Supporting Information

Electrooxidative α-hydroxymethylation of ketones with

dimethylformamide as the carbon source

Jin-Ming Zheng, Yi-Fei Li, Yi-Xiang Pan, Xiao-Dong Hu, Xiao-Xia Ye and Ren-Hao Li* School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China. E-mail: lirh@wmu.edu.cn.

Table of Contents

1. General Information	2
2. Experimental Section	3
2.1 General procedure for the synthesis of 2	3
2.2 General procedure for the synthesis of ketones 1c, 1d, 1e, 10	3
2.3 General procedure for the synthesis of ketones 1r, 1s, 1t	4
2.4 Optimization of reaction conditions	4
3. ON/OFF experiment	5
4. Cyclic voltammetry studies	6
5. Control experiments	7
6. Transformations of 2a.	8
7. Analytical data for products	
8. NMR spectra for products	
9. References	57

1. General Information

Chemicals were received from commercial sources without further purification or prepared by literature methods. Melting points are uncorrected and recorded on Digital Melting Point Apparatus WRS-1B. ¹H NMR and ¹³C NMR spectra were measured on a 400 MHz Bruker spectrometer, using CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, m = multiplet. Chemical shifts were reported in units (ppm) by assigning the residual protonated solvent of CDCl₃ resonance in the ¹H spectrum as 7.26 ppm and CDCl₃ resonance in the ¹³C spectrum as 77.0 ppm. All coupling constants (*J* values) were reported in Hertz (Hz). Chemical shifts of common trace ¹H NMR impurities (ppm): H₂O: 1.56, CHCl₃: 7.26. High-resolution mass spectrometry (HRMS) was performed with a TOF MS instrument with an ESI source. Column chromatography was performed using EM silica gel 60 (300–400 mesh). Reactions were monitored by thin layer chromatography (TLC). Visualization was achieved under a UV lamp (254 nm and 365 nm). Electrolysis experiments were performed using a MESTEK power supply (DP3005B). Cyclic voltammograms were obtained on a CHI 760E potentiostat.

2. Experimental Section

2.1 General procedure for the synthesis of 2

$$\begin{array}{c} & & & \\ & &$$

An oven-dried 25 mL three-necked round-bottomed flask with a magnetic stir bar was charged with substrate (0.1 mmol), ${}^{n}Bu_{4}NBF_{4}$ (1.0 mmol, 0.2 M), NaOH (0.1 mmol, 1.0 equiv.). The flask was equipped with a platinum plate anode (10 mm x 10 mm x 0.1 mm) and a platinum plate cathode (10 mm x 10 mm x 0.1 mm). The electrolysis was carried out at r.t. in DMF (5.0 mL) using a constant current of 10 mA for 4 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes to give the desired products.

2.2 General procedure for the synthesis of ketones 1c, 1d, 1e, 1o

A flask was evacuated and filled with nitrogen. After ether (10 mL) and aldehyde (5.0 mmol) were added, the mixture was kept at 0 °C in the ice bath. EtMgBr (6 mmol, 1.2 equiv.) was added dropwise. After completion of the EtMgBr addition, the mixture was further stirred at 0 °C until complete consumption of the substrate (monitored by TLC), and water (30 mL) was added. After usual aqueous workup, the crude products were subjected to column chromatography on silica gel (hexane/EtOAc) to give pure 1-arylpropanol.

Pyridinium chlorochromate (7.5 mmol, 1.5 equiv.) was added to a solution of alcohol (5 mmol) in DCM (10 mL) and the resulting mixture was stirred under nitrogen at r.t. for 1-2 hours. The reaction was then diluted with ether (100 mL) and filtered though a silica pad. The filtrate was concentrated under vacuum to give the crude product. The crude product was subjected to column chromatography on silica gel (hexane/EtOAc) to give pure ketone **1c**, **1d**, **1e**, **1o**.

2.3 General procedure for the synthesis of ketones 1r, 1s, 1t

After substituted benzene (2.5 mmol), AlCl₃ (5.6 mmol) and CS₂ (10 mL) were added, the mixture is heated on a steam bath until gentle refluxing starts, and then butyric anhydride (2.0 mmol) is added slowly. The time of addition is about one hour. Gentle refluxing should be continued throughout the time of addition of the anhydride and for one hour afterward. Then, the mixture was concentrated under vacuum to give the crude product. The crude product was subjected to column chromatography on silica gel (hexane/EtOAc) to give pure ketone **1r**, **1s**, **1t**.

2.4 Optimization of reaction conditions

Table S1. the 10 equivalents of DMF in different solvents

^{*a*}Standard conditions: **1a** (0.1 mmol), Pt(+)|Pt(-), 10 mA, NaOH (1.0 equiv.), ^{*n*}Bu₄NBF₄ (0.2 M), DMF (10 equiv.) and solvent (5 mL), in an undivided cell, rt, 4 h, in air. ^{*b*}Yield of the isolated product **2a**.

3. ON/OFF experiment

Figure S1. On/Off experiment. Reaction conditions: 1 (0.10 mmol), Pt(+)|Pt(-), 10 mA, NaOH (1.0 equiv.), *n*Bu₄NBF₄ (0.2 M), and DMF (5 mL), in an undivided cell, rt, in air, GC yields (Internal standard: Dodecane).

4. Cyclic voltammetry studies

Figure S2. The cyclic voltammograms were recorded in an electrolyte of "Bu₄NBF₄ (0.1 M) in DMF using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a SCE reference electrode. The scan rate is 100 mV/s. (I) DMF, "Bu₄NBF₄ (0.2 M), and 100 mV·s⁻¹ (II) DMF, "Bu₄NBF₄ (0.2 M), NaOH (0.04 M), and 100 mV·s⁻¹(III) DMF, "Bu₄NBF₄ (0.2 M), NaOH (0.02 M), and 100 mV·s⁻¹ (IV) DMF, "Bu₄NBF₄ (0.2 M), NaOH (0.01 M), and 100 mV·s⁻¹ As the Figure S2 shown, In the presence of "Bu₄NBF₄ electrolyte, DMF has two oxidation peaks at -0.69 V and 0.33 V, and has one reduction peak at -0.98 V. After the addition of NaOH, the intensity of the second anode peak was more significantly increased, indicating that NaOH remotes the stepwise oxidation of DMF to form the iminium cation.

Figure S3: CV studies: (I) DMF, "Bu₄NBF₄ (0.2 M), NaOH (0.04 M), and 100 mV·s⁻¹ (II) DMA, "Bu₄NBF₄ (0.2 M), NaOH (0.04 M), and 100 mV·s⁻¹

In the presence of "Bu₄NBF₄ electrolyte, DMF has two oxidation peaks at -0.69 V and 0.33 V, and DMA has two oxidation peaks at -0.80 V and 0.44 V. The intensity of DMA first anode peak is weaker than DMF's, which possible led DMA to afford a lower yield than DMF.

5. Control experiments

An oven-dried 25 mL three-necked round-bottomed flask with a magnetic stir bar was charged with **1a** (0.1 mmol), "Bu₄NBF₄ (1.0 mmol, 0.2 M), NaOH (0.1 mmol, 1.0 equiv.). The flask was equipped with a platinum plate anode (10 mm x 10 mm x 0.1 mm) and a platinum plate cathode (10 mm x 10 mm x 0.1 mm). The electrolysis was carried out at r.t. in DMF (2.5 mL) and d_6 -DMF (2.5 mL) using a constant current of 10 mA for 4 hours. The reaction mixture was extracted with EtOAc (15 mL × 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes to give the desired products **2a** and *d*-**2a**.

An oven-dried 25 mL three-necked round-bottomed flask with a magnetic stir bar was charged

with **4** (0.1 mmol), "Bu₄NBF₄ (1.0 mmol, 0.2 M), NaOH (0.1 mmol, 1.0 equiv.). The flask was equipped with a platinum plate anode (10 mm x 10 mm x 0.1 mm) and a platinum plate cathode (10 mm x 10 mm x 0.1 mm). The electrolysis was carried out at r.t. in DMF (5.0 mL) using a constant current of 10 mA. The reaction mixture was extracted with EtOAc (15 mL \times 3). The collected organic layers were dried, evaporated and chromatographed through silica gel eluting with ethyl acetate/hexanes to give the desired product **2a**.

An oven-dried 25 mL three-necked round-bottomed flask with a magnetic stir bar was charged with 1a (0.1 mmol), "Bu₄NBF₄ (1.0 mmol, 0.2 M), NaOH (0.1 mmol, 1.0 equiv.), TEMPO (2.0 equiv.). The flask was equipped with a platinum plate anode (10 mm x 10 mm x 0.1 mm) and a platinum plate cathode (10 mm x 10 mm x 0.1 mm). The electrolysis was carried out at r.t. in DMF (5.0 mL) using a constant current of 10 mA for 4 hours. The product **2a** was not detected and the TEMPO-DMF adduct was detected by HRMS analysis

Figure S4. HRMS analysis of TEMPO-DMF adduct

6. Transformations of 2a.

Prepared following a literature procedure.¹ To a stirred suspension of **2a** (0.2 mmol) and cerium(III) chloride heptahydrate (0.11 g, 0.3 mmol) in acetonitrile (2 mL) was added sodium iodide (0.04 g, 0.3 mmol), and the resulting mixture was stirred for 10 h at reflux. The reaction mixture was diluted with ether and treated with 0.5 N HCl (4 mL). The organic layer was separated, and the aqueous layer was extracted with ether (3*25 mL). The combined organic layers were washed twice with an aqueous saturated NaHCO₃ solution and a saturated NaCl solution and dried over anhydrous Na₂SO₄. The extracts were then concetrated under reduced pressure, and the residue was chromatographed on a silica gel column (hexanes-ethyl acetate) to give enone **4**.

To a stirred solution of **2a** (0.2 mmol) in dichloromethane (2 mL) were added triethylamine (0.4 mmol) and acetylchloride (0.3 mmol, 1.5 equiv.) dropwise under 0 °C. Then the mixture was stirred at room temperature for 1 h, quenched with H₂O and extracted with CH₂Cl₂ (3×15 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, concentrated under reduced pressure and purified by column chromatography (petroleum ether/ethyl acetate) to afford compound **5**.

Prepared following a literature procedure.² A suspension of **2a** (0.2 mmol) in concentrated hydrochloric acid (0.5 mL) is stirred at 90 °C for 0.5 hours. After cooling, the reaction mixture was diluted with ether. The organic layer was separated, and the aqueous layer was extracted with ether (3*25 mL). The combined organic layers were washed twice with an aqueous saturated NaHCO₃ solution and a saturated NaCl solution and dried over anhydrous Na₂SO₄. The extracts were then concetrated under reduced pressure, and the residue was chromatographed on a silica gel column (hexanes-ethyl acetate) to give product **6**.

7. Analytical data for products

3-hydroxy-2-methyl-1-(p-tolyl)propan-1-one (2a)³

Yellow liquid (15.2 mg, 85%). ¹H NMR (400MHz, CDCl₃) δ 7.86 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 3.92 (dd, J_1 = 10.8 Hz, J_2 = 6.8 Hz, 1H), 3.78 (dd, J_1 = 11.2 Hz, J_2 = 4.0 Hz, 1H), 3.69-3.62 (m, 1H), 2.65 (brs, 1H), 2.41 (s, 3H), 1.22 (d, J = 7.6 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 204.1, 144.2, 133.5, 129.3, 128.5, 64.6, 42.7, 21.6, 14.6.

3-hydroxy-2-methyl-1-phenylpropan-1-one (2b)³

Yellow liquid (11.7 mg, 71%). ¹H NMR (400MHz, CDCl₃) δ 7.97 (d, J = 7.6 Hz, 2H), 7.56-7.60 (m, 1H), 7.46-7.50 (m, 2H), 3.94-3.92 (m, 1H), 3.82-3.79 (m, 1H), 3.71-3.63 (m, 1H), 2.38 (brs, 1H), 1.24 (d, J = 7.2 Hz, 2H). ¹³C NMR (100MHz, CDCl₃) δ 204.4, 136.1, 133.3, 128.7, 128.4, 64.5, 42.9, 14.6.

1-(4-ethylphenyl)-3-hydroxy-2-methylpropan-1-one (2c)³

Red liquid (13.9 mg, 72%). ¹H NMR (400MHz, CDCl₃) δ 7.90 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 3.92 (dd, J_1 = 8.8 Hz, J_2 = 7.6 Hz, 1H), 3.82-3.79 (m, 1H), 3.69-3.63 (m, 1H), 2.72 (q, J = 7.6 Hz, 2H), 2.41 (brs, 1H), 1.29-1.23 (m, 6H). ¹³C NMR (100MHz, CDCl₃) δ 204.1, 150.4, 133.8, 128.7, 128.2, 64.6, 42.7, 28.9, 15.1, 14.7.

3-hydroxy-1-(4-isopropylphenyl)-2-methylpropan-1-one (2d)

Red solid (13.4 mg, 65%), m.p. 52-55 °C. ¹H NMR (400MHz, CDCl₃) δ 7.91(d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 3.93 (dd, J_1 = 10.8 Hz, J_2 = 6.8 Hz, 1H), 3.78 (dd, J_1 = 10.8 Hz, J_2 = 4.0 Hz, 1H), 3.68-3.63 (m, 1H), 3.01-2.94 (m, 1H), 2.43 (brs, 1H), 1.28 (d, J = 7.2 Hz, 6H), 1.24 (d, J = 7.6 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 204.1, 154.9, 133.8, 128.7, 126.8, 64.6, 42.7, 34.2, 23.6, 14.7. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₃H₁₉O₂ 207.1380; Found 207.1383.

1-(4-(tert-butyl)phenyl)-3-hydroxy-2-methylpropan-1-one (2e)

Red liquid (17.8 mg, 81%). ¹H NMR (400MHz, CDCl₃) δ 7.91(d, J = 6.8 Hz, 2H), 7.49 (d, J = 7.2 Hz, 2H), 3.92-3.90 (m, 1H), 3.81-3.78 (m, 1H), 3.68-3.63 (m, 1H), 2.41 (brs, 1H), 1.35 (s, 9H), 1.24 (d, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 204.1, 157.2, 133.4, 128.4, 125.7, 64.6, 42.7, 35.1, 31.0, 14.7. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₄H₂₁O₂ 221.1537; Found 221.1540.

3-hydroxy-2-methyl-1-(m-tolyl)propan-1-one (2f)³

Yellow liquid (13.9 mg, 78%). ¹H NMR (400MHz, CDCl₃) δ 7.77-7.75 (m, 2H), 7.41-7.35 (m, 2H), 3.92 (dd, $J_1 = 10.8$ Hz, $J_2 = 7.2$ Hz, 1H), 3.81 (dd, $J_1 = 10.8$ Hz, $J_2 = 3.6$ Hz, 1H), 3.69-3.64 (m, 1H), 2.42 (s, 3H), 2.37 (brs, 1H), 1.24 (d, J = 7.6 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 204.7, 138.5, 136.1, 134.1, 128.9, 128.6, 125.6, 64.6, 42.9, 21.4, 14.6.

3-hydroxy-1-(2-hydroxyphenyl)-2-methylpropan-1-one (2g)⁴

Yellow liquid (8.8 mg, 49%). ¹H NMR (400MHz, CDCl₃) δ 12.3 (s, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.51-7.47 (m, 1H), 7.00 (d, J = 8.0 Hz, 1H) 6.94-6.90 (m, 1H), 3.99-3.94 (m, 1H), 3.82-3.79 (m, 1H), 3.75-3.71 (m, 1H), 2.17 (s, 1H), 1.29 (d, J = 4.0 Hz, 3H). ³C NMR (100MHz, CDCl₃) δ 210.0, 163.2, 136.7, 130.1, 119.0, 118.8, 118.6, 64.4, 42.6, 15.0.

3-hydroxy-1-(4-methoxyphenyl)-2-methylpropan-1-one (2h)³

Yellow liquid (17.9 mg, 92%). ¹H NMR (400MHz, CDCl₃) δ 7.96 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 3.92 (dd, J_1 = 11.2 Hz, J_2 = 7.2 Hz, 1H), 3.88 (s, 3H), 3.80 (dd, J_1 = 11.2 Hz, J_2 = 4.0 Hz, 1H), 3.65-3.59 (m, 1H), 2.50 (brs, 1H), 1.24 (d, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 203.0, 163.7, 130.8, 129.0, 113.9, 64.7, 55.5, 42.4, 14.8.

N-(4-(3-hydroxy-2-methylpropanoyl)phenyl)-4-methyl-N-tosylbenzenesulfonamide (2i)

Yellow liquid (13.1 mg, 27%).¹H NMR (400MHz, CDCl₃) δ 7.95-7.93 (m, 2H), 7.82-7.79 (m, 4H), 7.36-7.34 (m, 4H), 7.16-7.14 (m, 2H), 3.95 (dd, J_1 = 10.8 Hz, J_2 = 7.2 Hz, 1H), 3.79 (dd, J_1 = 11.2 Hz, J_2 = 4.0 Hz, 1H), 3.67-3.62 (m, 1H), 2.48 (s, 6H), 1.24 (d, J = 7.6 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 203.3, 145.4, 138.7, 137.2, 136.4, 132.0, 129.8, 129.2, 128.6, 64.6, 43.3, 21.8, 14.5. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₄H₂₆NO₆S₂ 488.1197; Found 488.1198.

1-(4-fluorophenyl)-3-hydroxy-2-methylpropan-1-one (2j)³

Yellow liquid (9.7 mg, 53%). ¹H NMR (400MHz, CDCl₃) δ 8.02-7.98 (m, 2H), 7.17-7.13 (m, 2H), 3.93 (dd, J_1 = 12.0 Hz, J_2 = 8.0 Hz, 1H), 3.79 (dd, J_1 = 12.0 Hz, J_2 = 4.0 Hz, 1H), 3.68-3.53 (m, 1H), 2.47 (s, 1H), 1.23 (d, J = 8.0 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 202.7, 165.9 (d, J = 263 Hz), 132.5, 131.1 (d, J = 10.0 Hz), 115.8 (d, J = 20.0 Hz), 64.5, 42.8, 14.5. ¹⁹F NMR (300 MHz, CDCl₃) δ -104.7.

1-(4-chlorophenyl)-3-hydroxy-2-methylpropan-1-one (2k)³

Red liquid (13.7 mg, 69%). ¹H NMR (400MHz, CDCl₃) δ 7.91 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 3.93 (dd, J_1 = 10.4 Hz, J_2 = 8.0 Hz, 1H), 3.80 (dd, J_1 = 10.8 Hz, J_2 = 3.6 Hz, 1H), 3.66-3.58 (m, 1H), 2.29 (brs, 1H), 1.22 (d, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 203.1, 139.8, 134.4, 129.8, 129.0, 64.5, 43.0, 14.5.

1-(3-chlorophenyl)-3-hydroxy-2-methylpropan-1-one (2l)³

Red liquid (12.5 mg, 63%). ¹H NMR (400MHz, CDCl₃) δ 7.93 (s, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.45-7.41 (m, 1H), 3.94-3.92 (m, 1H), 3.82-3.79 (m, 1H), 3.66-3.58 (m, 1H), 2.20 (s, 1H), 1.23 (d, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 203.0, 137.7, 135.1, 133.2, 130.0, 128.5, 126.5, 64.5, 43.2, 14.4.

1-(4-bromophenyl)-3-hydroxy-2-methylpropan-1-one (2m)³

Yellow liquid (20.9 mg, 86%). ¹H NMR (400MHz, CDCl₃) δ 7.83 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.8 Hz, 2H), 3.93 (dd, J_1 = 10.8 Hz, J_2 = 7.2 Hz, 1H), 3.89 (dd, J_1 = 10.8 Hz, J_2 = 3.6 Hz, 1H), 3.66-3.57 (m, 1H), 2.35 (brs, 1H), 1.22 (d, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 203.3, 134.8, 132.0, 129.9, 128.5, 64.5, 42.9, 14.5.

3-hydroxy-1-(4-iodophenyl)-2-methylpropan-1-one (2n)

Yellow liquid (10.5 mg, 36%). ¹H NMR (400MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 3.93-3.91 (m, 1H), 3.81-3.78 (m, 1H), 3.64-3.56 (m, 1H), 2.23 (s, 1H), 1.22 (d, J = 6.8 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 203.6, 138.1, 135.4, 129.8, 101.4, 64.5, 42.9, 14.5. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₀H₁₂IO₂ 290.9877; Found 290.9875.

3-hydroxy-2-methyl-1-(4-(trifluoromethyl)phenyl)propan-1-one (20)

Yellow liquid (14.4 mg, 62%). ¹H NMR (400MHz, CDCl₃) δ 8.07 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 3.97 (dd, J_1 = 10.8 Hz, J_2 = 7.2 Hz, 1H), 3.82 (dd, J_1 = 11.2 Hz, J_2 = 4.0 Hz, 1H), 3.70-3.64 (m, 1H), 2.33 (brs, 1H), 1.23 (d, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 203.4, 138.9, 134.5 (q, J = 33.0 Hz), 128.7, 125.8 (q, J = 3.0 Hz) 123.5 (q, J = 271.0 Hz), 64.4, 43.4, 14.3. ¹⁹F NMR (300 MHz, CDCl₃) δ -63.1. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₁H₁₂F₃O₂ 233.0784; Found 233.0786.

3-Hydroxy-2-methyl-1-(thiophen-2-yl)propan-1-one (2p)

Yellow oil (7.2 mg, 38%). ¹H NMR (400MHz, CDCl₃) δ 8.05 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H), 3.95 (dd, J_1 = 10.8 Hz, J_2 = 7.6 Hz, 1H), 3.80 (dd, J_1 = 10.8 Hz, J_2 = 4.0 Hz, 1H), 3.69-3.64 (m, 1H), 2.33 (s, 1H), 1.22 (d, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 202.9, 139.3, 132.5, 128.8, 117.8, 116.4, 64.3, 43.4, 14.2. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₁H₁₂NO₂ 190.0863; Found 190.0860.

1-([1,1'-biphenyl]-4-yl)-3-hydroxy-2-methylpropan-1-one (2q)

Red solid (13.0 mg, 54%), 60-63 °C. ¹H NMR (400MHz, CDCl₃) δ 8.06-8.04 (m, 2H), 7.72-7.70 (m, 2H), 7.64-7.63 (m, 2H), 7.50-7.46 (m, 2H), 7.43-7.41 (m, 1H), 3.98-3.94 (m, 1H), 3.85-3.83 (m, 1H), 3.72-3.70 (m, 1H), 1.28 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 204.0, 146.1, 139.8, 134.7, 129.0, 129.0, 128.3, 127.4, 127.3, 64.6, 42.9, 14.7. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₆H₁₇O₂ 241.1224; Found 241.1228.

1-(furan-2-yl)-3-hydroxy-2-methylpropan-1-one (2r)

Red liquid (7.1 mg, 46%). ¹H NMR (400MHz, CDCl₃) δ 7.62 (d, J = 0.8 Hz, 1H), 7.26 (d, J = 4.0 Hz, 1H), 6.56 (dd, $J_1 = 4.0$ Hz, $J_2 = 0.8$ Hz, 1H), 3.90 (dd, $J_1 = 11.2$ Hz, $J_2 = 7.6$ Hz, 1H), 3.77 (dd, $J_1 = 11.2$ Hz, $J_2 = 4.0$ Hz, 1H), 3.50-3.45 (m, 1H), 2.44 (brs, 1H), 1.24 (d, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 192.8, 152.2, 146.7, 118.0, 112.3, 64.3, 43.7, 14.1. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₈H₁₁O₃ 155.0703; Found 155.0705.

4-(3-hydroxy-2-methylpropanoyl)benzonitrile (2s)³

Yellow oil (10.5 mg, 62%). ¹H NMR (400MHz, CDCl₃) δ 7.88-7.77 (m, 1H), 7.68-7.66 (m, 1H), 7.16-7.14 (m, 1H), 3.91 (dd, J_1 = 10.8 Hz, J_2 = 7.2 Hz, 1H), 3.78 (dd, J_1 = 11.2 Hz, J_2 = 4.4 Hz, 1H), 3.55-3.50 (m, 1H), 2.50 (s, 1H), 1.28 (d, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 196.9, 143.6, 134.2, 132.4, 128.2, 64.6, 44.6, 14.8.

2-(hydroxymethyl)-1-phenylbutan-1-one (2t)³

Red liquid (12.1 mg, 68%). ¹H NMR (400MHz, CDCl₃) δ 7.97 (d, J = 8.0 Hz, 2H), 7.61-7.57 (m, 1H), 7.51-7.47 (m, 2H), 3.99-3.97 (m, 1H), 3.87-3.85 (m, 1H), 3.58-3.53 (m, 1H), 2.30 (s, 1H), 1.84-1.75 (m, 1H), 1.72-1.65 (m, 1H), 0.97 (t, J = 7.6 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 204.6, 136.8, 133.3, 128.7, 128.3, 62.6, 49.5, 22.3, 11.8.

2-(hydroxymethyl)-1-(4-methoxyphenyl)butan-1-one (2u)

Yellow liquid (9.6 mg, 46%). ¹H NMR (400MHz, CDCl₃) δ 7.96 (d, J = 9.2 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 3.95 (dd, J_1 = 11.2 Hz, J_2 = 6.8 Hz, 1H), 3.88 (s, 3H), 3.83 (dd, J_1 = 11.2 Hz, J_2 = 7.6 Hz, 1H), 3.51-3.45 (m, 1H), 1.82-1.63 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 203.1, 163.7, 130.7, 129.9, 113.9, 62.7, 55.5, 49.0, 22.5, 11.9. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₂H₁₇O₃ 209.1173; Found 209.1174.

1-(4-fluorophenyl)-2-(hydroxymethyl)butan-1-one (2v)³

Colourless liquid (12.2 mg, 62%). ¹H NMR (400MHz, CDCl₃) δ 8.04-8.01 (m, 2H), 7.20-7.16 (m, 2H), 4.00 (dd, J_1 = 12.0 Hz, J_2 = 8.0 Hz, 1H), 3.87 (dd, J_1 = 12.0 Hz, J_2 = 4.0 Hz, 1H), 3.57-3.51 (m, 1H), 2.38 (s, 1H), 1.85-1.74 (m, 1H), 1.73-1.63 (m, 1H), 0.98 (t, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 202.9, 165.9 (d, J = 254 Hz), 133.3, 131.1 (d, J = 10.0 Hz), 115.8 (d, J = 20.0 Hz), 62.6, 49.5, 22.4, 11.8. ¹⁹F NMR (300 MHz, CDCl₃) δ -104.8.

1-(4-bromophenyl)-2-(hydroxymethyl)butan-1-one (2w)

Yellow liquid (14.4 mg, 56%). ¹H NMR (400MHz, CDCl₃) δ 7.82 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 4.00-3.94 (m, 1H), 3.85-3.83 (m, 1H), 3.52-3.46 (m, 1H), 2.14 (s, 1H), 1.79-1.72 (m, 1H), 1.69-1.60 (m, 1H), 0.95 (t, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 203.4, 135.7, 132.0, 129.9, 128.5, 62.6, 49.6, 22.3, 11.8. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₁H₁₄BrO₂ 257.0172, 259.0152; Found 257.0176, 259.0156.

methyl 4-(2-(hydroxymethyl)butanoyl)benzoate (2x)

Red oil (11.3 mg, 48%). ¹H NMR (400MHz, CDCl₃) δ 8.14 (d, J = 8.4 Hz, 2H), 8.00 (d, J = 8.4 Hz, 2H), 4.00 (dd, J_1 = 10.8 Hz, J_2 = 7.2 Hz, 1H), 3.98 (s, 3H), 3.86 (dd, J_1 = 11.2 Hz, J_2 = 4.0 Hz, 1H), 3.59-3.54 (m, 1H), 2.29 (s, 1H), 1.80-1.73 (m, 1H), 1.72-1.63 (m, 1H), 0.96 (t, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 204.1, 166.2, 140.2, 134.0, 129.9, 128.2, 62.6, 52.5, 50.1, 22.2, 11.7. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₃H₁₇O₄ 237.1122; Found 237.1120.

2-(hydroxymethyl)-1-phenylpentan-1-one (2y)³

Yellow liquid (12.7 mg, 66%). ¹H NMR (400MHz, CDCl₃) δ 7.96 (d, J = 6.0 Hz, 2H), 7.58-7.57 (m, 1H), 7.50-7.48 (m, 2H), 3.98-3.93 (m, 1H), 3.86-3.82 (m, 1H), 3.64-3.62 (m, 1H), 2.35 (brs, 1H), 1.70-1.59 (m, 2H), 1.40-1.32 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 204.7, 136.8, 133.3, 128.7, 128.3, 62.9, 47.9, 31.3, 20.6, 14.1.

2-(hydroxymethyl)-1-phenylhexan-1-one (2z)⁵

Yellow liquid (11.1 mg, 54%). ¹H NMR (400MHz, CDCl₃) δ 7.96 (d, J = 6.8 Hz, 2H), 7.60-7.56 (m, 1H), 7.50-7.46 (m, 2H), 3.96 (dd, J_1 = 10.8 Hz, J_2 = 6.8 Hz, 1H), 3.84 (dd, J_1 = 10.8 Hz, J_2 = 3.6 Hz, 1H), 3.64-3.59 (m, 1H), 2.42 (brs, 1H), 1.74-1.62 (m, 1H), 1.63-1.62 (m, 1H), 1.36-1.31 (m, 4H), 0.86 (t, J = 5.6 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 204.7, 136.8, 133.2, 128.7, 128.3, 63.0, 48.1, 29.5, 28.9, 22.7, 13.8.

2-(hydroxymethyl)-1-phenyldodecan-1-one (2aa)

Colorless liquid (14.5 mg, 50%). ¹H NMR (400MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.60-7.57 (m, 1H), 7.50-7.46 (m, 2H), 3.96 (dd, J_1 = 11.2 Hz, J_2 = 6.8 Hz, 1H), 3.85 (dd, J_1 = 11.2 Hz, J_2 = 3.6 Hz, 1H), 3.63-3.57 (m, 1H), 2.30 (brs, 1H), 1.74-1.60 (m, 4H), 1.25-1.23 (m, 14H), 0.87 (t, J = 6.4 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 204.7, 136.8, 133.3, 128.7, 128.3, 62.9, 48.1, 31.9, 29.7, 29.5, 29.5, 29.3, 29.2, 27.4, 22.7, 14.1. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₉H₃₁O₂ 291.2319; Found 291.2322.

2-benzyl-3-hydroxy-1-phenylpropan-1-one (2ab)⁵

Yellow liquid (13.7 mg, 57%). ¹H NMR (400MHz, CDCl₃) δ 7.94-7.91 (m, 2H), 7.59-7.55 (m, 1H), 7.48-7.44 (m, 2H), 7.29-7.25 (m, 2H), 7.23-7.19 (m, 3H), 3.86-3.83 (m, 3H), 3.08-3.03 (m, 1H), 2.96-2.91 (m, 1H), 2.36 (brs, 1H). ¹³C NMR (100MHz, CDCl₃) δ 203.9, 138.8, 136.5, 133.4, 129.0, 128.7, 128.5, 128.4, 126.5, 62.4, 49.9, 34.9.

3-hydroxy-2-(2-methylbenzyl)-1-(o-tolyl)propan-1-one (2ac)

Yellow liquid (14.0 mg, 52%). ¹H NMR (400MHz, CDCl₃) δ 7.44 (d, J = 8.0 Hz, 1H), 7.37-7.33 (m, 1H), 7.24-7.19 (m, 2H), 7.13-7.08 (m, 4H), 3.88-3.80 (m, 2H), 3.71-3.65 (m, 1H), 3.00 (dd, J_1 = 13.6 Hz, J_2 = 6.0 Hz, 1H), 2.87 (dd, J_1 = 14.0 Hz, J_2 = 8.8 Hz, 1H), 2.43 (s, 3H), 2.28 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ 208.1, 138.2, 138.0, 137.0, 136.1, 131.8, 131.3, 130.5, 129.8, 127.9, 126.6, 126.0, 125.6, 62.5, 51.8, 31.6, 20.7, 19.4. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₈H₂₁O₂ 269.1537; Found 269.1541.

3-hydroxy-2-(4-methylbenzyl)-1-(p-tolyl)propan-1-one (2ad)

Yellow liquid (9.1 mg, 34%). ¹H NMR (400MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 6.8 Hz, 2H), 7.12-7.07 (m, 4H), 3.85-3.76 (m, 3H), 3.01 (dd, J_1 = 14.0 Hz, J_2 = 5.2 Hz, 1H), 2.89 (dd, J_1 = 13.6 Hz, J_2 = 8.8 Hz, 1H), 2.42 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ 203.6, 144.3, 136.0, 135.7, 133.9, 129.4, 129.2, 128.9, 128.6, 62.3, 49.7, 34.5, 21.6, 21.0. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₈H₂₁O₂ 269.1537; Found 269.1539.

1,3-bis(dibenzo[b,d]furan-4-yl)-2-(hydroxymethyl)propan-1-one (2ae)

Red solid (16.8 mg, 40%), 71-75 °C. ¹H NMR (400MHz, CDCl₃) δ 8.11 (d, J = 7.6 Hz, 1H), 8.05 (d, J = 7.6 Hz, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 7.2 Hz, 1H), 7.42-7.29 (m, 8H), 7.22-7.18 (m, 1H), 4.73-4.67 (m, 1H), 4.10-4.04 (m, 2H), 3.52 (dd, J_1 = 14.0 Hz, J_2 = 6.0 Hz, 1H), 3.42 (dd, J_1 = 14.0 Hz, J_2 = 8.8 Hz, 1H), 2.49 (s, 1H). ¹³C NMR (100MHz, CDCl₃) δ 202.1, 156.0, 155.9, 154.8, 154.2, 128.3, 128.1, 127.8, 127.0, 125.8, 125.6, 124.4, 123.9, 123.4, 123.1, 122.8, 122.7, 122.3, 120.7, 120.6, 118.9, 111.9, 111.6, 62.5, 51.8, 28.9. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₈H₂₁O₄ 421.1435; Found 421.1433.

2,4-dimethyl-1,5-di-p-tolylpentane-1,5-dione (3a)⁶

Yellow liquid (2.5 mg, 16%), an inseparable mixture of two diastereomers, diastereomeric ratio: 1.25:1. ¹H NMR (400MHz, CDCl₃) δ 7.95 (d, J = 8.4 Hz, 4H), 7.67 (d, J = 8.0 Hz, 3H), 7.29 (d, J

= 8.0 Hz, 4H), 7.11 (d, J = 8.0 Hz, 3H), 3.61-3.56 (m, 2H), 3.49-3.42 (m, 2H), 2.44-2.39 (m, 7H), 2.34 (s, 5H), 1.98 (t, J = 7.2 Hz, 2H), 1.50-1.43 (m, 1H), 1.19 (d, J = 6.8 Hz, 5H), 1.15 (d, J = 6.8 Hz, 6H). ¹³C NMR (100MHz, CDCl₃) δ 204.0, 203.4, 143.8, 143.6, 133.9, 133.7, 129.4, 129.1, 128.5, 128.2, 38.4, 37.9, 37.4, 37.1, 21.6, 21.5, 18.7, 17.6.

2-methyl-1-(p-tolyl)prop-2-en-1-one (4)⁷

Yellow liquid (22.1 mg, 69%). ¹H NMR (400MHz, CDCl₃) δ 7.66 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 5.85 (s, 1H), 5.58 (s, 1H), 2.40 (s, 3H), 2.06 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ 198.1, 143.8, 142.7, 134.8, 129.6, 128.8, 126.0, 21.5, 18.8.

2-methyl-3-oxo-3-(p-tolyl)propyl acetate (5)⁸

Yellow liquid (18.5 mg, 42%). ¹H NMR (400MHz, CDCl₃) δ 7.87 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 4.42 (dd, J_1 = 10.8 Hz, J_2 = 8.0 Hz, 1H), 4.18 (dd, J_1 = 10.8 Hz, J_2 = 5.6 Hz, 1H), 3.87-3.78 (m, 1H), 2.42 (s, 3H), 1.98 (s, 3H), 1.22 (d, J = 6.8 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 200.9, 170.9, 144.1, 133.7, 129.4, 128.5, 66.0, 39.8, 21.6, 20.8, 14.7.

3-chloro-2-methyl-1-(p-tolyl)propan-1-one (6)

Yellow liquid (27.8 mg, 71%). ¹H NMR (400MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 3.93 (dd, J_1 = 10.4 Hz, J_2 = 7.2 Hz, 1H), 3.82 (dd, J_1 = 14.0 Hz, J_2 = 7.2 Hz, 1H), 3.59-3.55 (m, 1H), 2.41 (s, 3H), 1.30 (d, J = 6.8 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 200.7, 144.3, 133.3, 129.4, 128.4, 45.9, 43.4, 21.6, 16.5. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₁H₁₄ClO 197.0728; Found 197.0725.

8. NMR spectra for products

 ^1H NMR of 2a (400 MHz, CDCl_3) and ^{13}C NMR of 2a (100 MHz, CDCl_3)

¹H NMR of **2b** (400 MHz, CDCl₃) and ¹³C NMR of **2b** (100 MHz, CDCl₃)

 ^1H NMR of 2c (400 MHz, CDCl₃) and ^{13}C NMR of 2c (100 MHz, CDCl₃)

¹H NMR of **2d** (400 MHz, CDCl₃) and ¹³C NMR of **2d** (100 MHz, CDCl₃)

¹H NMR of **2e** (400 MHz, CDCl₃) and ¹³C NMR of **2e** (100 MHz, CDCl₃)

¹H NMR of 2f (400 MHz, CDCl₃) and ¹³C NMR of 2f (100 MHz, CDCl₃)

 ^1H NMR of 2g (400 MHz, CDCl_3) and ^{13}C NMR of 2g (100 MHz, CDCl_3)

¹H NMR of **2h** (400 MHz, CDCl₃) and ¹³C NMR of **2h** (100 MHz, CDCl₃)

¹H NMR of **2i** (400 MHz, CDCl₃) and ¹³C NMR of **2i** (100 MHz, CDCl₃)

¹H NMR of **2j** (400 MHz, CDCl₃), ¹³C NMR of **2j** (100 MHz, CDCl₃) and ¹⁹F NMR of **2j** (300 MHz, CDCl₃)

¹H NMR of **2k** (400 MHz, CDCl₃) and ¹³C NMR of **2k** (100 MHz, CDCl₃)

¹H NMR of **2l** (400 MHz, CDCl₃) and ¹³C NMR of **2l** (100 MHz, CDCl₃)

 1 H NMR of **2m** (400 MHz, CDCl₃) and 13 C NMR of **2m** (100 MHz, CDCl₃)

¹H NMR of **2n** (400 MHz, CDCl₃) and ¹³C NMR of **2n** (100 MHz, CDCl₃)

¹H NMR of **20** (400 MHz, CDCl₃), ¹³C NMR of **20** (100 MHz, CDCl₃) and ¹⁹F NMR of **20** (300

MHz, CDCl₃)

¹H NMR of **2p** (400 MHz, CDCl₃) and ¹³C NMR of **2p** (100 MHz, CDCl₃)

¹H NMR of **2q** (400 MHz, CDCl₃) and ¹³C NMR of **2q** (100 MHz, CDCl₃)

 ^1H NMR of 2r (400 MHz, CDCl₃) and ^{13}C NMR of 2r (100 MHz, CDCl₃)

¹H NMR of 2s (400 MHz, CDCl₃) and ¹³C NMR of 2s (100 MHz, CDCl₃)

¹H NMR of 2t (400 MHz, CDCl₃) and ¹³C NMR of 2t (100 MHz, CDCl₃)

¹H NMR of **2u** (400 MHz, CDCl₃) and ¹³C NMR of **2u** (100 MHz, CDCl₃)

¹H NMR of **2v** (400 MHz, CDCl₃), ¹³C NMR of **2v** (100 MHz, CDCl₃) and ¹⁹F NMR of **2v** (300 MHz, CDCl₃)

¹H NMR of **2w** (400 MHz, CDCl₃) and ¹³C NMR of **2w** (100 MHz, CDCl₃)

¹H NMR of **2**x (400 MHz, CDCl₃) and ¹³C NMR of **2**x (100 MHz, CDCl₃)

 ^1H NMR of 2y (400 MHz, CDCl_3) and ^{13}C NMR of 2y (100 MHz, CDCl_3)

 ^1H NMR of 2z (400 MHz, CDCl₃) and ^{13}C NMR of 2z (100 MHz, CDCl₃)

¹H NMR of 2aa (400 MHz, CDCl₃) and ¹³C NMR of 2aa (100 MHz, CDCl₃)

¹H NMR of **2ab** (400 MHz, CDCl₃) and ¹³C NMR of **2ab** (100 MHz, CDCl₃)

¹H NMR of **2ac** (400 MHz, CDCl₃) and ¹³C NMR of **2ac** (100 MHz, CDCl₃)

¹H NMR of 2ad (400 MHz, CDCl₃) and ¹³C NMR of 2ad (100 MHz, CDCl₃)

¹H NMR of 2ae (400 MHz, CDCl₃) and ¹³C NMR of 2ae (100 MHz, CDCl₃)

¹H NMR of **3a** (400 MHz, CDCl₃) and ¹³C NMR of **3a** (100 MHz, CDCl₃)

¹H NMR of 4 (400 MHz, CDCl₃) and ¹³C NMR of 4 (100 MHz, CDCl₃)

¹H NMR of 5 (400 MHz, CDCl₃) and ¹³C NMR of 5 (100 MHz, CDCl₃)

¹H NMR of 6 (400 MHz, CDCl₃) and ¹³C NMR of 6 (100 MHz, CDCl₃)

9. References

- G. Bartoli, M. C. Bellucci, M. Petrini, E. Marcantoni, L. Sambri and E. Torregiani, *Org. Lett.*, 2000, 2, 1791–1793.
- M. M. Curzu, G. A. Pinna, D. Barlocco, C. Bugatti, G. Cignarella, Synthesis 1984, 1984, 339– 342.
- J. Yang, D. Xie, H. Zhou, S. Chen, J. Duan, C. Huo and Z. Li, *Adv. Synth. Catal.* 2018, 360, 3471-476.
- 4. S. K. Murphy, M. M. Coulter and V. M. Dong, Chem. Sci., 2012, 3, 355-358.
- 5. A. Denichoux, T. Fukuyama, T. Doi, J. Horiguchi and I. Ryu, Org. Lett., 2010, 12, 1-3.
- N. J. Foy, K. C. Forbes, A. M. Crooke, M. D. Gruber and J. S. Cannon, *Org. Lett.* 2018, 20, 5727–5731.
- P. Biswal, S. Samser, P. Nayak, V. Chandrasekhar, and K. Venkatasubbaiah, J. Org. Chem. 2021, 86, 6744–6754.
- 8. D.-Y. Zhu, W.-D. Li, C. Yang, J. Chen and J.-B. Xia, Org. Lett. 2018, 20, 3282-3285.
- 9. G. Cignarella, D. Barlocco, M. M. Curzu and G. A. Pinna, Synthesis 1984, 1984, 342-345.