, J = 8.4 Hz, 2H), 7.95 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 7.5 Hz, 1H), 7.88 (d, J = 7.5 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.51 - 7.45 (m, 2H), 7.41 - 7.33 (m, 2H), 7.07 - 6.99 (m, 2H), 6.84 (s, 1H), 4.41 - 4.34 (q, J = 9 Hz, 2H), 3.95 (s, 3H), 3.59 (s, 3H), 1.39 (t, J = 9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.2, 162.9, 162.3, 156.2, 152.3, 149.1, 148.9, 148.4, 146.9, 145.1, 143.1, 137.6, 136.4, 133.7, 126.9, 126.2, 126.1, 125.3, 125.1, 123.1, 122.2, 121.6, 121.5, 121.3, 119.9, 117.5, 116.2, 112.6, 106.9, 60.7, 57.1, 56.0, 14.5. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₄H₂₇N₄O₆S₂⁺ ([M + H]⁺), 651.1367, found, 651.1351.

2-(Benzo[*d*]thiazol-2-yl)-6-(2-(benzo[*d*]thiazol-2-yl)-4-methoxyphenoxy)-4-metho xy-3-(3-phenyl-1*H*-pyrazol-1-yl)phenol (3j)

Yellow solid (63 mg, 76 % yield, electrolysis time: 7.5 h, $R_f = 0.29$ (petroleum ether/ethyl acetate = 5 : 1 (v/v)); M.P. 276.4-279.1 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 14.12 (s, 1H), 8.18 (d, J = 2.4 Hz, 1H), 8.14 (d, J = 8.1 Hz, 1H), 7.98 - 7.89 (m, 4H), 7.72 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 2.4 Hz, 1H), 7.53 - 7.48 (m, 1H), 7.47 - 7.43 (m, 2H), 7.40 - 7.32 (m, 4H), 7.09 - 7.01 (m, 2H), 6.95 (d, J = 2.4 Hz, 1H), 6.87 (s, 1H), 3.97 (s, 3H), 3.61 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.9, 162.5, 156.1, 154.0, 152.4, 149.4, 149.1, 148.7, 146.4, 145.4, 136.6, 135.1, 134.2, 133.1, 128.8, 128.3, 126.8, 126.2, 125.9, 125.3, 125.1, 123.1, 122.9, 122.2, 121.7, 121.4, 119.9, 119.3, 116.8, 112.6, 107.6, 105.4, 57.4, 56.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₇H₂₇N₄O₄S₂⁺ ([M + H]⁺), 655.1468, found, 655.1478.

2-(Benzo[*d*]thiazol-2-yl)-6-(2-(benzo[*d*]thiazol-2-yl)-4-methoxyphenoxy)-3-(3,5-di methyl-1*H*-pyrazol-1-yl)-4-methoxyphenol (3k)

Yellow solid (62 mg, 81 % yield, electrolysis time: 6.8 h, $R_f = 0.27$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 252.6-255.3 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 14.16 (s, 1H), 7.18 (t, J = 1.5 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 7.8 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H),

7.52 - 7.43 (m, 2H), 7.39 - 7.34 (m, 2H), 7.02 (d, J = 1.5 Hz, 2H), 6.88 (s, 1H), 6.18 (s, 1H), 3.95 (s, 3H), 3.62 (s, 3H), 2.37 (s, 3H), 2.06 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 165.1, 162.5, 155.9, 152.3, 151.3, 149.2, 149.1, 148.9, 145.8, 145.5, 143.0, 136.5, 134.2, 126.7, 126.1, 125.9, 125.0, 124.8, 123.0, 122.1, 121.6, 121.3, 119.4, 119.1, 117.0, 112.6, 107.7, 107.0, 57.0, 56.0, 14.0, 11.2. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₃H₂₇N₄O₄S₂⁺ ([M + H]⁺), 607.1468, found, 607.1477.

2-(Benzo[d]thiazol-2-yl)-6-(2-(benzo[d]thiazol-2-yl)-4-methoxyphenoxy)-3-(3,5-di phenyl-1*H*-pyrazol-1-yl)-4-methoxyphenol (3l)

Yellow solid (82 mg, 90 % yield, electrolysis time: 7.6 h, $R_f = 0.23$ (petroleum ether/ethyl acetate = 5 : 1 (v/v)); M.P. 255.3-258.8 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 14.25 (s, 1H), 8.16 - 8.12 (m, 2H), 7.98 - 7.91 (m, 4H), 7.75 (d, J = 7.8 Hz, 1H), 7.51 - 7.44 (m, 3H), 7.41 - 7.36 (m, 3H), 7.33 - 7.29 (m, 2H), 7.26 - 7.22 (m, 4H), 7.09 (s, 1H), 7.01 (s, 2H), 6.77 (s, 1H), 3.96 (s, 3H), 3.42 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 165.1, 162.6, 156.0, 154.0, 152.4, 149.2, 149.0, 148.9, 147.8, 146.1, 145.8, 136.6, 134.2, 133.1, 129.9, 128.8, 128.7, 128.6, 128.4, 127.6, 126.9, 126.2, 126.0, 125.1, 124.9, 123.2, 122.7, 122.2, 121.7, 121.5, 119.5, 119.2, 117.1, 112.8, 108.1, 104.9, 57.0, 56.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₄₃H₃₁N₄O₄S₂⁺ ([M + H]⁺), 731.1781, found, 731.1791.

2-(Benzo[d]thiazol-2-yl)-6-(2-(benzo[d]thiazol-2-yl)-4-methoxyphenoxy)-3-(4-bro mo-3-methyl-1*H*-pyrazol-1-yl)-4-methoxyphenol (3m)

Yellow solid (51 mg, 61 % yield, electrolysis time: 6.8 h, $R_f = 0.18$ (petroleum ether/ethyl acetate = 5 : 1 (v/v)); M.P. 271.6-273.8 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 13.98 (s, 1H), 8.17 (s, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.57 (s, 1H), 7.52 - 7.46 (m, 2H), 7.42 - 7.34 (m, 2H), 7.04 - 7.02 (m, 2H), 6.82 (s, 1H), 3.96 (s, 3H), 3.60 (s, 3H), 2.40 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.5, 162.4, 156.0, 152.2, 150.3, 149.1, 149.0, 148.5, 146.4, 145.1, 136.4, 134.0, 133.9, 126.8, 126.1, 126.0, 125.1, 125.0, 123.0, 122.1, 121.5, 121.3, 119.8, 116.5, 112.6, 106.9, 96.2, 56.9, 55.9, 12.3. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₂H₂₄BrN₄O₄S₂⁺ ([M + H]⁺), 671.0417, found, 671.0410.

2-(Benzo[d]thiazol-2-yl)-6-(2-(benzo[d]thiazol-2-yl)-4-methoxyphenoxy)-3-(1*H*-im idazol-1-yl)-4-methoxyphenol (3n)

Yellow solid (48 mg, 66 % yield, electrolysis time: 7.9 h, $R_f = 0.14$ (petroleum ether/ethyl acetate = 1 : 1 (v/v)); M.P. 290.0-292.9 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 14.00 (s, 1H), 8.16 (d, J = 2.4 Hz, 1H), 8.12 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.56 (s, 1H), 7.49 (t, J = 7.2 Hz, 2H), 7.42 - 7.33 (m, 3H), 7.08 - 7.00 (m, 2H), 6.96 (s, 1H), 6.84 (s, 1H), 3.96 (s, 3H), 3.59 (s, 3H). ¹³C NMR (75 MHz, CDCl3, 25 °C, δ): 164.3, 162.3, 156.1, 152.2, 148.9, 148.6, 148.4, 146.2, 145.0, 138.7, 136.4, 133.7, 130.4, 126.9, 126.2, 126.1, 125.2, 125.1, 123.1, 122.1, 121.5, 121.4, 119.8, 119.2, 118.9, 116.2, 112.6, 106.8, 56.8, 55.9. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₃N₄O₄S₂⁺ ([M + H]⁺), 579.1155, found, 579.1157.

2-(Benzo[d]thiazol-2-yl)-6-(2-(benzo[d]thiazol-2-yl)-4-methoxyphenoxy)-4-methoxy-3-(1*H*-1,2,4-triazol-1-yl)phenol (30)

Yellow solid (40 mg, 56 % yield, electrolysis time: 8.0 h, $R_f = 0.45$ (petroleum ether/ethyl acetate = 1 : 1 (v/v)); M.P. 282.4-288.3 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 13.93 (s, 1H), 8.32 (d, J = 9 Hz, 2H), 8.15 (d, J = 2.1 Hz, 1H), 8.11 (d, J = 6 Hz, 1H), 7.96 (d, J = 6.3 Hz, 1H), 7.88 (d, J = 6 Hz, 1H), 7.75 (d, J = 6 Hz, 1H), 7.51 - 7.46 (m, 2H), 7.41 - 7.33 (m, 2H), 7.07 - 7.01 (m, 2H), 6.82 (s, 1H), 3.95 (s, 3H), 3.57 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 163.9, 162.3, 156.3, 153.5, 152.3, 149.1, 148.9, 148.2, 147.6, 147.1, 145.2, 136.4, 133.4, 127.2, 126.4, 126.2, 125.5, 125.2, 123.2, 122.4, 121.6, 121.4, 120.2, 119.3, 118.2, 116.2, 112.8, 106.5, 57.0, 56.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₀H₂₂N₅O₄S₂⁺([M + H]⁺), 580.1108, found, 580.1108.

2-(Benzo[d]thiazol-2-yl)-6-(2-(benzo[d]thiazol-2-yl)-4-methoxyphenoxy)-4-methoxy-3-(1*H*-tetrazol-1-yl)phenol (3p)

isomer 1, Yellow solid (10 mg, 14 % yield, electrolysis time: 6.0 h, $R_f = 0.35$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 297.6-301.2 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 13.75 (s, 1H), 8.93 (s, 1H), 8.17 (d, J = 2.7 Hz, 1H), 8.12 (d, J = 8.1 Hz, 1H), 7.99 (d, J = 8.1 Hz, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 7.5 Hz, 1H), 7.54 - 7.48 (m, 2H), 7.43 - 7.35 (m, 2H), 7.12 - 7.04 (m, 2H), 6.84(s, 1H), 3.98 (s, 3H), 3.59 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 163.2, 162.2, 156.6, 153.9, 152.3, 149.3, 149.1, 148.8, 147.9, 145.1, 136.4, 133.2, 127.3, 126.6, 126.3, 125.8, 125.3, 123.2, 122.5, 121.7, 121.4, 120.6, 119.3, 118.0, 115.8, 112.9, 106.2, 57.2, 56.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for $C_{29}H_{20}N_6O_4S_2^+$ ([M + H]⁺), 581.1060, found, 581.1072. isomer 2, Yellow solid (24 mg, 32 % yield, electrolysis time: 6.0 h, $R_f = 0.25$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 295.4-296.9 °C; NMR Spectroscopy: ¹H NMR (300 MHz, (CD₃)₂SO, 25 °C, δ): 11.7 (s, 1H), 9.8 (s, 1H), (s, 1H), 8.18 - 8.11 (m, 3H), 8.07 - 8.06 (m, 1H), 7.85 - 7.82 (m, 1H), 7.60 - 7.53 (m, 1H), 7.52 - 7.44 (m, 3H), 7.22 (d, J = 1.1 Hz, 2H), 7.18 (s, 1H), 3.91 (s, 3H), 3.63 (s, 3H). ¹³C NMR (75 MHz, (CD₃)₂SO, 25 °C, δ): 161.6, 160.1, 155.7, 151.6, 150.5, 148.3, 147.9, 147.3, 146.6, 142.5, 135.5, 134.3, 126.6, 126.5, 126.0, 125.4, 124.7, 122.7, 122.1, 121.9, 120.4, 119.2, 118.8, 115.7, 112.2, 106.6, 57.2, 55.8. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for $C_{29}H_{21}N_6O_4S_2^+([M + H]^+)$, 581.1060, found, 581.1072.

2-(Benzo[*d*]thiazol-2-yl)-6-(2-(benzo[*d*]thiazol-2-yl)-4-methoxyphenoxy)-4-methoxy-3-(5-methyl-1*H*-tetrazol-1-yl)phenol (3q)

isomer 1, Yellow solid (23 mg, 31 % yield, electrolysis time: 6.3 h, $R_f = 0.32$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 271.1-276.7 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 13.84 (s, 1H), 8.17 (d, J = 2.1 Hz, 1H), 8.13 (d, J = 7.8 Hz, 1H), 7.99 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 7.5 Hz, 1H), 7.76 (d, J = 7.5 Hz, 1H), 7.54 - 7.48 (m, 2H), 7.43 - 7.35 (m, 2H), 7.10 - 7.03 (m, 2H), 6.83 (s, 1H), 3.97 (s, 3H), 3.60 (s, 3H), 2.77 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.2, 163.4, 162.3, 156.5, 152.3, 149.3, 149.1, 148.5, 147.9, 145.0, 136.4, 133.3, 127.3, 126.5, 126.3, 125.7, 125.3, 123.2, 122.5, 121.7, 121.4, 120.5, 119.3, 118.4, 115.9, 112.9, 106.3, 57.1, 56.1, 11.4. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for $C_{30}H_{22}N_6O_4S_2^+$ ([M + H]⁺), 595.1217, found, 595.1230. isomer 2, Yellow solid (19 mg, 26 % yield, electrolysis time: 6.3 h, $R_f = 0.23$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 275.3-278.1 °C; NMR Spectroscopy: ¹H NMR (300 MHz, (CD₃)₂SO, 25 °C, δ): 11.90 (s, 1H), 8.18 - 8.11 (m, 3H), 8.07 (d, J = 3 Hz, 1H), 7.88 - 7.85 (m, 1H), 7.59 - 7.44 (m, 4H), 7.28 - 7.18 (m, 3H), 3.91 (s, 3H), 3.67 (s, 3H), 2.44 (s, 3H). ¹³C NMR (75 MHz, (CD₃)₂SO, 25 °C, δ): 161.7, 160.3, 155.6, 154.8, 151.6, 150.4, 148.3, 148.1, 147.3, 142.9, 135.6, 134.2, 126.7, 126.5, 126.1, 125.4, 124.4, 122.7,

122.6, 122.1, 121.9, 120.2, 119.1, 118.7, 114.7, 112.2, 107.1, 57.1, 55.8, 8.3. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for $C_{30}H_{23}N_6O_4S_2^+$ ([M + H]⁺), 595.1217, found, 595.1228.

2-(Benzo[*d*]thiazol-2-yl)-6-(2-(benzo[*d*]thiazol-2-yl)-4-methoxyphenoxy)-4-methoxy-3-(5-phenyl-2*H*-tetrazol-2-yl)phenol (3r)

Yellow solid (39 mg, 48 % yield, electrolysis time: 7.7 h, $R_f = 0.41$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 272.9-275.7 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 13.85 (s, 1H), 8.33 (d, J = 4.2 Hz, 2H), 8.18 (d, J = 1.5 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 8.00 (d, J = 8.1 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.55 - 7.49 (m, 5H), 7.41 - 7.36 (m, 2H), 7.12 - 7.09 (m, 2H), 6.85 (s, 1H), 3.99 (s, 3H), 3.61 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 166.2, 163.4, 162.3, 156.6, 152.4, 149.3, 149.2, 148.8, 147.9, 145.1, 136.5, 133.3, 139.0, 129.2, 127.4, 127.3, 127.2, 126.5, 126.3, 125.9, 125.3, 123.2, 122.5, 121.7, 121.5, 120.6, 119.4, 118.3, 115.9, 112.9, 106.3, 57.2, 56.2. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₅H₂₅N₆O₄S₂⁺ ([M + H]⁺), 657.1373, found, 657.1383.

2-(Benzo[d]thiazol-2-yl)-6-(2-(benzo[d]thiazol-2-yl)-4-methoxyphenoxy)-3-(5-chlo ro-1*H*-indazol-1-yl)-4-methoxyphenol (3s)

Yellow solid (46 mg, 56 % yield, electrolysis time: 7.8 h, $R_f = 0.31$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 284.8-287.7 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 14.02 (s, 1H), 8.18 (d, J = 2.7 Hz, 1H), 8.14 - 8.12 (m, 2H), 7.96 - 7.89 (m, 2H), 7.79 - 7.75 (m, 2H), 7.62 (d, J = 8.1 Hz, 1H), 7.53 - 7.42 (m, 2H), 7.39 - 7.29 (m, 3H), 7.09 - 7.02 (m, 2H), 6.87 (s, 1H), 3.96 (s, 3H), 3.55 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.3, 162.4, 156.2, 152.3, 149.0, 148.6, 148.5, 147.0, 145.2, 136.5, 133.8, 128.6, 128.4, 127.5, 126.9, 126.2, 126.1, 125.4, 125.2, 123.3, 123.2, 122.5, 122.2, 121.6, 121.4, 120.1, 120.0, 119.5, 119.3, 116.2, 112.7, 106.9, 57.1, 56.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₅H₂₄ClN₄O₄S₂⁺ ([M + H]⁺), 663.0922, found, 663.0932.

2-(Benzo[d]thiazol-2-yl)-6-(2-(benzo[d]thiazol-2-yl)-4-methoxyphenoxy)-4-metho xy-3-(5-methoxy-1*H*-indazol-1-yl)phenol (3t)

Yellow solid (45 mg, 55 % yield, electrolysis time: 6.4 h, $R_f = 0.40$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 280.4-285.8 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 14.06 (s, 1H), 8.18 (d, J = 2.4 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 8.01 (s, 1H), 7.92 (t, J = 9.3 Hz, 2H), 7.72 (d, J = 9.3 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.53 - 7.28 (m, 5H), 7.13 - 7.09 (m, 1H), 7.06 - 7.04 (m, 2H), 6.99 (d, J = 2.1 Hz, 1H), 6.88 (s, 1H), 3.96 (s, 3H), 3.89 (s, 3H), 3.55 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.7, 162.5, 156.1, 155.7, 152.3, 149.0, 148.8, 148.7, 147.3, 146.6, 145.2, 136.5, 134.0, 126.8, 126.5, 126.2, 125.9, 125.2, 125.1, 123.2, 123.1, 122.9, 122.4, 122.2, 121.6, 119.9, 119.3, 116.4, 112.7, 107.2, 96.5, 57.2, 56.1, 55.5. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₆H₂₇N₄O₅S₂⁺ ([M + H]⁺), 659.1417, found, 659.1419.

3-(1*H*-benzo[*d*]imidazol-1-yl)-2-(benzo[*d*]thiazol-2-yl)-6-(2-(benzo[*d*]thiazol-2-yl)-4-methoxyphenoxy)-4-methoxyphenol (3u)

Yellow solid (77 mg, 98 % yield, electrolysis time: 6.6 h, $R_f = 0.19$ (petroleum ether/ethyl acetate = 5 : 1 (v/v)); M.P. 276.8-280.7 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 14.07 (s, 1H), 8.19 (d, J = 3 Hz, 1H), 8.14 (d, J = 8.1 Hz, 1H), 7.97 - 7.89 (m, 4H), 7.57 (d, J = 6 Hz, 1H), 7.52 - 7.49 (m, 1H), 7.46 (d, J = 9 Hz, 1H), 7.42 - 7.33 (m, 3H), 7.29 (d, J = 9 Hz, 1H), 7.24 (d, J = 9 Hz, 1H), 7.13 - 7.03 (m, 3H), 6.91 (s, 1H), 3.96 (s, 3H), 3.49 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.2, 162.4, 156.2, 152.3, 149.2, 148.9, 148.5, 146.6, 145.4, 144.3, 143.9, 136.5, 134.9, 133.4, 127.0, 126.2, 125.3, 125.2, 124.2, 123.2, 123.1, 122.1, 121.6, 121.5, 120.6, 119.9, 119.3, 116.9, 116.8, 112.7, 110.4, 107.1, 56.8, 56.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₅H₂₅N₄O₄S₂⁺ ([M+H]⁺), 629.1312, found, 629.1329.

3-(1*H*-benzo[*d*][1,2,3]triazol-1-yl)-2-(benzo[*d*]thiazol-2-yl)-6-(2-(benzo[*d*]thiazol-2 -yl)-4-methoxyphenoxy)-4-methoxyphenol (3v)

Yellow solid (74 mg, 94 % yield, electrolysis time: 7.8 h, $R_f = 0.49$ (petroleum

ether/ethyl acetate = 3 : 1 (v/v)); M.P. 296.8-299.6 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 14.01 (s, 1H), 8.26 - 8.23 (m, 1H), 8.19 (d, *J* = 3 Hz, 1H), 8.14 (d, *J* = 8.1 Hz, 1H), 7.93 (t, *J* = 7.8 Hz, 2H), 7.57 (d, *J* = 6 Hz, 1H), 7.54 - 7.45 (m, 4H), 7.42 - 7.38 (m, 1H), 7.36 - 7.28 (m, 2H), 7.15 - 7.05 (m, 2H), 6.91 (s, 1H), 3.97 (s, 3H), 3.49 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 163.9, 162.5, 156.3, 152.3, 149.2, 148.9, 148.2, 147.7, 146.2, 145.4, 136.4, 135.4, 128.8, 127.1, 126.3, 125.4, 125.3, 124.6, 123.1, 122.2, 121.6, 121.3, 120.3, 120.2, 119.3, 116.8, 116.7, 112.8, 110.0, 106.9, 56.9, 56.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₄H₂₄N₅O₄S₂⁺ ([M + H]⁺), 630.1264, found, 630.1275.

3-(4-Bromo-1*H*-pyrazol-1-yl)-2-(5-chlorobenzo[*d*]thiazol-2-yl)-6-(2-(5-chlorobenz o[*d*]thiazol-2-yl)-4-methoxyphenoxy)-4-methoxyphenol (3w)

Yellow solid (57 mg, 63 % yield, electrolysis time: 7.8 h, $R_f = 0.11$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 285.9-289.4 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 13.61 (s, 1H), 8.13 - 8.12 (m, 1H), 7.92 (d, J = 1.8 Hz, 1H), 7.85 (s, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.7 Hz, 1H), 7.64 (s, 1H), 7.38 - 7.30 (m, 2H), 7.02 (s, 2H), 6.85 (s, 1H), 3.95 (s, 3H), 3.61 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 166.0, 164.0, 156.1, 153.1, 149.9, 149.1, 148.4, 146.6, 145.1, 142.8, 134.6, 133.7, 133.0, 132.1, 126.7, 125.5, 124.8, 122.8, 122.2, 122.1, 121.9, 121.8, 119.7, 119.5, 116.1, 112.6, 107.3, 95.6, 57.1, 55.9. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₀BrCl₂N₄O₄S₂⁺ ([M + H]⁺), 724.9481, found, 724.9474.

2-(Benzo[*d*]oxazol-2-yl)-6-(2-(benzo[*d*]oxazol-2-yl)-4-methoxyphenoxy)-3-(4-bro mo-1*H*-pyrazol-1-yl)-4-methoxyphenol (3x)

Light yellow solid (50 mg, 64 % yield, electrolysis time: 7.3 h, $R_f = 0.15$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 270.2-272.1 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 12.18 (s, 1H), 7.82 (d, J = 2.7 Hz, 1H), 7.79 - 7.76 (m, 1H), 7.70 - 7.66 (m, 3H), 7.55 - 7.52 (m, 1H), 7.36 - 7.28 (m, 5H), 7.12 - 7.04 (m, 2H), 6.88 (s, 1H), 3.92 (s, 3H), 3.64 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 160.8, 160.5, 156.0, 150.8, 149.2, 148.8, 147.7, 145.1, 141.7, 140.9, 138.4, 132.9, 126.1, 125.4, 125.3, 124.6, 121.5, 121.4, 120.3, 119.6, 119.4, 119.3, 114.6, 110.9, 110.8, 110.6, 107.8, 93.8, 57.1, 56.0. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for

 $C_{31}H_{22}BrN_4O_6^+$ ([M + H]⁺), 625.0717, found, 625.0710.

3-(4-Bromo-1*H*-pyrazol-1-yl)-4-methoxy-6-(4-methoxy-2-(5-methylbenzo[*d*]oxazo l-2-yl)phenoxy)-2-(5-methylbenzo[*d*]oxazol-2-yl)phenol (3y)

Light yellow solid (47 mg, 58 % yield, electrolysis time: 7.4 h, $R_f = 0.19$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 294.4-295.8 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 12.26 (s, 1H), 7.80 (d, J = 2.7 Hz, 1H), 7.69 (s, 1H), 7.63 (s, 1H), 7.55 (s, 1H), 7.48 (s, 1H), 7.40 (d, J = 8.1 Hz, 1H), 7.18 - 7.04 (m, 5H), 6.84 (s, 1H), 3.92 (s, 3H), 3.63 (s, 3H), 2.45 (s, 6H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 160.9, 160.6, 156.1, 149.1, 148.8, 148.6, 147.8, 147.5, 145.0, 141.9, 141.0, 138.6, 135.4, 134.4, 133.0, 127.3, 126.6, 121.5, 121.3, 120.1, 119.5, 119.3, 114.5, 110.7, 110.3, 107.4, 93.8, 57.2, 56.1, 21.6. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₃H₂₆BrN₄O₆⁺ ([M + H]⁺), 653.1030, found, 653.1034.

4-Methoxy-6-(4-methoxy-2-(5-methylbenzo[*d*]oxazol-2-yl)phenoxy)-2-(5-methylbenzo[*d*]oxazol-2-yl)-3-(1*H*-pyrazol-1-yl)phenol (3z)

Light yellow solid (40 mg, 55 % yield, electrolysis time: 6.9 h, $R_f = 0.21$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 274.4-276.1 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 12.31 (s, 1H), 7.81 (d, J = 2.7 Hz, 1H), 7.75 (d, J = 1.5 Hz, 1H), 7.60 (d, J = 2.1 Hz, 1H), 7.56 (s, 1H), 7.46 (s, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.13 - 7.03 (m, 5H), 6.88 (s, 1H), 6.51 (t, J = 2.1 Hz, 1H), 3.92 (s, 3H), 3.62 (s, 3H), 2.44 (d, J = 3.5 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 160.9, 160.8, 155.8, 149.0, 148.8, 148.8, 147.4, 147.1, 145.0, 141.8, 140.4, 138.6, 135.1, 134.3, 132.7, 127.0, 126.4, 122.3, 121.2, 120.1, 119.4, 119.3, 119.1, 114.4, 110.9, 110.2, 110.1, 107.9, 106.1, 57.2, 55.9, 21.5, 21.4. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₃H₂₇N₄O₆⁺ ([M + H]⁺), 575.1925, found, 575.1935.

2-(5-Fluorobenzo[*d*]oxazol-2-yl)-6-(2-(5-fluorobenzo[*d*]oxazol-2-yl)-4-methoxyph enoxy)-4-methoxy-3-(1*H*-pyrazol-1-yl)phenol (3aa)

Light yellow solid (35 mg, 49 % yield, electrolysis time: 7.0 h, $R_f = 0.23$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 299.1-301.5 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 11.95 (s, 1H), 7.79 (s, 1H), 7.74 (d, J = 1.5 Hz, 1H), 7.63 (d, J = 2.1 Hz, 1H), 7.49 - 7.44 (m, 2H), 7.37 - 7.34 (m, 1H), 7.19 - 7.14 (m, 1H), 7.09 - 7.00 (m, 4H), 6.92 (s, 1H), 6.52 (t, J = 2.1 Hz, 1H), 3.92 (s, 3H), 3.64 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 162.7, 162.5, 161.9 (d, J = 18.4 Hz, 1C), 158.7 (d, J = 16.5 Hz, 1C), 155.9, 149.1, 148.9, 147.2, 147.0, 145.6, 145.2, 142.5 (d, J = 13.3 Hz, 1C), 140.6, 139.3 (d, J = 13.4 Hz, 1C), 132.9, 122.6, 121.1, 119.9, 118.9, 114.6, 113.9 - 112.9 (m, 2C), 111.4 - 111.2 (m, 1C), 110.7, 108.6, 106.8 - 105.6 (m, 2C), 106.4, 57.3, 56.1. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C, δ): -116.3, -117.7. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₁F₂N₄O₆⁺ ([M + H]⁺), 583.1424, found, 583.1434.

2-(5-Chlorobenzo[*d*]oxazol-2-yl)-6-(2-(5-chlorobenzo[*d*]oxazol-2-yl)-4-methoxyph enoxy)-4-methoxy-3-(1*H*-pyrazol-1-yl)phenol (3ab)

Light yellow solid (42 mg, 54 % yield, electrolysis time: 8.0 h, $R_f = 0.12$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 292.5-294.0 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 11.89 (s, 1H), 7.80 (t, J = 1.5 Hz, 1H), 7.76 (d, J = 2.1 Hz, 1H), 7.74 (d, J = 1.5 Hz, 1H), 7.67 (d, J = 2.1 Hz, 1H), 7.62 (d, J = 2.1 Hz, 1H), 7.47 (d, J = 8.7 Hz, 1H), 7.32 - 7.27 (m, 2H), 7.16 (d, J = 8.7 Hz, 1H), 7.09 (d, J = 1.8 Hz, 2H), 6.92 (s, 1H), 6.52 (t, J = 2.1 Hz, 1H), 3.93 (s, 3H), 3.65 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 162.2, 162.1, 156.0, 149.4, 149.1, 148.9, 147.9, 146.9, 145.2, 142.9, 140.6, 139.7, 132.9, 130.8, 130.1, 126.3, 125.7, 121.1, 120.2, 119.9, 119.3, 118.7, 114.7, 111.7, 110.7, 108.7, 106.4, 57.3, 56.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₁Cl₂N₄O₆⁺ ([M + H]⁺), 615.0833, found, 615.0831.

2-(Benzo[d]thiazol-2-yl)-6-(2-(benzo[d]thiazol-2-yl)-4-(prop-2-yn-1-yloxy)phenox y)-4-(prop-2-yn-1-yloxy)-3-(1*H*-pyrazol-1-yl)phenol (3ac)

Light yellow solid (27 mg, 35 % yield, electrolysis time: 7.4 h, $R_f = 0.23$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 283.9-287.8 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 14.17 (s, 1H), 7.25 (d, J = 2.4 Hz, 1H), 8.12 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.92 - 7.88 (m, 2H), 7.76 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 2.4 Hz, 1H), 7.52 - 7.45 (m, 2H), 7.41 - 7.34 (m, 2H), 7.10 - 7.05 (m, 3H), 6.64 (t, J = 2.1 Hz, 1H), 4.84 (d, J = 2.4 Hz, 2H), 4.40 (d, J = 2.4 Hz, 2H), 2.57 (t, J = 2.4 Hz, 1H), 2.37 (t, J = 2.4 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.8, 162.2, 154.1, 152.3, 149.2, 149.1, 146.9, 146.6, 146.0, 142.2, 136.5, 134.1, 133.8, 126.9, 126.2, 126.1, 125.5, 125.2, 124.6, 123.2, 122.2, 121.6, 121.3, 120.1, 119.9, 116.6, 114.4, 110.8, 108.2, 78.5, 77.9, 77.4, 75.9, 58.6, 56.8. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₅H₂₃N₄O₄S₂⁺ ([M + H]⁺), 627.1155, found, 627.1154.

3-(1H-Benzo[*d*]imidazol-1-yl)-2-(benzo[*d*]thiazol-2-yl)-6-(2-(benzo[*d*]thiazol-2-yl) -4-((*tert*-butyldimethylsilyl)oxy)phenoxy)-4-((*tert*-butyldimethylsilyl)oxy)phenol (3ad)

Yellow solid (42 mg, 41 % yield, electrolysis time: 7.7 h, $R_f = 0.17$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 287.4-289.5 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 14.18 (s, 1H), 8.14 - 8.12 (m, 2H), 7.98 - 7.89 (m, 4H), 7.59 (d, J = 7.8 Hz, 1H), 7.52 - 7.43 (m, 2H), 7.39 - 7.28 (m, 3H), 7.22 (d, J = 7.2 Hz, 1H), 7.11 - 7.07 (m, 2H), 7.02 - 6.98 (m, 1H), 6.70 (s, 1H), 1.05 (d, J = 3 Hz, 9H), 0.43 (s, 9H), 0.29 (s, 6H), -0.13 (s, 3H), -0.3 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.6, 162.1, 152.6, 152.5, 149.1, 148.2, 147.2, 145.7, 145.2, 144.1, 144.0, 136.5, 134.9, 133.4, 127.0, 126.3, 126.2, 126.1, 125.2, 124.1, 123.5, 123.3, 123.1, 122.1, 121.6, 121.5, 120.8, 120.7, 120.6, 118.5, 116.4, 112.2, 110.6, 25.9, 24.9, 18.4, 17.5, -4.2, -4.4, -4.8. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₄₅H₄₉N₄O₄S₂Si₂⁺ ([M + H]⁺), 829.2728, found, 829.2739.

3-(1*H*-benzo[*d*]imidazol-1-yl)-2-(benzo[*d*]thiazol-2-yl)-6-(2-(benzo[*d*]thiazol-2-yl)-4-(methylthio)phenoxy)-4-(methylthio)phenol (3ae)

Yellow solid (39 mg, 47 % yield, electrolysis time: 7.2 h, $R_f = 0.27$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 279.3-283.0 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 14.59 (s, 1H), 8.15 (d, J = 8.1 Hz, 1H), 8.00 (d, J = 8.0 Hz, 2H), 7.91 (d, J = 8.1 Hz, 2H), 7.59 (d, J = 7.9 Hz, 1H), 7.54 - 7.45 (m, 2H), 7.43 - 7.38 (m, 2H), 7.37 - 7.35 (m, 1H), 7.32 - 7.28 (m, 1H), 2.61 (s, 3H), 2.19 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 164.1, 162.0, 152.9, 152.4, 150.3, 148.7, 145.8, 143.9, 143.3, 136.4, 134.1, 133.2, 130.7, 130.4, 128.8, 128.2, 127.2, 126.4, 126.3, 125.2, 124.6, 123.5, 123.3, 122.1, 121.5, 121.4, 120.9, 117.9, 117.8, 110.3, 16.9, 16.6. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₅H₂₅N₄O₂S₄⁺ ([M + H]⁺), 661.0855, found, 661.0855.

2-(4-Bromo-1*H*-pyrazol-1-yl)-4-methoxy-6-(1*H*-pyrazol-1-yl)phenol (3af)

White solid (14 mg, 21 % yield, electrolysis time: 5.0 h, $R_f = 0.27$ (petroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 280.5-284.5 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 11.74 (s, 1H), 8.38 (d, J = 0.3 Hz, 1H), 8.08 (d, J = 2.7 Hz, 1H), 7.76 (d, J = 1.8 Hz, 1H), 7.68 (s, 1H), 7.26 (d, J = 2.7 Hz, 1H), 7.02 (d, J = 3 Hz, 1H), 6.54 (t, J = 2.4 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 152.3, 140.5, 139.5, 135.4, 131.3, 129.2, 128.3, 126.8, 107.2, 105.7, 104.5, 94.8, 56.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₃H₁₂BrN₄O₂⁺ ([M + H]⁺), 335.0138, found, 335.0138.

2-(Benzo[d]thiazol-2-yl)-6-(2-(benzo[d]thiazol-2-yl)-4-methoxyphenoxy)-4-methoxyphenol (4)

Yellow solid (29 mg, 45 % yield, electrolysis time: 2.5 h, $R_f = 0.45$ (petroleum ether/ethyl acetate = 10 : 1 (v/v)); M.P. 277.8-279.9 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 12.50 (s, 1H), 8.16 - 8.15 (m, 1H), 8.12 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.92 - 7.86 (m, 2H), 7.53 - 7.48 (m, 2H), 7.46 - 7.42 (m, 1H), 7.39 - 7.32 (m, 1H), 7.04 - 6.97 (m, 3H), 6.72 (d, J = 2.7 Hz, 1H), 3.95 (s, 3H), 3.78 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 168.7, 162.7, 155.9, 152.3, 151.9, 148.9, 145.8, 144.5, 136.5, 132.9, 127.0, 126.1, 125.9, 125.2, 125.0, 123.1, 122.4,

121.7, 121.6, 119.9, 119.3, 117.8, 112.5, 110.3, 107.0, 56.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for $C_{28}H_{21}N_2O_4S_2^+$ ([M + H]⁺), 513.0937, found, 513.0946.

12. NMR Spectrum

-20 -40 -60 -80 -100 -120 -140 -160 -180 -200 ppm

210 200 190 180 170 160 150 140 130 120 110 100 90

80 70

60 50 40 30 20

ppm

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

S81

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20

ppm

