Supporting Information

Divergent synthesis of nitrogen heterocycles via H₂Omediated hydride transfer reactions

Fangzhi Hu,^a Zhipeng Sun,^a Mengzhe Pan,^a Liang Wang,^a Lubin Xu,^a Xiongli Liu,^b Shuai-Shuai Li^{*a}

^aCollege of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
^bNational & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, P. R. China.
Corresponding Author
*E-mail: flyshuaishuai@126.com.

Table of Contents

1. General Information	S2
2. General Procedure	S2
3. Mechanistic Studies	S6
4. Characterization of Products	S12
5. Crystal Structure and Data	S40
6. ¹ H and ¹³ C NMR Spectra	S41

1. General Information

Unless otherwise noted, all reagents and solvents were purchased from the commercial sources and used as received. Thin layer chromatography (TLC) was used to monitor the reaction on Merck 60 F254 precoated silica gel plate (0.2 mm thickness). TLC spots were visualized by UV-light irradiation on Spectroline Model ENF-24061/F 254 nm. The products were purified by flash column chromatography (200-300 mesh silica gel) eluted with the gradient of petroleum ether and ethyl acetate. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker 500 MHz NMR spectrometer (CDCl₃ or DMSO-d₆ solvent). The chemical shifts were reported in parts per million (ppm), downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 7.26, singlet) or dimethyl sulfoxide-d₆ (δ 2.54, singlet). Multiplicities were afforded as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet) or m (multiplets). The number of protons for a given resonance is indicated by nH. Coupling constants were reported as a J value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) was referenced to the appropriate residual solvent peak. High resolution mass spectral analysis (HRMS) was performed on Waters XEVO G2 Q-TOF. o-Fluorobenzaldehydes, Meldrum's acid, 4-hydroxy-6-methyl-2H-pyran-2-one, and 4hydroxycoumarin were purchased from adamas-beta.

2. General Procedure

2.1 General Procedure for construction of the 3-carboxyl tetrahydroquinolines 3

A sealed tube was charged with *ortho*-amino benzaldehyde **1** (0.1 mmol), Meldrum's acid **2** (0.12 mmol), and H₂O (1.0 mL). The mixture was stirred at 120 °C. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:20) to afford the desired 3-carboxyl tetrahydroquinolines **3a-l**.

2.2 General Procedure for construction of the spirocyclic tetrahydroquinolines 4

A sealed tube was charged with *ortho*-amino benzaldehyde 1 (0.1 mmol), Meldrum's acid 2 (0.12 mmol), and H₂O (1.0 mL). The mixture was stirred at 70 °C. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:50) to afford the desired spirocyclic tetrahydroquinolines **4a-j**.

2.3 General Procedure for construction of the spirocyclic tetrahydroquinolines 6

A sealed tube was charged with *ortho*-amino benzaldehyde **1** (0.1 mmol), 4-hydroxy-6-methyl-2Hpyran-2-one **5** (0.12 mmol), and H₂O (1.0 mL). The mixture was stirred at 120 °C within 15 minute. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:50) to afford the desired spirocyclic tetrahydroquinolines **6a-g**.

2.4 General Procedure for construction of the 3-acyl substituted tetrahydroquinolines 8

A sealed tube was charged with *ortho*-amino benzaldehyde **1** (0.1 mmol), 4-hydroxy-6-methyl-2Hpyran-2-one **5** (0.12 mmol), and H₂O (1.0 mL). The mixture was stirred at 120 °C. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:50) to afford the 3-acyl substituted tetrahydroquinolines **8a-j**.

2.5 General Procedure for construction of the 3-acyl substituted tetrahydroquinolines 9

A sealed tube was charged with *ortho*-amino benzaldehyde **1** (0.1 mmol), 4-hydroxycoumarin **7** (0.12 mmol), and H₂O (1.0 mL). The mixture was stirred at 120 °C. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:50) to afford the 3-acyl substituted tetrahydroquinolines **9a-i**.

2.6 General Procedure for construction of 3,4-unsubstituted 3,4-dihydroquinolin-2(1H)-ones 10

A sealed tube was charged with *ortho*-amino benzaldehyde 1 (0.1 mmol), Meldrum's acid 2 (0.12 mmol), and H₂O (1.0 mL). The mixture was stirred at 100 °C for 1~4 h. Upon completion of the

reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na_2SO_4 and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:20) to afford the 3,4-unsubstituted 3,4-dihydroquinolin-2(1*H*)-ones **10a-m**.

2.7 General Procedure for construction of the 3-substituted 3,4-dihydroquinolin-2(1*H*)-ones 11 or 12

A sealed tube was charged with *ortho*-amino benzaldehyde **1** (0.1 mmol), 4-hydroxy-6-methyl-2Hpyran-2-one **5** (0.12 mmol), and H₂O (1.0 mL) or (H₂O (1.0 mL) and EtOH (1 mL)). The mixture was stirred at 120 °C. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:20) to afford the 3-substituted 3,4-dihydroquinolin-2(1*H*)ones **11a-f (12,** R³ = Electron withdrawing groups).

2.8 General Procedure for construction of the 3-substituted 3,4-dihydroquinolin-2(1H)-ones 13

A sealed tube was charged with *ortho*-amino benzaldehyde **1** (0.1 mmol), 4-hydroxycoumarin **7** (0.2 mmol), and H₂O (2.0 mL) or (H₂O (1.0 mL) and EtOH (1 mL)). The mixture was stirred at 120 °C. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:20) to afford the 3-substituted 3,4-dihydroquinolin-2(1*H*)-ones **13a-j**.

2.9 General Procedure for Large-scale Synthesis of β-amino acid 3a

A sealed tube was charged with *ortho*-amino benzaldehyde **1a** (5 mmol), Meldrum's acid **2** (6 mmol), and H₂O (50.0 mL). The mixture was stirred at 120 °C. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (50 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:20) to afford the desired β-amino acid **3a** in 75% yield (716 mg).

2.10 The Application of the β-Amino Acid Derivatives(a) General Procedure for Synthesis of Terminal Alkyne Substituted Ester 14a

A tube was charged with **3a** (0.1 mmol), propargyl bromide (0.15 mmol), K_2CO_3 (0.15 mmol), and commercially available DMF (1.0 mL) under air. The mixture was stirred at 50 °C. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:50) to afford the terminal alkyne substituted ester **14a** in 95% yield.

(b) General Procedure for Synthesis of Amino Alcohol 15a

A tube was charged with **3a** (0.1 mmol), LiAlH₄ (0.2 mmol), and distilled THF (1.0 mL) under air. The mixture was stirred at room temperature. Upon completion of the reaction as indicated by TLC analysis, H₂O was added dropwise and the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:15) to afford the amino alcohol **15a** in 92% yield.

2.11 Synthesis of Analogue of MT2 Melatonin Receptor Agonist

(a) General Procedure for Synthesis of Analogue of MT2 Melatonin Receptor Agonist 16a

A tube was charged with **15a** (0.1 mmol), acetylchloride (0.3 mmol), Et_3N (0.12 mmol), and distilled DCM (1.0 mL). The mixture was stirred at room temperature. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:20) to afford the analogue of MT2 melatonin receptor agonist **16a** in 95% yield.

(b) General Procedure for "One-pot" Synthesis of Analogue of MT2 Melatonin Receptor Agonist 16a

A tube was charged with 3a (0.1 mmol), LiAlH₄ (0.2 mmol), and distilled THF (1.0 mL) under air.

The mixture was stirred at room temperature. Upon completion of the reaction as indicated by TLC analysis, H_2O was added dropwise and the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na_2SO_4 and concentrated in vacuo. The residue was directly used without purification.

A tube was charged with the above residue, acetylchloride (0.3 mmol), Et₃N (0.12 mmol), and distilled DCM (1.0 mL). The mixture was stirred at room temperature. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:20) to afford the analogue of MT2 melatonin receptor agonist **16a** in 90% yield.

2.12 General Procedure for Synthesis of Inhibitor of Aldosterone Synthase (CYP11B2)

A sealed tube was charged with *ortho*-amino benzaldehyde **1m** (0.1 mmol), Meldrum's acid **2** (0.12 mmol), and H₂O (1.0 mL). The mixture was stirred at 100 °C. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:2) to afford the inhibitors of aldosterone synthase **10m** in 78% yield.

2.13 General Procedure for Synthesis of Inhibitor of Aldosterone Synthase (CYP11B2) and Its Analogue

A sealed tube was charged with brominated 3,4-dihydroquinolin-2(1*H*)-one (0.1 mmol), 3pyridylboronic acid (0.12 mmol), Pd(PPh₃)₃Cl₂ (5 mol%), K₂CO₃ (3 equiv.), dioxane (1.5 mL), and H₂O (0.5 mL). The mixture was stirred at 100 °C under N₂ atmosphere. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:2) to afford the inhibitors of aldosterone synthase **10m** in 88% yield.

A sealed tube was charged with brominated 3,4-dihydroquinolin-2(1H)-one (0.1 mmol), 2-

thiopheneboronic acid (0.12 mmol), Pd(PPh₃)₃Cl₂ (5 mol%), K₂CO₃ (3 equiv.), dioxane (1.5 mL), and H₂O (0.5 mL). The mixture was stirred at 100 °C under N₂ atmosphere. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:20) to afford the inhibitors of aldosterone synthase **10n** in 86% yield.

3. Mechanistic Studies

3.1 The Studies of the Reaction Process and the Role of Hydrogen Bonding Interaction

A sealed tube was charged with *ortho*-amino benzaldehyde **1c** (0.1 mmol), 4-hydroxy-6-methyl-2H-pyran-2-one **5** (0.12 mmol), and H₂O (1.0 mL). The mixture was stirred at 120 °C. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:20) to afford the 3-substituted 3,4-dihydroquinolin-2(1*H*)-one **11a** in 81% yield. The result indicated that the α -C(sp³)-H of benzyl group transferred preferentially in the reaction.

A sealed tube was charged with spirocyclic tetrahydroquinoline 4a (0.1 mmol) and toluene (1.0 mL). The mixture was stirred at 120 °C. No reaction occurred by monitoring the reaction system.

A sealed tube was charged with spirocyclic tetrahydroquinoline **4a** (0.1 mmol) and H₂O (1.0 mL). The mixture was stirred at 120 °C. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:20) to afford the 3-substituted 3,4-dihydroquinolin-2(1H)-one **3a** in 88% yield.

A sealed tube was charged with spirocyclic tetrahydroquinoline **6a** (0.1 mmol) and toluene (1.0 mL). The mixture was stirred at 120 °C. No reaction occurred by monitoring the reaction system.

A sealed tube was charged with spirocyclic tetrahydroquinoline **6a** (0.1 mmol) and H₂O (1.0 mL). The mixture was stirred at 120 °C. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with

anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:50) to afford the 3-substituted 3,4-dihydroquinolin-2(1H)-one **8a** in 88% yield.

The control experiments confirmed the intramolecular hydrolysis/decarboxylation process. In addition, the significance of hydrogen bonding interaction also was proved by comparing toluene and H_2O as reaction medium.

3.2 The Studies of the Hydrolysis-involved N-Dealkylation Process

(a) Recovery of benzaldehyde

A sealed tube was charged with *ortho*-amino benzaldehyde **1m** (0.1 mmol), Meldrum's acid **2** (0.12 mmol), and H₂O (1.0 mL). The mixture was stirred at 100 °C. Upon completion of the reaction, the reaction system was detected by GC-MS. As a result, PhCHO was detected by GC-MS which certified our proposed *N*-dealkylation process.

Conditions: gas chromatograph-mass spectrometer (GC-MS, QP 2010, Shimadzu, Japan), equipped with RTX-5MS column (30 m, 0.25 m film thickness, 0.25 mm i. d, Agilent Technologies, USA). Helium was used as a carrier gas at a flow rate of 7.0 mL/min. The column temperature was programmed as follows: 80 °C (2 min), raised to 260 °C at a rate of 7 °C/min held for 2 min. Temperatures of the injection port and interface were set at 260 °C and 280 °C, respectively. The mass spectrometer was operated in electron impact (EI) mode at 70 eV.

In addition, the released PhCHO could be isolated by preparative chromatography in 81% yield.

(b) Recovery of acetaldehyde

A Schlenk tube was charged with *ortho*-amino benzaldehyde **1** (0.1 mmol), Meldrum's acid **2** (0.12 mmol), and H₂O (1.0 mL). The mixture was stirred at 100 °C for 4 h. Then 2, 4-dinitrophenylhydrazine (0.1 mmol in 1.0 mL of EtOH) was injected in the Schlenk tube. The mixture was stirred at 100 °C for 8 h. Then the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:20) to afford the 3,4-unsubstituted 3,4-dihydroquinolin-2(1*H*)-one **10a** and 1-(2,4-dinitrophenyl)-2-ethylidenehydrazine.

Recovery of benzaldehyde and acetaldehyde certified our proposed N-dealkylation process.

3.3 Isotope-labeling Experiments

A sealed tube was charged with *ortho*-amino benzaldehyde **1a-**[D] (0.1 mmol), Meldrum's acid **2** (0.12 mmol), and H₂O (1.0 mL). The mixture was stirred at 120 °C. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:20) to afford the desired β -amino acid **3a**-[D] in 75% yield.

When **1a**-[D] was used, the observation of the deuteration (50%) at the benzyl position by ¹H NMR fully corroborated the occurrence of [1,5]-hydride transfer.

A sealed tube was charged with *ortho*-amino benzaldehyde **1a** (0.1 mmol), **1a-**[D] (0.1 mmol), Meldrum's acid **2** (0.1 mmol), and H₂O (1.0 mL). The mixture was stirred at 120 °C. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:20) to afford the desired β -amino acid **3a**-[H/D] in 45% yield.

A deuterium kinetic isotope effect (DKIE) of 2.2 was obtained through competitive reaction between substrates **1a** and **1a**-[D], implying that the [1,5]-hydride transfer process might be involved in the rate-determining step.

A sealed tube was charged with *ortho*-amino benzaldehyde **1a** (0.1 mmol), **1f** (0.1 mmol), Meldrum's acid **2** (0.24 mmol), and H₂O (1.0 mL). The mixture was stirred at 120 °C. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:20) to afford the desired β -amino acid **3a**-[D] in 65% yield and **3f** in 68%.

The reaction between **1a**-[D], **1f**, and Meldrum's acid demonstrated it was an intramolecular hydride transfer reaction.

3.4 Competing reaction

A sealed tube was charged with *ortho*-amino benzaldehydes **1d** (0.1 mmol), **1e** (0.1 mmol), 4hydroxy-6-methyl-2H-pyran-2-one **5** (0.1 mmol), and H₂O (1.0 mL). The mixture was stirred at 120 °C. Upon completion of the reaction as indicated by TLC analysis, the resulting solution was extracted with DCM (5 mL×3). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:20) to afford the 3-substituted 3,4-dihydroquinolin-2(1*H*)one **12b** in 62% yield.

The result indicated that the electron-withdrawing group (CN) substituted 2-(diethylamino)benzaldehyde **1e** reacted faster with **5**, which might be due to the increased electrophilicity of aldehyde group of **1e** and stability of the product **12b** with π -conjugate system.

4. Characterization of Products

1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (3a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (80% yield) as a yellow solid.

¹**H** NMR (500 MHz, CDCl₃) δ 10.67 (s, 1H), 7.10 (t, *J* = 7.7 Hz, 1H), 7.01 (d, *J* = 7.3 Hz, 1H), 6.71 – 6.60 (m, 2H), 3.46-3.40 (m, 1H), 3.39 – 3.33 (m, 1H), 3.07-3.00 (m, 3H), 2.91 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 179.8, 145.9, 129.1, 127.5, 120.8, 117.2, 111.5, 52.1, 39.2, 38.5, 29.9. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₁H₁₄NO₂: 192.1019, found: 192.1010.

5-fluoro-1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (3b)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (70% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 6.96 (dd, J = 15.2, 7.9 Hz, 1H), 6.39 – 6.28 (m, 2H), 3.39-3.32 (m, 1H), 3.30-3.25 (m, 1H), 3.06-2.98 (m, 1H), 2.97-2.91 (m, 1H), 2.89 – 2.80 (m, 4H). ¹³**C NMR** (125 MHz, CDCl₃) δ 178.7, 161.1 (d, J = 240.0 Hz), 147.4 (d, J = 7.6 Hz), 127.61 (d, J = 10.7 Hz), 107.9 (d, J = 21.2 Hz), 106.82 (d, J = 2.3 Hz), 103.6 (d, J = 22.5 Hz), 51.7, 39.6, 37.6, 22.6 (d, J = 6.0 Hz). ¹⁹**F NMR** (470 MHz, DMSO) δ – 118.49. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₁H₁₃FNO₂: 210.0925, found: 210.0918.

5-chloro-1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (3c)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (72% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.02 (t, *J* = 8.1 Hz, 1H), 6.75 (d, *J* = 7.9 Hz, 1H), 6.53 (d, *J* = 8.3 Hz, 1H), 3.44 (dd, *J* = 11.2, 2.9 Hz, 1H), 3.40 – 3.32 (m, 1H), 3.18 (dd, *J* = 16.2, 5.0 Hz, 1H), 3.06 (m, 1H), 3.00 (dd, *J* = 16.2, 8.9 Hz, 1H), 2.93 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 179.2, 147.4, 134.5, 127.6, 118.7, 117.80, 109.8, 51.7, 39.7, 38.3, 27.6. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₁H₁₃ClNO₂: 226.0629, found: 226.0621.

5-bromo-1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (3d)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (73% yield) as a yellow solid.

¹**H** NMR (500 MHz, DMSO) δ 12.59 (s, 1H), 6.95 (t, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 7.9 Hz, 1H), 6.61 (d, *J* = 8.3 Hz, 1H), 3.39 (dd, *J* = 11.3, 3.0 Hz, 1H), 3.26 (dd, *J* = 11.2, 8.0 Hz, 1H), 2.93 (dd, *J* = 12.5, 4.9 Hz, 2H), 2.90 – 2.77 (m, 4H). ¹³**C** NMR (125 MHz, DMSO) δ 174.6, 148.4, 128.6, 125.2, 120.5, 120.3, 110.9, 51.9, 39.6, 38.0, 30.8. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₁H₁₃BrNO₂: 270.0124, found: 270.0112.

6-fluoro-1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (3e)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (66% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 9.87 (s, 1H), 6.83 (m, 1H), 6.79 (dd, J = 8.9, 2.9 Hz, 1H), 6.58 (dd, J = 8.9, 4.7 Hz, 1H), 3.46 – 3.39 (m, 1H), 3.38 – 3.30 (m, 1H), 3.13 – 3.00 (m, 3H), 2.91 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 179.2, 155.6 (d, J = 235.0 Hz), 142.5 (d, J = 2.5 Hz), 122.5 (d, J = 7.5 Hz), 115.5 (d, J = 22.5 Hz), 113.6 (d, J = 21.3 Hz), 112.5 (d, J = 7.5 Hz), 52.3, 39.8, 38.5, 29.8. ¹⁹**F NMR** (470 MHz, DMSO) δ – 109.57. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₁H₁₃FNO₂: 210.0925, found: 210.0916.

1,7-dimethyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (3f)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (73% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 10.15 (s, 1H), 6.90 (d, J = 7.5 Hz, 1H), 6.50 (d, J = 7.5 Hz, 1H), 6.46 (s, 1H), 3.41 (dd, J = 11.6, 3.1 Hz, 1H), 3.33 (dd, J = 11.1, 8.9 Hz, 1H), 3.08 – 2.96 (m, 3H), 2.90 (s, 3H), 2.28 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 179.8, 145.7, 137.1, 129.0, 118.1, 117.9, 112.3, 52.2, 39.3, 38.7, 29.6, 21.6. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₂H₁₆NO₂: 206.1176, found: 206.1182.

7-bromo-1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (3g)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (71% yield) as a yellow solid.

¹**H** NMR (500 MHz, DMSO) δ 12.51 (s, 1H), 6.89 (d, J = 7.2 Hz, 1H), 6.68 (s, 2H), 3.41 (s, 1H), 3.30 – 3.24 (m, 1H), 2.87 (d, J = 16.4 Hz, 5H), 2.82 – 2.74 (m, 1H). ¹³C NMR (125 MHz, DMSO) δ 174.7, 147.7, 130.7, 120.6, 120.5, 118.6, 113.2, 51.9, 39.0, 37.7, 29.6. **HRMS (ESI)** m/z: [M+H]⁺ calcd. for C₁₁H₁₃BrNO₂: 270.0124, found: 270.0118.

8-fluoro-1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (3h)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (68% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 10.55 (s, 1H), 6.90 (dd, J = 16.3, 7.6 Hz, 2H), 6.80 (dt, J = 12.6, 6.4 Hz, 1H), 3.50 – 3.43 (m, 1H), 3.27 – 3.19 (m, 1H), 3.06 (d, J = 8.0 Hz, 2H), 3.01 (s, 3H), 2.98 (d, J = 7.8 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 179.4, 154.4 (d, J = 242.5 Hz), 135.1 (d, J = 10.0 Hz), 127.2 (d, J = 2.5 Hz), 124.9 (d, J = 2.5 Hz), 120.4 (d, J = 7.5 Hz), 114.3 (d, J = 21.3 Hz), 53.8, 42.9, 35.5, 29.9. ¹⁹**F NMR** (470 MHz, CDCl₃) δ – 123.48. **HRMS (ESI) m/z:** [M+Na]⁺ calcd. for C₁₁H₁₂FNNaO₂: 232.0744, found: 232.0746.

2,3,4,4a,5,6-hexahydro-1H-pyrido[1,2-a]quinoline-5-carboxylic acid (3i)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (70% yield, dr 6:1) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.09 – 7.02 (m, 1H), 6.98 (d, *J* = 7.1 Hz, 1H), 6.83 (d, *J* = 8.4 Hz, 1H), 6.69 (t, *J* = 7.3 Hz, 1H), 4.04 – 3.95 (m, 1H), 3.47 – 3.34 (m, 1H), 3.07 – 2.92 (m, 3H), 2.87 – 2.74 (m, 1H), 1.68 – 1.35 (m, 6H). ¹³**C** NMR (125 MHz, CDCl₃) δ 177.6, 144.3, 129.9, 128.9, 127.6, 122.8, 122.1, 118.7, 117.9, 113.7, 113.2, 58.1, 57.3, 48.9, 48.5, 45.9, 42.8, 30.9, 29.7, 27.4, 26.6, 24.5, 24.5, 23.3. **HRMS (ESI) m/z:** [M+Na]⁺ calcd. for C₁₄H₁₇NNaO₂: 254.1151, found: 254.1150.

1,2,4,4a,5,6-hexahydro-[1,4]oxazino[4,3-a]quinoline-5-carboxylic acid (3j)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (68% yield, dr 12:1) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.08 (t, J = 7.7 Hz, 1H), 6.97 (d, J = 7.4 Hz, 1H), 6.71 (t, J = 7.0 Hz, 2H), 3.94 (d, J = 10.8 Hz, 2H), 3.65 (t, J = 11.4 Hz, 1H), 3.54 (d, J = 12.3 Hz, 1H), 3.33 (t, J = 10.5 Hz, 1H), 3.25 (t, J = 9.0 Hz, 1H), 3.02 (dd, J = 15.4, 10.1 Hz, 1H), 2.98 – 2.93 (m, 1H), 2.89 (dd, J = 15.6, 5.6 Hz, 1H), 2.63 (dd, J = 14.7, 9.2 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 178.8, 145.4, 128.9, 127.6, 122.7, 119.0, 112.3, 70.3, 66.8, 56.2, 46.7, 41.9, 30.1. **HRMS (ESI)** m/z: [M+Na]⁺ calcd. for C₁₃H₁₅NNaO₃: 256.0944, found: 256.0940.

2,4-dimethyl-1,2,4,4a,5,6-hexahydro-[1,4]oxazino[4,3-a]quinoline-5-carboxylic acid (3k)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (72% yield, dr 1.3:1) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 10.53 (s, 2H), 7.13 (dd, J = 14.1, 6.8 Hz, 2H), 7.03 (d, J = 7.4 Hz, 2H), 6.87 (d, J = 8.3 Hz, 1H), 6.82 (t, J = 7.3 Hz, 1H), 6.74 (t, J = 7.3 Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H), 3.89 - 3.75

(m, 4H), 3.71 (dd, J = 11.8, 2.3 Hz, 1H), 3.58 (dd, J = 12.9, 1.9 Hz, 1H), 3.45 (dd, J = 9.3, 6.2 Hz, 1H), 3.24 (dd, J = 9.3, 4.9 Hz, 1H), 3.18 – 2.99 (m, 4H), 2.92 – 2.70 (m, 5H), 2.49 (t, J = 11.3 Hz, 1H), 1.31 (d, J = 6.2 Hz, 4H), 1.25 (d, J = 6.2 Hz, 5H), 1.22 (d, J = 6.2 Hz, 3H), 1.16 (d, J = 6.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 179.1, 176.7, 145.9, 145.1, 129.7, 127.9, 127.7, 127.3, 125.5, 122.4, 120.3, 118.7, 113.9, 112.3, 75.0, 73.5, 70.9, 70.0, 62.2, 61.4, 53.8, 53.5, 43.5, 39.2, 29.9, 28.8, 19.2, 18.9, 18.3, 17.7. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₅H₂₀NO₃: 262.1438, found: 262.1430.

5,6,6a,7,8,9,10,11-octahydroazepino[1,2-a]quinoline-6-carboxylic acid (3l)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (74% yield, dr 1:1) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 9.95 (dd, J = 152.3, 105.5 Hz, 1H), 7.13 – 6.98 (m, 2H), 6.65 – 6.54 (m, 2H), 3.91 (m, 1H), 3.82 (m, 2H), 3.26 – 3.13 (m, 1H), 3.13 – 2.98 (m, 2H), 2.94 – 2.83 (m, 1H), 2.81 – 2.74 (m, 1H), 2.08 (m, 1H), 1.85 – 1.73 (m, 1H), 1.72 – 1.53 (m, 5H), 1.46 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 179.5, 179.3, 143.8, 143.3, 129.6, 129.1, 127.5, 127.4, 118.5, 118.3, 115.5, 115.3, 110.4, 110.0, 59.0, 58.9, 49.7, 49.3, 42.2, 41.7, 34.8, 30.7, 27.1, 26.5, 26.4, 26.2, 25.9, 25.7, 24.9. **HRMS (ESI) m/z:** [M+Na]⁺ calcd. for C₁₅H₁₉NNaO₂: 268.1308, found: 268.1310.

1,2',2'-trimethyl-1,4-dihydro-2H-spiro[quinoline-3,5'-[1,3]dioxane]-4',6'-dione (4a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (93% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.17 (t, *J* = 7.1 Hz, 1H), 7.04 (d, *J* = 6.7 Hz, 1H), 6.77-6.73 (m, 2H), 3.59 (s, 2H), 3.33 (s, 2H), 3.00 (s, 3H), 1.79 (s, 3H), 1.78 (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃) δ 167.5, 144.7, 128.4, 127.6, 119.3, 117.8, 111.9, 105.2, 57.2, 47.4, 39.6, 34.4, 29.5, 28.5. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₅H₁₈NO₄: 276.1230, found: 276.1224.

5-chloro-1,2',2'-trimethyl-1,4-dihydro-2H-spiro[quinoline-3,5'-[1,3]dioxane]-4',6'-dione (4b)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (90% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.09 (t, *J* = 8.1 Hz, 1H), 6.82 (d, *J* = 7.9 Hz, 1H), 6.64 (d, *J* = 8.3 Hz, 1H), 3.58 (s, 2H), 3.35 (s, 2H), 3.02 (s, 3H), 1.81 (s, 3H), 1.81 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 167.2, 146.1, 133.9, 127.7, 118.5, 117.4, 110.5, 105.4, 56.9, 47.1, 40.1, 31.8, 29.7, 28.3. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₅H₁₇ClNO₄: 310.0841, found: 310.0849.

5-bromo-1,2',2'-trimethyl-1,4-dihydro-2H-spiro[quinoline-3,5'-[1,3]dioxane]-4',6'-dione (4c)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (83% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.13-6.97 (m, 2H), 6.71 (d, *J* = 6.8 Hz, 1H), 3.61 (s, 2H), 3.37 (s, 2H), 3.05 (s, 3H), 1.85 (s, 6H). ¹³**C** NMR (125 MHz, CDCl₃) δ 167.1, 146.2, 128.2, 124.8, 121.8, 118.9, 111.2, 105.4, 57.0, 47.5, 40.1, 34.7, 29.7, 28.3. **HRMS (ESI)** m/z: [M+H]⁺ calcd. for C₁₅H₁₇BrNO₄: 354.0335, found: 354.0331.

6-fluoro-1,2',2'-trimethyl-1,4-dihydro-2H-spiro[quinoline-3,5'-[1,3]dioxane]-4',6'-dione (4d)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (72% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 6.88 (t, J = 8.5 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.65 (dd, J = 8.8, 4.6 Hz, 1H), 3.56 (s, 2H), 3.31 (s, 2H), 2.98 (s, 3H), 1.81 (s, 3H), 1.78 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 167.34, 155.7 (d, J = 236.3 Hz), 141.20 (d, J = 1.7 Hz), 121.08 (d, J = 7.3 Hz), 114.9 (d, J = 23.7 Hz), 113.8 (d, J = 22.5 Hz), 113.08 (d, J = 7.7 Hz), 105.3, 57.8, 47.6, 40.1, 33.9, 29.6, 28.4. ¹⁹**F NMR** (470 MHz, CDCl₃) δ – 127.18. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₅H₁₇FNO₄: 294.1136, found: 294.1130.

6-chloro-1,2',2'-trimethyl-1,4-dihydro-2H-spiro[quinoline-3,5'-[1,3]dioxane]-4',6'-dione (4e)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (82% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.04 (d, *J* = 8.7 Hz, 1H), 6.94 (s, 1H), 6.56 (d, *J* = 8.7 Hz, 1H), 3.51 (s, 2H), 3.21 (s, 2H), 2.92 (s, 3H), 1.73 (s, 3H), 1.71 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.2, 142.2, 127.1, 126.4, 121.4, 119.7, 112.1, 104.3, 56.1, 45.9, 38.7, 33.0, 28.5, 27.4. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₅H₁₇ClNO₄: 310.0841, found: 310.0847.

1,2',2'-trimethyl-6-(trifluoromethyl)-1,4-dihydro-2H-spiro[quinoline-3,5'-[1,3]dioxane]-4',6'-dione (4f)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (84% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.40 (d, J = 8.4 Hz, 1H), 7.26 (s, 1H), 6.73 (d, J = 8.6 Hz, 1H), 3.66 (s, 2H), 3.33 (s, 2H), 3.05 (s, 3H), 1.80 (s, 6H). ¹³**C** NMR (125 MHz, CDCl₃) δ 167.0, 146.8, 125.5 (q, J = 3.7 Hz), 125.0 (q, J = 3.8 Hz), 124.9 (q, J = 268.8 Hz), 123.8, 121.7, 118.8 (q, J = 32.5 Hz), 118.3, 111.0, 105.4, 56.4, 46.0, 39.5, 34.6, 29.4, 28.5. ¹⁹F NMR (470 MHz, CDCl₃) δ - 60.94. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₆H₁₇F₃NO₄: 344.1104, found: 344.1119.

8-fluoro-1,2',2'-trimethyl-1,4-dihydro-2H-spiro[quinoline-3,5'-[1,3]dioxane]-4',6'-dione (4g)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (62% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 6.96 – 6.86 (m, 2H), 6.80 (d, J = 6.5 Hz, 1H), 3.66 (s, 2H), 3.36 (s, 2H), 3.11 (s, 3H), 1.86 (s, 3H), 1.77 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 167.8, 153.6 (d, J = 242.5 Hz), 133.4 (d, J = 10.0 Hz), 124.7 (d, J = 3.75 Hz), 124.1 (d, J = 3.75 Hz), 120.1 (d, J = 7.5 Hz), 114.1 (d, J =21.3 Hz), 105.3, 60.1, 45.4, 43.7, 33.3, 29.7, 28.3. ¹⁹**F NMR** (470 MHz, CDCl₃) δ – 124.33. **HRMS (ESI) m/z:** [M+Na]⁺ calcd. for C₁₅H₁₆FNNaO₄: 316.0956, found: 316.0959.

8-chloro-1,2',2'-trimethyl-1,4-dihydro-2H-spiro[quinoline-3,5'-[1,3]dioxane]-4',6'-dione (4h)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (55% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.26 (d, *J* = 7.8 Hz, 1H), 7.08 (d, *J* = 7.3 Hz, 1H), 6.93 (d, *J* = 7.6 Hz, 1H), 3.73 (s, 2H), 3.44 (s, 2H), 3.12 (s, 3H), 1.92 (s, 3H), 1.80 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 168.0, 142.7, 128.9, 127.3, 126.4, 125.6, 122.3, 105.5, 60.7, 46.1, 44.3, 33.4, 29.8, 28.4. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₅H₁₇ClNO₄: 310.0841, found: 310.0849.

2',2'-dimethyl-1,2,3,3a-tetrahydro-5H-spiro[pyrrolo[1,2-a]quinoline-4,5'-[1,3]dioxane]-4',6'-dione (4i)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (70% yield) as a pale yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.16 (t, J = 7.6 Hz, 1H), 7.03 (d, J = 7.3 Hz, 1H), 6.66 (t, J = 7.3 Hz, 1H), 6.60 (d, J = 8.0 Hz, 1H), 3.96 (t, J = 7.4 Hz, 1H), 3.62 (t, J = 8.2 Hz, 1H), 3.55 (d, J = 16.2 Hz, 1H), 3.30 (q, J = 8.1 Hz, 1H), 3.13 (d, J = 16.2 Hz, 1H), 2.19 (dd, J = 7.1, 4.1 Hz, 1H), 1.99 (dd, J = 17.8, 8.3 Hz,

2H), 1.76 (d, J = 13.8 Hz, 6H), 1.68 (dd, J = 19.9, 9.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 164.1, 143.1, 128.2, 127.8, 116.9, 116.1, 111.5, 104.7, 64.7, 47.9, 47.3, 36.5, 29.9, 28.5, 28.1, 23.1. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₇H₂₀NO₄: 302.1387, found: 302.1381.

2',2'-dimethyl-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,5'-[1,3]dioxane]-4',6'dione (4j)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (82% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.13 (t, J = 7.7 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 6.83 (d, J = 8.2 Hz, 1H), 6.77 (t, J = 7.4 Hz, 1H), 3.63 (dd, J = 12.3, 4.0 Hz, 1H), 3.54 – 3.45 (m, 2H), 3.41 (m, 1H), 3.20 (d, J = 17.0 Hz, 1H), 1.99 – 1.87 (m, 3H), 1.84 – 1.77 (m, 4H), 1.76 – 1.67 (m, 4H), 1.62 (m, 1H), 1.47 (dd, J = 22.8, 11.2 Hz, 1H), 1.41 – 1.29 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 169.4, 166.6, 146.2, 128.6, 126.8, 119.7, 118.3, 115.1, 104.9, 67.6, 50.6, 50.4, 32.8, 30.7, 30.5, 29.5, 28.3, 27.7, 26.7. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₉H₂₄NO₄: 330.1700, found: 330.1705.

6-methyl-1',2',3',3a'-tetrahydro-2H,4H,5'H-spiro[pyran-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione (6a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (77% yield, dr 5:1) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.14 (dd, J = 13.7, 6.1 Hz, 1H), 7.04 (d, J = 7.4 Hz, 1H), 6.64 (dd, J = 13.5, 6.3 Hz, 1H), 6.57 (t, J = 6.6 Hz, 1H), 5.71 (s, 1H), 3.77 (dd, J = 9.4, 6.0 Hz, 1H), 3.56 (td, J = 8.6, 2.5 Hz, 1H), 3.47 (d, J = 16.4 Hz, 1H), 3.31 (dt, J = 15.6, 7.9 Hz, 1H), 2.96 (d, J = 16.4 Hz, 1H), 2.17 (d, J = 4.9 Hz, 3H), 2.13 – 2.06 (m, 1H), 2.06 – 1.99 (m, 1H), 1.99 – 1.90 (m, 1H), 1.64 – 1.53 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 193.7, 168.47, 165.7, 143.2, 128.4, 127.6, 118.3, 116.1, 111.2, 106.1, 63.7, 53.8, 47.6, 36.5, 27.9, 23.4, 20.5. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₇H₁₈NO₃: 284.1281, found: 284.1289.

6'-chloro-6-methyl-1',2',3',3a'-tetrahydro-2H,4H,5'H-spiro[pyran-3,4'-pyrrolo[1,2-a]quinoline]-2,4dione (6b)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (85% yield, dr 5:1) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.06 (d, J = 6.5 Hz, 1H), 6.73 (d, J = 7.7 Hz, 1H), 6.50 (d, J = 7.1 Hz, 1H), 5.67 (d, J = 88.0 Hz, 1H), 3.71-3.61 (m, 1H), 3.60-3.50 (m, 1H), 3.40 – 3.16 (m, 3H), 2.21 (s, 3H), 2.18-2.08 (m, 1H), 2.07-2.00 (m, 1H), 2.00-1.90 (m, 1H), 1.67-1.55 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ

193.1, 168.5, 165.8, 144.3, 133.9, 127.7, 116.9, 116.8, 109.7, 106.3, 63.5, 54.1, 47.7, 33.3, 27.9, 23.4, 20.5. **HRMS (ESI) m/z:** [M+Na]⁺ calcd. for C₁₇H₁₆ClNNaO₃: 340.0711, found: 340.0714.

7'-bromo-6-methyl-1',2',3',3a'-tetrahydro-2H,4H,5'H-spiro[pyran-3,4'-pyrrolo[1,2-a]quinoline]-2,4dione (6c)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (70% yield, dr 4:1) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.22 (d, *J* = 8.1 Hz, 1H), 7.12 (d, *J* = 31.5 Hz, 1H), 6.45 (d, *J* = 8.3 Hz, 1H), 5.65 (d, *J* = 87.3 Hz, 1H), 3.96 – 3.69 (m, 1H), 3.53 (t, *J* = 7.9 Hz, 1H), 3.41 (dd, *J* = 29.5, 16.3 Hz, 1H), 3.34 – 3.20 (m, 1H), 2.97 (dd, *J* = 53.7, 16.3 Hz, 1H), 2.21 (s, 3H), 2.15 – 2.07 (m, 1H), 2.00 – 1.90 (m, 1H), 1.75 – 1.64 (m, 1H), 1.57 (dd, *J* = 19.3, 10.0 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 193.2, 168.5, 165.5, 142.2, 130.8, 130.2, 120.4, 112.7, 107.9, 106.1, 63.7, 53.4, 47.6, 35.9, 27.9, 23.3, 20.5. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₇H₁₇BrNO₃: 362.0386, found: 362.0386.

6-methyl-2,4-dioxo-1',2',3',3a'-tetrahydro-2H,4H,5'H-spiro[pyran-3,4'-pyrrolo[1,2-a]quinoline]-7'carbonitrile (6d)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:30) afforded the product (70% yield, dr 4:1) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.07 (dd, J = 29.8, 7.6 Hz, 1H), 6.91 (t, J = 9.2 Hz, 1H), 6.77 (s, 1H), 5.77 (s, 1H), 3.79 – 3.71 (m, 1H), 3.56 (t, J = 8.6 Hz, 1H), 3.48 (d, J = 16.9 Hz, 1H), 3.30 (dd, J = 16.5, 8.2 Hz, 1H), 2.98 (d, J = 16.9 Hz, 1H), 2.21 (d, J = 17.7 Hz, 3H), 2.13 (m, 2H), 2.00 (dd, J = 17.8, 9.9 Hz, 1H), 1.66 – 1.53 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 192.8, 168.7, 165.6, 143.2, 128.9, 123.8, 119.5, 113.7, 110.9, 106.2, 63.7, 52.9, 47.5, 35.9, 27.9, 23.3, 20.5. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₈H₁₇N₂O₃: 309.1234, found: 309.1236.

8'-chloro-6-methyl-1',2',3',3a'-tetrahydro-2H,4H,5'H-spiro[pyran-3,4'-pyrrolo[1,2-a]quinoline]-2,4dione (6e)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (73% yield, dr 5:1) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 6.90 (dd, J = 33.3, 7.5 Hz, 1H), 6.67 – 6.56 (m, 1H), 6.55 (s, 1H), 5.64 (d, J = 92.0 Hz, 1H), 3.85 (dd, J = 81.5, 6.6 Hz, 1H), 3.53 (t, J = 7.8 Hz, 1H), 3.38 (t, J = 12.9 Hz, 1H), 3.33 – 3.21 (m, 1H), 3.00 (dd, J = 54.9, 16.1 Hz, 1H), 2.20 (s, 3H), 2.08 (dd, J = 16.7, 10.4 Hz, 2H), 1.99 (d, J =

7.8 Hz, 1H), 1.61 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 193.4, 168.5, 165.5, 144.0, 133.1, 129.2, 116.6, 115.8, 110.9, 106.1, 63.3, 53.4, 47.6, 36.2, 27.9, 23.4, 20.5. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₇H₁₇ClNO₃: 318.0891, found: 318.0898.

6,8'-dimethyl-1',2',3',3a'-tetrahydro-2H,4H,5'H-spiro[pyran-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione (6f)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (75% yield, dr 4:1) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 6.90 (dd, J = 35.7, 7.3 Hz, 1H), 6.48 (t, J = 11.0 Hz, 1H), 6.42 (s, 1H), 5.72 (s, 1H), 3.82 – 3.75 (m, 1H), 3.57 (t, J = 8.2 Hz, 1H), 3.42 (t, J = 13.8 Hz, 1H), 3.39 – 3.26 (m, 1H), 2.95 (d, J = 16.3 Hz, 1H), 2.31 (s, 3H), 2.20 (s, 3H), 2.14-2.05 (m, 1H), 2.05-2.00 (m, 1H), 1.99 – 1.90 (m, 1H), 1.62-1.60 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 193.8, 168.3, 165.6, 142.9, 137.2, 128.2, 117.1, 115.2, 111.9, 106.1, 63.6, 54.0, 47.5, 36.4, 27.9, 23.4, 21.7, 20.5. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₈H₂₀NO₃: 298.1438, found: 298.1432.

6-methyl-2,4-dioxo-1',2',3',3a'-tetrahydro-2H,4H,5'H-spiro[pyran-3,4'-pyrrolo[1,2-a]quinoline]-8'carbonitrile (6g)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (81% yield, dr 5:1) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.08 (dd, J = 29.9, 7.5 Hz, 1H), 6.91 (t, J = 9.2 Hz, 1H), 6.77 (s, 1H), 5.68 (d, J = 90.2 Hz, 1H), 3.96 – 3.70 (m, 1H), 3.56 (t, J = 8.5 Hz, 1H), 3.45 (dd, J = 32.9, 16.7 Hz, 1H), 3.29 (dt, J = 15.4, 7.8 Hz, 1H), 3.04 (dd, J = 52.8, 16.7 Hz, 1H), 2.23 (s, 3H), 2.17 – 2.05 (m, 2H), 2.05 – 1.94 (m, 1H), 1.72 – 1.58 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 192.8, 168.7, 165.6, 143.2, 128.9, 123.8, 119.8, 119.5, 113.7, 110.9, 106.2, 63.7, 52.9, 47.5, 35.9, 27.9, 23.3, 20.5. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₈H₁₇N₂O₃: 309.1234, found: 309.1238.

(Z)-1-(1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinolin-4-yl)-3-hydroxybut-2-en-1-one (8a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (75% yield, dr > 20:1, tr 15:1) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 15.70 (s, 1H), 7.14 (t, *J* = 7.4 Hz, 1H), 7.06 (d, *J* = 7.0 Hz, 1H), 6.62 (t, *J* = 7.0 Hz, 1H), 6.49 (d, *J* = 7.9 Hz, 1H), 5.61 (s, 1H), 3.65 – 3.52 (m, 1H), 3.46 (t, *J* = 8.8 Hz, 1H), 3.25 (q, *J* = 8.4 Hz, 1H), 3.09 (t, *J* = 14.0 Hz, 1H), 2.87 (d, *J* = 15.6 Hz, 1H), 2.21-2.17 (m, 2H), 2.136 (s, 3H), 2.03-

1.93 (m, 1H), 1.58 – 1.44 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 195.2, 191.8, 143.8, 128.5, 127.6, 120.3, 115.2, 110.3, 100.2, 59.8, 47.2, 46.5, 32.6, 31.7, 25.0, 23.9. **HRMS (ESI)** m/z: [M+H]⁺ calcd. for C₁₆H₂₀NO₂: 258.1489, found: 258.1483.

(Z)-1-(6-chloro-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinolin-4-yl)-3-hydroxybut-2-en-1-one (8b)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (83% yield, dr > 20:1, tr 19:1) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 15.63 (s, 1H), 7.00 (t, J = 7.9 Hz, 1H), 6.65 (d, J = 7.8 Hz, 1H), 6.34 (d, J = 8.1 Hz, 1H), 5.59 (s, 1H), 3.49 (dd, J = 14.4, 9.7 Hz, 1H), 3.38 (t, J = 9.0 Hz, 1H), 3.28 – 3.15 (m, 2H), 2.87 – 2.77 (m, 1H), 2.16 (dd, J = 11.5, 6.6 Hz, 2H), 2.09 (d, J = 18.4 Hz, 4H), 1.96 (dd, J = 19.9, 8.9 Hz, 1H), 1.54 – 1.43 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 194.5, 191.9, 145.1, 134.1, 127.8, 118.1, 115.9, 108.8, 100.2, 59.2, 47.3, 46.4, 31.6, 29.9, 24.9, 23.8. **HRMS (ESI)** m/z: [M+H]⁺ calcd. for C₁₆H₁₉ClNO₂: 292.1099, found: 292.1091.

(Z)-1-(6-bromo-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinolin-4-yl)-3-hydroxybut-2-en-1-one (8c)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (78% yield, dr 4:1, tr 15:1) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 15.65 (s, 1H), 6.93 (t, J = 7.7 Hz, 1H), 6.83 (t, J = 10.7 Hz, 1H), 6.38 (t, J = 8.4 Hz, 1H), 5.59 (s, 1H), 3.50-3.45 (m, 1H), 3.37 (t, J = 9.0 Hz, 1H), 3.25-3.20 (m, 1H), 3.15 (d, J = 16.0 Hz, 1H), 2.86 – 2.80 (m, 1H), 2.15-2.10 (m, 1H), 2.11-2.03 (m, 4H), 1.99 – 1.89 (m, 2H), 1.55 – 1.43 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 194.4, 192.0, 145.1, 128.3, 125.0, 119.6, 119.1, 109.4, 100.3, 59.2, 47.3, 46.6, 32.9, 31.6, 25.1, 23.8. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₆H₁₉BrNO₂: 336.0594, found: 336.0590.

(Z)-1-(7-bromo-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinolin-4-yl)-3-hydroxybut-2-en-1-one (8d)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (68% yield, dr > 20:1, tr 19:1) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 15.66 (s, 1H), 7.19 (d, J = 8.4 Hz, 1H), 7.13 (s, 1H), 6.32 (d, J = 8.4 Hz, 1H), 5.59 (s, 1H), 3.54 (d, J = 2.2 Hz, 1H), 3.40 (t, J = 8.8 Hz, 1H), 3.19 (q, J = 8.4 Hz, 1H), 3.04 (t, J = 14.1 Hz, 1H), 2.81 (d, J = 15.7 Hz, 1H), 2.24 – 2.05 (m, 6H), 1.99 (dd, J = 19.1, 9.1 Hz, 1H), 1.57 – 1.41 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 194.7, 191.8, 142.7, 130.8, 130.1, 122.3, 111.7, 106.7, 100.2, 59.8,

47.3, 46.1, 32.2, 31.7, 24.9, 23.8. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₆H₁₉BrNO₂: 336.0594, found: 336.0598.

(Z)-4-(3-hydroxybut-2-enoyl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinoline-7-carbonitrile (8e)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (63% yield, dr > 20:1, tr 19:1) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 15.63 (s, 1H), 7.06 (d, J = 7.1 Hz, 1H), 6.84 (d, J = 7.2 Hz, 1H), 6.62 (s, 1H), 5.61 (s, 1H), 3.58 (t, J = 9.9 Hz, 1H), 3.43 (t, J = 8.9 Hz, 1H), 3.20 (q, J = 8.3 Hz, 1H), 3.07 (t, J = 14.3 Hz, 1H), 2.88 (d, J = 16.2 Hz, 1H), 2.25 – 2.14 (m, 2H), 2.12 (d, J = 12.2 Hz, 4H), 2.06 – 1.93 (m, 1H), 1.58 – 1.45 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 194.2, 191.8, 143.9, 128.9, 125.5, 119.9, 118.6, 112.5, 110.9, 100.3, 59.8, 47.2, 45.6, 32.5, 31.7, 24.9, 23.8. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₇H₁₉N₂O₂: 283.1441, found: 283.1448.

(Z)-1-(8-(benzyloxy)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinolin-4-yl)-3-hydroxybut-2-en-1-one (8f)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (62% yield, dr 10:1, tr 11:1) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) 15.69 (s, 1H), 7.47 (d, J = 7.2 Hz, 2H), 7.41 (dd, J = 10.2, 4.7 Hz, 2H), 7.35 (dd, J = 8.3, 6.3 Hz, 1H), 6.95 (d, J = 8.1 Hz, 1H), 6.26 (dd, J = 8.1, 2.4 Hz, 1H), 6.14 (d, J = 2.4 Hz, 1H), 5.60 (s, 1H), 5.07 (s, 2H), 3.57 (td, J = 10.1, 5.1 Hz, 1H), 3.41 (td, J = 8.9, 1.4 Hz, 1H), 3.22 (td, J = 9.4, 7.5 Hz, 1H), 3.06 – 2.94 (m, 1H), 2.83 (dd, J = 15.4, 3.8 Hz, 1H), 2.21 – 2.14 (m, 2H), 2.13 (s, 3H), 2.09 (dd, J = 14.0, 5.8 Hz, 1H), 2.02 – 1.91 (m, 1H), 1.55-1.43 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 194.2, 190.7, 157.8, 143.6, 136.5, 127.9, 127.5, 126.8, 126.6, 126.5, 112.4, 99.6, 99.1, 96.7, 68.9, 58.6, 46.1, 45.8, 30.9, 30.7, 23.9, 22.8. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₃H₂₆NO₃: 364.1907, found: 364.1903.

(Z)-4-(3-hydroxybut-2-enoyl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinoline-8-carbonitrile (8g)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (76% yield, dr >20:1, tr 19:1) as a yellow solid.

¹**H** NMR (500 MHz, CDCl₃) δ 15.63 (s, 1H), 7.07 (d, J = 7.4 Hz, 1H), 6.85 (d, J = 7.4 Hz, 1H), 6.62 (s, 1H), 5.61 (s, 1H), 3.63 – 3.54 (m, 1H), 3.43 (t, J = 8.9 Hz, 1H), 3.20 (dd, J = 17.3, 8.6 Hz, 1H), 3.12 – 3.02 (m, 1H), 2.88 (d, J = 16.1 Hz, 1H), 2.26 – 2.08 (m, 6H), 2.00 (dd, J = 12.5, 5.9 Hz, 1H), 1.60 – 1.43 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 194.2, 191.8, 143.9, 128.9, 125.6, 119.9, 118.6, 112.5, 110.9, 100.3,

59.8, 47.2, 45.6, 32.5, 31.7, 24.9, 23.8. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₇H₁₉N₂O₂: 283.1441, found: 283.1446.

(Z)-1-(5,6,6a,6b,7,8,9,10,10a,11-decahydroisoindolo[2,1-a]quinolin-6-yl)-3-hydroxybut-2-en-1-one (8h)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (60% yield, dr 1:0.6, tr 19:1) as a yellow solid.

¹**H** NMR (500 MHz, CDCl₃) δ 15.6 (s, 1H), 15.5 (s, 1H), 7.02 (t, J = 7.0 Hz, 2H), 6.92 (d, J = 6.7 Hz, 2H), 6.47 (dd, J = 15.7, 7.6 Hz, 2H), 6.33 (ddd, J = 22.9, 15.3, 8.2 Hz, 2H), 5.52 (s, 1H), 5.12 (s, 1H), 3.66 (dd, J = 20.8, 11.4 Hz, 1H), 3.42 (q, J = 8.3 Hz, 1H), 3.36 – 3.25 (m, 1H), 3.21 (t, J = 6.8 Hz, 1H), 3.18 – 3.13 (m, 1H), 3.11 – 2.96 (m, 2H), 2.86 (ddd, J = 39.0, 24.7, 10.8 Hz, 2H), 2.74 – 2.60 (m, 2H), 2.12 – 1.98 (m, 5H), 1.97 – 1.81 (m, 5H), 1.78 – 1.68 (m, 2H), 1.68 – 1.54 (m, 4H), 1.46 (dt, J = 18.7, 9.6 Hz, 2H), 1.36 – 1.15 (m, 5H), 1.08 (dd, J = 18.8, 9.7 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 194.6, 194.2, 192.8, 192.5, 191.3, 191.1, 190.9, 190.6, 143.7, 143.2, 142.7, 127.6, 127.6, 127.3, 127.3, 126.7, 126.5, 126.5, 126.4, 119.1, 118.9, 117.4, 117.1, 114.0, 113.8, 113.8, 113.5, 109.3, 108.5, 108.5, 108.0, 99.7, 99.5, 99.2, 99.0, 63.2, 62.6, 58.0, 57.4, 52.8, 52.4, 50.9, 50.3, 49.8, 46.4, 44.9, 42.7, 42.5, 42.4, 38.8, 38.7, 36.4, 35.6, 32.7, 32.6, 30.7, 30.3, 28.1, 27.9, 27.8, 27.6, 26.8, 24.9, 24.7, 24.7, 24.7, 24.6, 24.4, 24.2, 24.1, 24.0, 23.9, 23.1, 20.4, 20.4. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₀H₂₆NO₂: 312.1958, found: 312.1952.

(Z)-1-(1,2,4,4a,5,6-hexahydro-[1,4]oxazino[4,3-a]quinolin-5-yl)-3-hydroxybut-2-en-1-one (8i)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (66% yield, dr > 20:1, tr 19:1) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 15.6 (s, 1H), 7.16 (t, J = 7.6 Hz, 1H), 7.04 (d, J = 7.4 Hz, 1H), 6.82 (d, J = 8.3 Hz, 1H), 6.78 (t, J = 7.3 Hz, 1H), 5.58 (s, 1H), 5.32 (s, 1H), 4.07 – 3.99 (m, 1H), 3.94 (d, J = 8.7 Hz, 1H), 3.70 (ddd, J = 18.9, 13.8, 8.3 Hz, 2H), 3.39 – 3.26 (m, 2H), 3.11 (dd, J = 15.8, 11.5 Hz, 1H), 3.01 (td, J = 11.9, 3.5 Hz, 1H), 2.86 (dd, J = 15.8, 5.1 Hz, 1H), 2.57 – 2.50 (m, 1H), 2.25 (d, J = 3.2 Hz, 1H), 2.12 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 192.8, 192.7, 192.5, 192.4, 145.3, 145.1, 129.4, 129.2, 127.5, 127.5, 122.6, 122.4, 118.7, 112.9, 112.3, 100.2, 99.9, 76.8, 70.2, 68.4, 66.9, 66.9, 66.1, 56.5, 56.3, 54.2, 48.2, 46.6, 44.8, 42.7, 31.4, 28.7, 25.3, 25.2. **HRMS (ESI)** m/z: [M+H]⁺ calcd. for C₁₆H₂₀NO₃: 274.1438, found: 274.1434.

(Z)-3-hydroxy-1-(5,6,6a,7,8,9,10,11-octahydroazepino[1,2-a]quinolin-6-yl)but-2-en-1-one (8j)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (68% yield, dr 10:1, tr 11:1) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 15.57 (s, 1H), 6.99 (t, J = 7.3 Hz, 1H), 6.94 (d, J = 7.0 Hz, 1H), 6.50 (t, J = 7.4 Hz, 2H), 5.57 (s, 1H), 3.89 – 3.77 (m, 1H), 3.63 (d, J = 10.7 Hz, 1H), 3.18 – 3.07 (m, 1H), 3.02 (t, J = 14.8 Hz, 1H), 2.88 (d, J = 13.1 Hz, 1H), 2.66 (d, J = 15.8 Hz, 1H), 2.03 (s, 3H), 1.50 (m, 4H), 1.30 (m, 4H). ¹³**C NMR** (125 MHz, CDCl₃) δ 192.6, 190.9, 142.4, 128.5, 126.5, 117.3, 114.1, 108.9, 98.0, 59.0, 48.6, 42.8, 29.5, 25.3, 25.2, 24.9, 24.2, 23.8. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₈H₂₄NO₂: 286.1802, found: 286.1809.

(5-fluoro-1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)(2-hydroxyphenyl)methanone (9a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (71% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 12.30 (s, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.55 – 7.48 (m, 1H), 7.10 – 7.05 (m, 1H), 7.04 (t, J = 6.2 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.47 – 6.40 (m, 2H), 3.96 – 3.87 (m, 1H), 3.48 – 3.41 (m, 1H), 3.39 (m, 1H), 3.18 – 3.11 (m, 1H), 2.96 (s, 3H), 2.91 (dd, J = 16.5, 11.5 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 206.9, 163.2, 161.5 (d, J = 240.0 Hz), 147.3 (d, J = 7.5 Hz), 136.8, 129.8, 127.7 (d, J = 11.3 Hz), 119.2, 118.9, 118.4, 108.5 (d, J = 20.0 Hz), 106.8 (d, J = 2.5 Hz), 103.4 (d, J = 22.5 Hz), 52.7, 39.7, 39.2, 24.4. ¹⁹**F NMR** (470 MHz, CDCl₃) δ -123.35. **HRMS** (**ESI**) **m/z:** [M+H]⁺ calcd. for C₁₇H₁₇FNO₂: 286.1238, found: 286.1232.

(5-chloro-1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)(2-hydroxyphenyl)methanone (9b)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (75% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 12.30 (s, 1H), 7.87 – 7.80 (m, 1H), 7.54 – 7.46 (m, 1H), 7.07 – 7.00 (m, 2H), 6.96 – 6.89 (m, 1H), 6.74 (d, J = 7.9 Hz, 1H), 6.56 (d, J = 8.3 Hz, 1H), 3.92 (dd, J = 10.7, 5.4 Hz, 1H), 3.44 – 3.38 (m, 1H), 3.38 – 3.34 (m, 1H), 3.21 (m, 1H), 2.99 – 2.90 (m, 4H). ¹³**C NMR** (125 MHz, CDCl₃) δ 206.7, 163.2, 147.4, 136.8, 134.4, 129.8, 127.7, 119.3, 119.2, 119.0, 118.5, 117.7, 109.9, 52.8, 39.8, 39.7, 29.3. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₇H₁₇ClNO₂: 302.0942, found: 302.0947.

(5-bromo-1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)(2-hydroxyphenyl)methanone (9c)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (77% yield) as a yellow solid.

¹**H** NMR (500 MHz, CDCl₃) δ 12.31 (s, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.49 (dd, J = 11.4, 4.1 Hz, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.97 – 6.85 (m, 3H), 6.59 (d, J = 7.9 Hz, 1H), 3.96 – 3.87 (m, 1H), 3.44 – 3.32 (m, 2H), 3.23 – 3.13 (m, 1H), 2.99 – 2.90 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 206.7, 163.2, 147.5, 136.9, 129.8, 128.2, 125.4, 120.9, 120.8, 119.3, 119.0, 118.5, 110.5, 52.8, 40.1, 39.7, 32.3. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₇H₁₇BrNO₂: 346.0437, found: 346.0430.

(6-chloro-1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)(2-hydroxyphenyl)methanone (9d)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (80% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 12.27 (s, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.07 (dd, J = 8.7, 2.0 Hz, 1H), 7.03 (d, J = 8.3 Hz, 1H), 6.99 (s, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.57 (d, J = 8.7 Hz, 1H), 3.98 – 3.88 (m, 1H), 3.48 – 3.36 (m, 2H), 3.10 (dd, J = 15.9, 11.5 Hz, 1H), 2.92 (d, J = 8.7 Hz, 4H). ¹³**C NMR** (125 MHz, CDCl₃) δ 206.7, 163.2, 144.3, 136.9, 129.7, 128.5, 127.3, 122.8, 121.5, 119.2, 119.0, 118.4, 112.4, 53.0, 39.9, 39.3, 31.5. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₇H₁₇ClNO₂: 302.0942, found: 302.0951.

3-(2-hydroxybenzoyl)-1-methyl-1,2,3,4-tetrahydroquinoline-6-carbonitrile (9e)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (82% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 12.20 (s, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.38 (d, J = 8.6 Hz, 1H), 7.23 (s, 1H), 7.03 (d, J = 8.4 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 6.60 (d, J = 8.6 Hz, 1H), 3.94 – 3.85 (m, 1H), 3.63 (t, J = 11.0 Hz, 1H), 3.48 (d, J = 11.9 Hz, 1H), 3.09 – 2.93 (m, 5H). ¹³**C NMR** (125 MHz, CDCl₃) δ 206.1, 163.2, 148.4, 137.1, 132.3, 132.2, 129.7, 120.9, 120.5, 119.4, 119.1, 118.2, 110.4, 97.8, 52.6, 38.9, 31.5. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₈H₁₇N₂O₂: 293.1285, found: 293.1273.

(2-hydroxyphenyl)(1-methyl-6-(trifluoromethyl)-1,2,3,4-tetrahydroquinolin-3-yl)methanone (9f)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (78% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 12.18 (s, 1H), 7.74 (dd, J = 8.1, 1.4 Hz, 1H), 7.46 – 7.39 (m, 1H), 7.26 (dd, J = 8.6, 1.2 Hz, 1H), 7.14 (d, J = 6.5 Hz, 1H), 6.94 (dd, J = 8.4, 0.8 Hz, 1H), 6.87 – 6.82 (m, 1H), 6.55 (d, J = 8.6 Hz, 1H), 3.83 (ddd, J = 10.8, 6.5, 4.5 Hz, 1H), 3.52 – 3.44 (m, 1H), 3.35 (ddd, J = 11.7, 3.9, 2.3 Hz, 1H), 3.05-2.97 (m, 1H), 2.95 – 2.85 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 206.5, 163.2, 147.9, 137.0, 129.7, 128.3, 126.1, 125.78 (q, J = 3.6 Hz), 125.04 (q, J = 268.75 Hz), 124.95 (q, J = 3.8 Hz), 120.7, 119.3, 119.1, 118.4, 117.9 (q, J = 32.5 Hz), 110.2, 52.7, 39.4, 39.0, 31.8. ¹⁹F NMR (470 MHz, CDCl₃) δ -60.80. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₈H₁₇F₃NO₂: 336.1206, found: 336.1219.

(8-fluoro-1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)(2-hydroxyphenyl)methanone (9g)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (75% yield) as a yellow solid.

¹**H** NMR (500 MHz, CDCl₃) δ 12.33 (s, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.92 – 6.83 (m, 2H), 6.77 (dt, J = 12.7, 6.4 Hz, 1H), 3.93 – 3.84 (m, 1H), 3.40 (d, J = 12.6 Hz, 1H), 3.27 – 3.14 (m, 2H), 3.05 (s, 3H), 2.92 (d, J = 15.2 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 206.9, 163.2, 154.4 (d, J = 242.5 Hz), 136.9, 135.2 (d, J = 8.8 Hz), 129.6, 127.7 (d, J = 3.8 Hz), 124.9 (d, J = 2.5 Hz), 120.3 (d, J = 8.8 Hz), 119.2, 119.0, 118.5, 114.4 (d, J = 21.3 Hz), 55.2, 43.1, 42.9, 37.2, 31.1, 31.0. ¹⁹F NMR (470 MHz, DMSO) δ – 123.89. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₇H₁₇FNO₂: 286.1238, found: 286.1230.

(8-chloro-1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)(2-hydroxyphenyl)methanone (9h)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (61% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 12.31 (s, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.20 – 7.13 (m, 1H), 7.01 – 6.95 (m, 2H), 6.89 (t, J = 7.6 Hz, 1H), 6.83 (t, J = 7.7 Hz, 1H), 3.91 (t, J = 11.1 Hz, 1H), 3.36 (d, J = 13.4 Hz, 1H), 3.28 – 3.17 (m, 1H), 3.15 – 3.05 (m, 1H), 2.96 (s, 3H), 2.88 (dd, J = 16.9, 4.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 206.8, 163.2, 144.4, 136.8, 129.4, 128.7, 128.3, 127.7, 122.9, 119.3, 119.1, 118.7, 55.2, 43.2, 34.9, 30.4. **HRMS (ESI)** m/z: [M+H]⁺ calcd. for C₁₇H₁₇ClNO₂: 302.0942, found: 302.0935.

3-(5-chloro-2-hydroxybenzoyl)-1-methyl-1,2,3,4-tetrahydroquinoline-6-carbonitrile (9i)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (71% yield) as a yellow solid.

¹**H** NMR (500 MHz, CDCl₃) δ 12.12 (s, 1H), 7.78 (s, 1H), 7.49 (d, J = 8.9 Hz, 1H), 7.41 (d, J = 8.6 Hz, 1H), 7.26 (s, 1H), 7.01 (d, J = 8.9 Hz, 1H), 6.63 (d, J = 8.6 Hz, 1H), 3.90 – 3.81 (m, 1H), 3.63 (t, J = 10.9 Hz, 1H), 3.54 – 3.47 (m, 1H), 3.13 – 2.96 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 205.4, 161.7, 148.3, 137.0, 132.4, 132.3, 128.8, 124.1, 120.8, 120.7, 120.4, 118.8, 110.5, 97.9, 52.5, 40.0, 38.9, 31.4. **HRMS** (ESI) m/z: [M+Na]⁺ calcd. for C₁₈H₁₅ClN₂NaO₂: 349.0714, found: 349.0710.

1-ethyl-3,4-dihydroquinolin-2(1H)-one (10a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (93% yield) as a yellow solid.

¹**H** NMR (500 MHz, CDCl₃) δ 7.28 – 7.21 (m, 1H), 7.16 (d, *J* = 7.3 Hz, 1H), 7.04 – 6.96 (m, 2H), 3.99 (q, *J* = 7.1 Hz, 2H), 2.92 – 2.83 (m, 2H), 2.63 (dd, *J* = 8.5, 6.3 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.8, 139.6, 127.9, 127.4, 126.5, 122.6, 114.6, 37.3, 31.9, 25.6, 12.8. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₁H₁₄NO: 176.1070, found: 176.1082.

1-ethyl-5-fluoro-3,4-dihydroquinolin-2(1H)-one (10b)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (80% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.28-7.18 (m, 1H), 6.84 – 6.73 (m, 2H), 3.99 (q, J = 7.1 Hz, 2H), 3.00 – 2.86 (m, 2H), 2.63 (dd, J = 8.5, 6.6 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 169.4, 159.8 (d, J = 242.5 Hz), 141.3, 128.1 (d, J = 10.0 Hz), 113.7 (d, J = 21.3 Hz), 110.3, 109.9 (d, J = 22.5 Hz), 37.7, 30.9, 17.6, 12.8. ¹⁹**F NMR** (470 MHz, CDCl₃) δ -117.86. **HRMS** (**ESI**) **m/z**: [M+H]⁺ calcd. for C₁₁H₁₃FNO: 194.0976, found: 194.0970.

5-chloro-1-ethyl-3,4-dihydroquinolin-2(1H)-one (10c)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (90% yield) as a yellow solid.

¹**H** NMR (500 MHz, CDCl₃) δ 7.18 (t, *J* = 8.1 Hz, 1H), 7.09 (d, *J* = 8.0 Hz, 1H), 6.94 (d, *J* = 8.2 Hz, 1H), 3.99 (q, *J* = 7.1 Hz, 2H), 3.08 – 2.98 (m, 2H), 2.70 – 2.58 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.5, 141.1, 133.3, 127.9, 124.6, 123.7, 113.3, 37.8, 31.0, 22.4, 12.7. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₁H₁₃CINO: 210.0680, found: 210.0689.

5-bromo-1-ethyl-3,4-dihydroquinolin-2(1H)-one (10d)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (75% yield) as a yellow solid.

¹**H** NMR (500 MHz, CDCl₃) δ 7.26 (d, *J* = 3.5 Hz, 1H), 7.10 (t, *J* = 8.1 Hz, 1H), 6.97 (d, *J* = 8.2 Hz, 1H), 3.98 (q, *J* = 7.1 Hz, 2H), 3.10 – 2.98 (m, 2H), 2.70 – 2.59 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.4, 141.0, 128.3, 126.8, 126.4, 123.8, 113.9, 37.7, 31.2, 25.4, 12.7. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₁H₁₃BrNO: 254.0175, found: 254.0185.

6-chloro-1-ethyl-3,4-dihydroquinolin-2(1H)-one (10e)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (70% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.22-7.19 (m, 1H), 7.15 (d, J = 2.4 Hz, 1H), 6.94 (d, J = 8.7 Hz, 1H), 3.97 (q, J = 7.1 Hz, 2H), 2.91 – 2.83 (m, 2H), 2.67 – 2.58 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 169.5, 138.2, 128.3, 127.9, 127.7, 127.3, 115.8, 37.5, 31.6, 25.4, 12.7. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₁H₁₃ClNO: 210.0680, found: 210.0689.

6-bromo-1-ethyl-3,4-dihydroquinolin-2(1H)-one (10f)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (92% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.34 (dd, J = 8.7, 2.3 Hz, 1H), 7.29 (dd, J = 3.3, 2.0 Hz, 1H), 6.88 (d, J = 8.7 Hz, 1H), 3.96 (q, J = 7.1 Hz, 2H), 2.90 – 2.83 (m, 2H), 2.67 – 2.59 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 169.5, 138.7, 130.8, 130.2, 128.7, 116.2, 115.3, 37.4, 31.6, 25.3, 12.7. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₁H₁₃BrNO: 254.0175, found: 254.0184.

1-ethyl-2-oxo-1,2,3,4-tetrahydroquinoline-6-carbonitrile (10g)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (62% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.56 (dd, J = 8.2, 1.7 Hz, 1H), 7.46 (s, 1H), 7.07 (d, J = 8.2 Hz, 1H), 4.00

(q, J = 7.1 Hz, 2H), 3.00 - 2.90 (m, 2H), 2.68 (dd, J = 8.5, 6.4 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H).¹³C NMR (125 MHz, CDCl₃) δ 169.5, 143.5, 132.1, 131.6, 127.4, 118.9, 115.0, 105.8, 37.7, 31.3, 25.3, 12.7. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₂H₁₃N₂O: 201.1022, found: 201.1029.

7-chloro-1-ethyl-3,4-dihydroquinolin-2(1H)-one (10h)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (88% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.08 (d, J = 7.9 Hz, 1H), 7.03 – 6.94 (m, 2H), 3.95 (q, J = 7.1 Hz, 2H), 2.93 – 2.81 (m, 2H), 2.69 – 2.57 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 169.5, 140.8, 133.1, 128.9, 124.8, 122.4, 114.9, 37.4, 31.7, 25.1, 12.6. **HRMS** (**ESI**) **m/z:** [M+H]⁺ calcd. for C₁₁H₁₃ClNO: 210.0680, found: 210.0688.

1-ethyl-2-oxo-1,2,3,4-tetrahydroquinoline-7-carbonitrile (10i)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (92% yield) as a yellow solid.

¹**H** NMR (500 MHz, CDCl₃) δ 7.31 (dd, J = 7.7, 1.3 Hz, 1H), 7.29 (t, J = 5.7 Hz, 1H), 7.26 (s, 1H), 3.99 (q, J = 7.1 Hz, 2H), 3.02 – 2.94 (m, 2H), 2.71 – 2.65 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.1, 140.5, 131.9, 128.9, 126.4, 118.7, 117.5, 111.5, 37.6, 31.1, 25.8, 12.5. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₂H₁₃N₂O: 201.1022, found: 201.1036.

1-ethyl-7-methyl-3,4-dihydroquinolin-2(1H)-one (10j)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (65% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.04 (d, *J* = 7.5 Hz, 1H), 6.86 – 6.79 (m, 2H), 3.98 (q, *J* = 7.1 Hz, 2H), 2.90 – 2.79 (m, 2H), 2.68 – 2.56 (m, 2H), 2.36 (s, 3H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 170.1, 139.5, 137.2, 127.8, 123.6, 123.3, 115.4, 37.4, 32.2, 25.2, 21.6, 12.9. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₂H₁₆NO: 190.1226, found: 190.1212.

1-propyl-3,4-dihydroquinolin-2(1H)-one (10k)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (82% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.24 (t, *J* = 7.8 Hz, 1H), 7.16 (d, *J* = 7.5 Hz, 1H), 7.00 (dd, *J* = 7.8, 5.5 Hz,

2H), 3.96 - 3.84 (m, 2H), 2.94 - 2.83 (m, 2H), 2.70 - 2.60 (m, 2H), 1.68 (dd, J = 15.4, 7.6 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H). ¹³**C** NMR (125 MHz, CDCl₃) δ 170.2, 139.7, 130.0, 127.4, 126.6, 122.6, 114.9, 43.6, 32.0, 25.6, 20.5, 11.2. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₂H₁₆NO: 190.1226, found: 190.1212.

1-benzyl-3,4-dihydroquinolin-2(1H)-one (10l)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (90% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.32 (t, *J* = 7.5 Hz, 2H), 7.24 (t, *J* = 7.7 Hz, 3H), 7.18 (d, *J* = 7.3 Hz, 1H), 7.12 (t, *J* = 7.8 Hz, 1H), 6.98 (t, *J* = 7.4 Hz, 1H), 6.89 (d, *J* = 8.1 Hz, 1H), 5.20 (s, 2H), 3.05 – 2.95 (m, 2H), 2.81 (dd, *J* = 8.4, 6.3 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃) δ 170.6, 139.9, 137.0, 128.8, 127.9, 127.5, 127.1, 126.4, 122.9, 115.6, 46.2, 31.9, 25.6. **HRMS (ESI)** m/z: [M+H]⁺ calcd. for C₁₆H₁₆NO: 238.1226, found: 238.1218.

1-ethyl-6-(pyridin-3-yl)-3,4-dihydroquinolin-2(1H)-one (10m)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:2) afforded the product (78% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 8.84 (s, 1H), 8.58 (d, J = 3.1 Hz, 1H), 7.87 (dd, J = 6.0, 1.8 Hz, 1H), 7.48 (dd, J = 8.2, 2.0 Hz, 1H), 7.43 – 7.33 (m, 2H), 7.18 – 7.08 (m, 1H), 4.03 (dt, J = 6.8, 5.0 Hz, 2H), 3.04 – 2.93 (m, 2H), 2.75 – 2.63 (m, 2H), 1.34 – 1.25 (m, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 169.8, 148.1, 147.8, 139.6, 135.9, 134.0, 132.0, 127.3, 126.7, 126.1, 123.7, 115.3, 37.4, 31.8, 25.7, 12.8. **HRMS (ESI):** calcd. for C₁₆H₁₇N₂O [M+H]⁺: 253.1341, found: 253.1347.

1-ethyl-6-(thiophen-2-yl)-3,4-dihydroquinolin-2(1H)-one (10n)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (86% yield) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.47 (dd, J = 8.4, 2.1 Hz, 1H), 7.39 (d, J = 2.0 Hz, 1H), 7.24 (d, J = 4.5 Hz, 2H), 7.08 – 7.04 (m, 1H), 7.00 (d, J = 8.5 Hz, 1H), 3.99 (q, J = 7.1 Hz, 2H), 2.97 – 2.86 (m, 2H), 2.65 (dd, J = 8.5, 6.3 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 169.7, 143.7, 138.9, 129.1, 128.1, 127.0, 125.6, 125.0, 124.5, 122.6, 115.0, 37.4, 31.8, 25.6, 12.8. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₅H₁₆NOS: 258.0947, found: 258.0959.

(Z)-1-ethyl-3-(3-hydroxybut-2-enoyl)-3,4-dihydroquinolin-2(1H)-one (11a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (92% yield, tautomerism ratio 5:1) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 15.04 (s, 1H), 7.22 – 7.17 (m, 1H), 7.13 (t, J = 7.2 Hz, 1H), 6.96 (dd, J = 13.4, 7.0 Hz, 2H), 5.57 (s, 1H), 4.02 – 3.87 (m, 2H), 3.46 (t, J = 6.8 Hz, 1H), 3.25 (dd, J = 15.6, 7.7 Hz, 1H), 2.97 (dd, J = 15.6, 5.8 Hz, 1H), 1.95 (s, 3H), 1.21 (dd, J = 15.8, 7.9 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 191.5, 188.5, 166.9, 138.6, 128.4, 127.8, 124.7, 123.2, 114.7, 99.8, 50.7, 37.9, 28.2, 23.9, 12.6. **HRMS (ESI) m/z:** [M+Na]⁺ calcd. for C₁₅H₁₇NNaO₃: 282.1101, found: 282.1097.

(Z)-3-(3-hydroxybut-2-enoyl)-1-propyl-3,4-dihydroquinolin-2(1H)-one (11b)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (80% yield, tautomerism ratio 5:1) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 15.09 (s, 1H), 7.24 (d, J = 7.8 Hz, 1H), 7.20 (d, J = 7.2 Hz, 1H), 7.01 (dd, J = 19.4, 7.7 Hz, 2H), 5.64 (s, 1H), 3.98 – 3.85 (m, 2H), 3.55 (t, J = 6.5 Hz, 1H), 3.31 (dt, J = 16.2, 8.2 Hz, 1H), 3.04 (dd, J = 15.6, 5.7 Hz, 1H), 2.02 (s, 3H), 1.69 (dt, J = 15.6, 7.7 Hz, 2H), 0.97 (t, J = 7.7 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 191.6, 188.3, 167.1, 138.7, 128.4, 127.7, 124.8, 123.2, 114.9, 99.8, 50.8, 44.3, 28.2, 23.9, 20.4, 11.3. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₆H₂₀NO₃: 274.1438, found: 274.1434.

(Z)-3-(3-hydroxybut-2-enoyl)-1-propyl-3,4-dihydroquinolin-2(1H)-one (11c)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (67% yield, tautomerism ratio 6:1) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 15.04 (s, 1H), 7.21 (dd, J = 14.8, 7.3 Hz, 1H), 6.80 (t, J = 8.7 Hz, 2H), 5.66 (s, 1H), 4.00 (m, 2H), 3.55 (t, J = 6.2 Hz, 1H), 3.40 (dd, J = 16.1, 7.0 Hz, 1H), 3.02 (dd, J = 16.1, 5.6 Hz, 1H), 2.03 (s, 3H), 1.27 (d, J = 7.7 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 191.4, 188.2, 166.5, 160.0 (d, J = 242.5 Hz), 140.34 (d, J = 6.4 Hz), 128.44 (d, J = 9.5 Hz), 112.1 (d, J = 21.3 Hz), 110.3 (d, J = 8.8 Hz), 110.2 (d, J = 11.2 Hz), 99.6, 49.9, 38.3, 23.8, 20.4 (d, J = 4.1 Hz), 12.6. ¹⁹**F NMR** (470 MHz, CDCl₃) δ – 117.56. **HRMS (ESI) m/z:** [M+Na]⁺ calcd. for C₁₅H₁₆FNNaO₃: 300.1006, found: 300.1006.

(Z)-5-bromo-1-ethyl-3-(3-hydroxybut-2-enoyl)-3,4-dihydroquinolin-2(1H)-one (11d)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (71% yield, tautomerism ratio 6:1) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 15.02 (s, 1H), 7.27 (s, 1H), 7.12 (t, *J* = 7.7 Hz, 1H), 6.97 (d, *J* = 7.9 Hz, 1H), 5.66 (s, 1H), 3.99 (m, 2H), 3.61 – 3.47 (m, 2H), 3.14 (d, *J* = 12.9 Hz, 1H), 2.03 (s, 3H), 1.30 – 1.24 (m, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 191.2, 188.2, 166.5, 139.9, 128.6, 127.4, 124.8, 124.1, 114.0, 99.7, 50.2, 38.4, 27.9, 23.9, 12.6. **HRMS (ESI)** m/z: [M+H]⁺ calcd. for C₁₅H₁₇BrNO₃: 338.0386, found: 338.0389.

(Z)-7-chloro-1-ethyl-3-(3-hydroxybut-2-enoyl)-3,4-dihydroquinolin-2(1H)-one (11e)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (68% yield, tautomerism ratio 6:1) as a yellow solid.

¹**H** NMR (500 MHz, CDCl₃) δ 15.05 (s, 1H), 7.12 (d, *J* = 7.7 Hz, 1H), 6.99 (s, 2H), 5.63 (s, 1H), 3.98 (m, 2H), 3.54 (s, 1H), 3.29 (dd, *J* = 15.5, 6.0 Hz, 1H), 3.02 (dd, *J* = 15.6, 4.3 Hz, 1H), 2.03 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³**C** NMR (125 MHz, CDCl₃) δ 191.3, 188.3, 166.7, 139.7, 133.4, 129.4, 123.1, 123.0, 115.0, 99.6, 50.5, 38.1, 27.6, 23.8, 12.5. **HRMS (ESI)** m/z: [M+H]⁺ calcd. for C₁₅H₁₇ClNO₃: 294.0891, found: 294.0895.

(Z)-1-ethyl-3-(3-hydroxybut-2-enoyl)-7-methyl-3,4-dihydroquinolin-2(1H)-one (11f)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (65% yield, tautomerism ratio 6:1) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 15.11 (s, 1H), 7.07 (d, J = 7.1 Hz, 1H), 6.83 (d, J = 9.4 Hz, 2H), 5.63 (s, 1H), 3.99 (m, 2H), 3.51 (t, J = 6.4 Hz, 1H), 3.27 (dd, J = 15.6, 7.4 Hz, 1H), 3.00 (dd, J = 15.5, 5.5 Hz, 1H), 2.36 (s, 3H), 2.02 (s, 3H), 1.29 (t, J = 7.5 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 191.7, 188.5, 166.9, 138.5, 137.6, 128.2, 123.9, 121.6, 115.4, 99.8, 50.9, 37.9, 27.9, 23.9, 21.6, 12.7. **HRMS (ESI) m/z:** [M+Na]⁺ calcd. for C₁₆H₁₉NNaO₃: 296.1257, found: 296.1258.

(E)-3-((Z)-1,3-dihydroxybut-2-en-1-ylidene)-1-ethyl-7-(trifluoromethyl)-3,4-dihydroquinolin-2(1H)-one (12a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (72% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.81 (s, 1H), 7.31 (dd, J = 8.5, 1.8 Hz, 1H), 7.24 (d, J = 2.0 Hz, 1H), 6.60 (d, J = 8.5 Hz, 1H), 6.08 (d, J = 0.6 Hz, 1H), 3.46 (s, 2H), 3.13 (d, J = 7.2 Hz, 2H), 2.19 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, DMSO) δ 167.2, 166.1, 161.6, 149.7, 125.9 (q, J = 268.8 Hz), 126.4 (q, J = 3.8 Hz), 124.8 (q, J = 3.8 Hz), 123.7, 115.2 (q, J = 31.3 Hz), 108.9, 100.4, 98.8, 37.9, 25.2, 19.8, 14.5. ¹⁹**F NMR** (470 MHz, CDCl₃) δ – 62.04. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₆H₁₇F₃NO₃: 328.1155, found: 328.1159.

(E)-3-((Z)-1,3-dihydroxybut-2-en-1-ylidene)-1-ethyl-2-oxo-1,2,3,4-tetrahydroquinoline-7carbonitrile (12b)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (82% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.75 (s, 1H), 7.06 (d, J = 7.7 Hz, 1H), 6.90 (dd, J = 7.6, 1.2 Hz, 1H), 6.80 (s, 1H), 6.08 (s, 1H), 3.45 (s, 2H), 3.11 (q, J = 7.1 Hz, 2H), 2.19 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, DMSO) δ 167.2, 165.9, 161.6, 147.3, 130.1, 129.5, 120.4, 119.4, 111.6, 109.9, 100.4, 98.3, 37.9, 25.5, 19.8, 14.4. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₆H₁₇N₂O₃: 285.1234, found: 285.1222.

(E)-3-((Z)-1,3-dihydroxybut-2-en-1-ylidene)-1-ethyl-2-oxo-1,2,3,4-tetrahydroquinoline-6carbonitrile (12c)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (86% yield) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.83 (s, 1H), 7.41 (dd, J = 8.5, 2.1 Hz, 1H), 7.19 (d, J = 2.0 Hz, 1H), 6.58 (d, J = 8.6 Hz, 1H), 6.09 (s, 1H), 3.41 (s, 2H), 3.16 (q, J = 7.1 Hz, 2H), 2.20 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (125 MHz, DMSO) δ 167.3, 165.9, 161.8, 150.3, 132.7, 132.3, 124.1, 121.3, 109.5, 100.4, 98.3, 95.8, 37.7, 25.0, 19.8, 14.4. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₆H₁₇N₂O₃: 285.1234, found: 285.1226.

1-ethyl-3-(2-hydroxybenzoyl)-3,4-dihydroquinolin-2(1H)-one (13a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (84% yield) as a white solid.

¹**H** NMR (500 MHz, CDCl₃) δ 11.97 (s, 1H), 7.78 (dd, J = 8.1, 1.5 Hz, 1H), 7.48 (m, 1H), 7.35 – 7.27 (m, 1H), 7.18 (d, J = 7.0 Hz, 1H), 7.05 (m, 2H), 6.99 (dd, J = 8.4, 0.9 Hz, 1H), 6.92 (m, 1H), 4.61 (dd, J = 10.4, 6.0 Hz, 1H), 4.10 – 3.95 (m, 2H), 3.50 – 3.40 (m, 1H), 3.09 (dd, J = 15.7, 5.9 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 201.9, 166.6, 162.9, 138.8, 136.8, 130.8, 128.3, 127.9, 124.6, 123.3, 119.4, 119.2, 118.7, 114.9, 48.4, 37.9, 28.9, 12.8. **HRMS (ESI)** m/z: [M+H]⁺ calcd. for C₁₈H₁₈NO₃: 296.1281, found: 296.1275.

1-ethyl-5-fluoro-3-(2-hydroxybenzoyl)-3,4-dihydroquinolin-2(1H)-one (13b)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (81% yield) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 11.91 (s, 1H), 7.80 (dd, J = 8.1, 1.2 Hz, 1H), 7.54 – 7.47 (m, 1H), 7.24 (d, J = 8.3 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.93 (t, J = 7.5 Hz, 1H), 6.90 – 6.79 (m, 2H), 4.61 (dd, J = 9.5, 6.4 Hz, 1H), 4.03 (dt, J = 16.1, 7.2 Hz, 2H), 3.40 (dd, J = 16.3, 9.6 Hz, 1H), 3.22 (dd, J = 16.3, 6.3 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 201.4, 166.1, 162.9, 159.9 (d, J = 243.8 Hz), 140.4 (d, J = 6.3 Hz), 136.9, 130.8, 128.6 (d, J = 10.0 Hz), 119.2, 119.2, 118.7, 111.9 (d, J = 21.3 Hz), 110.5, 110.4 (d, J = 17.5 Hz), 47.6, 38.3, 21.2, 12.7. ¹⁹**F NMR** (470 MHz, CDCl₃) δ – 117.44. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₈H₁₇FNO₃: 314.1187, found: 314.1179.

5-chloro-1-ethyl-3-(2-hydroxybenzoyl)-3,4-dihydroquinolin-2(1H)-one (13c)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (82% yield) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 11.90 (s, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.23 (t, J = 8.2 Hz, 1H), 7.13 (d, J = 8.0 Hz, 1H), 7.03 – 6.96 (m, 2H), 6.93 (t, J = 7.6 Hz, 1H), 4.59 (dd, J = 9.8, 6.2 Hz, 1H), 4.09 – 3.95 (m, 2H), 3.51 (dd, J = 16.4, 9.9 Hz, 1H), 3.33 (dd, J = 16.4, 6.1 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 201.2, 166.0, 163.0, 140.2, 136.9, 133.6, 130.8, 128.3, 124.3, 123.0, 119.3, 119.2, 118.7, 113.4, 47.8, 38.4, 25.7, 12.7. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₈H₁₇ClNO₃: 330.0891, found: 330.0877.

5-bromo-1-ethyl-3-(2-hydroxybenzoyl)-3,4-dihydroquinolin-2(1H)-one (13d)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (91% yield) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 11.92 (s, 1H), 7.81 (dd, J = 8.1, 1.4 Hz, 1H), 7.54 – 7.46 (m, 1H), 7.31 (dd, J = 8.0, 0.5 Hz, 1H), 7.16 (t, J = 8.1 Hz, 1H), 7.09 – 6.97 (m, 2H), 6.97 – 6.87 (m, 1H), 4.60 (dd, J = 10.1, 6.1 Hz, 1H), 4.02 (dt, J = 12.0, 7.1 Hz, 2H), 3.52 (dd, J = 16.4, 10.1 Hz, 1H), 3.33 (dd, J = 16.4, 6.1 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 201.2, 166.2, 162.9, 140.1, 136.9, 130.8, 128.7, 127.5, 124.8, 123.9, 119.3, 119.2, 118.7, 114.2, 47.8, 38.4, 28.6, 12.7. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₈H₁₇BrNO₃: 374.0386, found: 374.0377.

7-chloro-1-ethyl-3-(2-hydroxybenzoyl)-3,4-dihydroquinolin-2(1H)-one (13e)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (83% yield) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 11.89 (s, 1H), 7.80 – 7.75 (m, 1H), 7.54 – 7.46 (m, 1H), 7.10 (d, J = 8.0 Hz, 1H), 7.06 (d, J = 1.6 Hz, 1H), 7.04 – 6.97 (m, 2H), 6.93 (t, J = 7.6 Hz, 1H), 4.60 (dd, J = 9.7, 6.1 Hz, 1H), 4.00 (m, 2H), 3.40 (dd, J = 15.8, 9.7 Hz, 1H), 3.09 (dd, J = 15.9, 6.0 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 201.4, 166.3, 162.9, 139.9, 136.9, 133.6, 130.7, 129.3, 123.1, 122.8, 119.2, 118.8, 115.2, 48.3, 38.2, 28.5, 12.6. **HRMS (ESI)** m/z: [M+H]⁺ calcd. for C₁₈H₁₇ClNO₃: 330.0891, found: 330.0885.

7-bromo-1-ethyl-3-(2-hydroxybenzoyl)-3,4-dihydroquinolin-2(1H)-one (13f)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (74% yield) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 11.89 (s, 1H), 7.77 (dd, J = 8.1, 1.2 Hz, 1H), 7.54 – 7.46 (m, 1H), 7.20 (d, J = 1.6 Hz, 1H), 7.17 (dd, J = 7.9, 1.7 Hz, 1H), 7.04 (d, J = 7.9 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.96 – 6.90 (m, 1H), 4.59 (dd, J = 9.7, 6.1 Hz, 1H), 4.00 (m, 2H), 3.38 (dd, J = 15.8, 9.7 Hz, 1H), 3.07 (dd, J = 15.9, 6.0 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 201.3, 166.3, 163.1, 140.2, 137.0, 129.9, 129.6, 126.1, 123.4, 121.4, 119.2, 118.8, 117.9, 48.3, 38.2, 28.6, 12.6. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₈H₁₇BrNO₃: 374.0386, found: 374.0383.

1-ethyl-3-(2-hydroxy-4-methoxybenzoyl)-3,4-dihydroquinolin-2(1H)-one (13g)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (78% yield) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) 12.47 (s, 1H), 7.67 (d, J = 8.9 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.17 (d, J = 7.1 Hz, 1H), 7.12 – 6.99 (m, 2H), 6.52 – 6.38 (m, 2H), 4.50 (dd, J = 9.9, 6.0 Hz, 1H), 4.02 (dt, J = 10.5, 6.7 Hz, 2H), 3.82 (s, 3H), 3.42 (dd, J = 15.5, 10.3 Hz, 1H), 3.07 (dd, J = 15.7, 5.8 Hz, 1H), 1.29 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 199.7, 166.7, 166.5, 166.0, 138.8, 132.4, 128.3, 127.9, 124.8, 123.2, 114.8, 113.6, 108.1, 101.0, 55.7, 48.3, 40.0, 29.1, 12.8. **HRMS (ESI)** m/z: [M+H]⁺ calcd. for C₁₉H₂₀NO₄: 326.1387, found: 326.1396.

3-(5-bromo-2-hydroxybenzoyl)-1-ethyl-3,4-dihydroquinolin-2(1H)-one (13h)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (64% yield) as a white solid.

¹**H** NMR (500 MHz, CDCl₃) δ 11.91 (s, 1H), 7.86 (d, J = 2.3 Hz, 1H), 7.56 (dd, J = 8.9, 2.4 Hz, 1H), 7.32 (t, J = 7.8 Hz, 1H), 7.20 (d, J = 7.2 Hz, 1H), 7.12 – 7.02 (m, 2H), 6.91 (d, J = 8.9 Hz, 1H), 4.52 (dd, J = 11.1, 5.8 Hz, 1H), 4.04 (m, 2H), 3.52 – 3.37 (m, 1H), 3.05 (dd, J = 15.7, 5.8 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 201.2, 166.2, 161.8, 139.5, 138.6, 132.9, 128.3, 128.1, 124.5, 123.5, 120.8, 120.7, 114.9, 110.8, 48.4, 38.0, 28.7, 12.8. **HRMS (ESI)** m/z: [M+H]⁺ calcd. for C₁₈H₁₇BrNO₃: 374.0386, found: 374.0390.

1-ethyl-3-(2-hydroxy-5-methylbenzoyl)-3,4-dihydroquinolin-2(1H)-one (13i)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (81% yield) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 11.82 (s, 1H), 7.53 (s, 1H), 7.31 (t, *J* = 7.3 Hz, 2H), 7.19 (d, *J* = 7.2 Hz, 1H), 7.12 – 7.01 (m, 2H), 6.90 (d, *J* = 8.5 Hz, 1H), 4.61 (dd, *J* = 10.5, 6.0 Hz, 1H), 4.04 (m, 2H), 3.45 (dd, *J* = 15.7, 10.5 Hz, 1H), 3.07 (dd, *J* = 15.7, 5.9 Hz, 1H), 2.30 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 201.8, 166.7, 160.9, 138.8, 137.9, 130.3, 128.3, 128.2, 127.9, 124.7, 123.2, 119.1, 118.5, 114.8, 48.3, 37.9, 29.1, 20.6, 12.7. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₉H₂₀NO₃: 310.1438, found: 310.1433.

3-(2-hydroxybenzoyl)-1-propyl-3,4-dihydroquinolin-2(1H)-one (13j)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (82% yield) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 11.90 (s, 1H), 7.70 (dd, J = 8.1, 1.1 Hz, 1H), 7.44 – 7.37 (m, 1H), 7.22 (t, J = 7.8 Hz, 1H), 7.11 (d, J = 7.2 Hz, 1H), 7.01 – 6.94 (m, 2H), 6.93 – 6.89 (m, 1H), 6.87 – 6.81 (m, 1H), 4.54 (dd, J = 10.5, 5.9 Hz, 1H), 3.97 – 3.76 (m, 2H), 3.38 (dd, J = 15.7, 10.5 Hz, 1H), 3.01 (dd, J = 15.7, 5.9 Hz, 1H), 1.67 – 1.58 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 201.9, 166.8, 162.9, 138.9, 136.8, 130.8, 128.3, 127.9, 124.7, 123.3, 119.5, 119.2, 118.7, 115.1, 48.5, 44.3, 28.9, 20.5, 11.2. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₉H₂₀NO₃: 310.1438, found: 310.1433.

Prop-2-yn-1-yl-1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (14a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:50) afforded the product (95% yield) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.06 – 7.00 (m, 1H), 6.93 (d, *J* = 7.3 Hz, 1H), 6.57 (m, 2H), 4.66 (dd, *J* = 2.4, 1.0 Hz, 2H), 3.37 (m, 1H), 3.28 (m, 1H), 2.97 (dd, *J* = 9.6, 3.4 Hz, 3H), 2.84 (s, 3H), 2.42 (t, *J* = 2.5 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 171.7, 144.8, 128.0, 126.4, 119.6, 115.9, 110.2, 76.5, 74.0, 51.2, 51.1, 38.1, 37.5, 29.1. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₄H₁₆NO₂: 230.1176, found: 230.1180.

(1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)methanol (15a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:15) afforded the product (92% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.08 (m, 1H), 6.98 (dd, J = 7.1, 0.7 Hz, 1H), 6.66 – 6.59 (m, 2H), 3.69 (dd, J = 10.6, 5.8 Hz, 1H), 3.60 (dd, J = 10.6, 7.5 Hz, 1H), 3.32 (m, 1H), 3.09 – 2.99 (m, 1H), 2.89 (s, 3H), 2.85 (dd, J = 16.0, 5.4 Hz, 1H), 2.55 (dd, J = 15.9, 8.9 Hz, 1H), 2.29 – 2.21 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 146.6, 129.2, 127.2, 121.6, 116.6, 111.1, 65.5, 53.5, 39.3, 35.2, 30.3. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₁H₁₆NO: 178.1226, found: 178.1220.

(1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)methyl acetate (16a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product

(90% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.08 (dd, J = 11.4, 4.0 Hz, 1H), 6.96 (d, J = 7.2 Hz, 1H), 6.61 (dd, J = 17.0, 7.8 Hz, 2H), 4.10 (dd, J = 11.0, 6.0 Hz, 1H), 4.03 (dd, J = 11.0, 7.5 Hz, 1H), 3.27 (m, 1H), 3.01 (dd, J = 11.1, 8.6 Hz, 1H), 2.88 (s, 3H), 2.84 (dd, J = 15.9, 5.0 Hz, 1H), 2.57 (dd, J = 15.9, 9.3 Hz, 1H), 2.39 (m, 1H), 2.08 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 171.1, 146.3, 129.2, 127.3, 120.9, 116.7, 111.1, 66.4, 53.4, 39.2, 32.3, 30.4, 20.9. **HRMS (ESI) m/z:** [M+H]⁺ calcd. for C₁₃H₁₈NO₂: 220.1332, found: 220.1345.

5. Crystal Structure and Data

Table 1. Crystal data and structure refinement for 3b.
Comparison of the structure ref

Identification code	3b
Empirical formula	$C_{11}H_{12}FNO_2$
Formula weight	209.22
Temperature	293(2) K
Wavelength	1.54184 A
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	a = 5.2503(5) A alpha = 90 deg.
	b = 16.2082(13) A beta = 99.976(13) deg.
	c = 12.1305(19) A gamma = 90 deg.
Volume	1016.7(2) A^3
Z, Calculated density	4, 1.367 Mg/m^3
Absorption coefficient	0.895 mm^-1
F(000)	440
Crystal size	0.120 x 0.120 x 0.110 mm
Theta range for data collection	4.598 to 67.249 deg.
Limiting indices	-4<=h<=6, -18<=k<=19, -14<=l<=14
Reflections collected / unique	3422 / 1817 [R(int) = 0.0298]
Completeness to theta $= 67.249$	99.4 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1817 / 0 / 138
Goodness-of-fit on F ²	1.031
Final R indices [I>2sigma(I)]	R1 = 0.0665, wR2 = 0.1672
R indices (all data)	R1 = 0.1142, $wR2 = 0.2021$
Extinction coefficient	n/a
Largest diff. peak and hole	0.321 and -0.175 e.A^-3

6. ¹H and ¹³C NMR Spectra

5-fluoro-1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (3b)

S42

5-chloro-1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (3c)

5-bromo-1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (3d)

-28.0 12.5

13.5

10. 5

11.5

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

6-fluoro-1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (3e)

7-bromo-1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (3g)

8-fluoro-1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (3h)

2,3,4,4a,5,6-hexahydro-1H-pyrido[1,2-a]quinoline-5-carboxylic acid (3i)

1,2,4,4a,5,6-hexahydro-[1,4]oxazino[4,3-a]quinoline-5-carboxylic acid (3j)

5,6,6a,7,8,9,10,11-octahydroazepino[1,2-a]quinoline-6-carboxylic acid (3l)

5-chloro-1,2',2'-trimethyl-1,4-dihydro-2H-spiro[quinoline-3,5'-[1,3]dioxane]-4',6'-dione (4b)

5-bromo-1,2',2'-trimethyl-1,4-dihydro-2H-spiro[quinoline-3,5'-[1,3]dioxane]-4',6'-dione (4c)

6-fluoro-1,2',2'-trimethyl-1,4-dihydro-2H-spiro[quinoline-3,5'-[1,3]dioxane]-4',6'-dione (4d)

6-chloro-1,2',2'-trimethyl-1,4-dihydro-2H-spiro[quinoline-3,5'-[1,3]dioxane]-4',6'-dione (4e)

8-fluoro-1,2',2'-trimethyl-1,4-dihydro-2H-spiro[quinoline-3,5'-[1,3]dioxane]-4',6'-dione (4g)

8-chloro-1,2',2'-trimethyl-1,4-dihydro-2H-spiro[quinoline-3,5'-[1,3]dioxane]-4',6'-dione (4h)

2',2'-dimethyl-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,5'-[1,3]dioxane]-4',6'dione (4j)

 $\label{eq:constraint} 6-methyl-1',2',3',3a'-tetrahydro-2H,4H,5'H-spiro[pyran-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione~(6a)$

6'-chloro-6-methyl-1',2',3',3a'-tetrahydro-2H,4H,5'H-spiro[pyran-3,4'-pyrrolo[1,2-a]quinoline]-2,4dione (6b)

7'-bromo-6-methyl-1',2',3',3a'-tetrahydro-2H,4H,5'H-spiro[pyran-3,4'-pyrrolo[1,2-a]quinoline]-2,4dione (6c) 6-methyl-2,4-dioxo-1',2',3',3a'-tetrahydro-2H,4H,5'H-spiro[pyran-3,4'-pyrrolo[1,2-a]quinoline]-7'- carbonitrile (6d)

8'-chloro-6-methyl-1',2',3',3a'-tetrahydro-2H,4H,5'H-spiro[pyran-3,4'-pyrrolo[1,2-a]quinoline]-2,4dione (6e)

6,8'-dimethyl-1',2',3',3a'-tetrahydro-2H,4H,5'H-spiro[pyran-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione (**6f**)

6-methyl-2,4-dioxo-1',2',3',3a'-tetrahydro-2H,4H,5'H-spiro[pyran-3,4'-pyrrolo[1,2-a]quinoline]-8'carbonitrile (6g)

(Z)-1-(1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinolin-4-yl)-3-hydroxybut-2-en-1-one (8a)

(Z)-1-(6-chloro-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinolin-4-yl)-3-hydroxybut-2-en-1-one (8b)

(Z)-1-(7-bromo-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinolin-4-yl)-3-hydroxybut-2-en-1-one (8d)

(Z) - 4 - (3 - hydroxybut - 2 - enoyl) - 1, 2, 3, 3a, 4, 5 - hexahydropyrrolo [1, 2 - a] quinoline - 7 - carbonitrile (8e)

(Z)-1-(8-(benzyloxy)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinolin-4-yl)-3-hydroxybut-2-en-1-one (8f)

S81

(Z)-4-(3-hydroxybut-2-enoyl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinoline-8-carbonitrile (8g)

 $(Z) \hbox{-} 1-(5,6,6a,6b,7,8,9,10,10a,11-decahydroisoindolo[2,1-a]quinolin-6-yl)-3-hydroxybut-2-en-1-one (8h)$

(Z)-1-(1,2,4,4a,5,6-hexahydro-[1,4]oxazino[4,3-a]quinolin-5-yl)-3-hydroxybut-2-en-1-one (8i)

(Z) - 3 - hydroxy - 1 - (5,6,6a,7,8,9,10,11 - octahydroazepino[1,2-a]quinolin - 6 - yl) but - 2 - en - 1 - one (8j) - 2 -

$(5-fluoro-1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)(2-hydroxyphenyl) methanone \ (9a)$

(5-chloro-1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)(2-hydroxyphenyl)methanone (9b)

 $(6-chloro-1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)(2-hydroxyphenyl) methanone \ (9d)$

3-(2-hydroxybenzoyl)-1-methyl-1,2,3,4-tetrahydroquinoline-6-carbonitrile (9e)

(2-hydroxyphenyl)(1-methyl-6-(trifluoromethyl)-1,2,3,4-tetrahydroquinolin-3-yl)methanone (9f)

$(8-fluoro-1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)(2-hydroxyphenyl) methanone \ (9g)$

$(8-chloro-1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)(2-hydroxyphenyl) methanone \ (9h)$

3-(5-chloro-2-hydroxybenzoyl)-1-methyl-1,2,3,4-tetrahydroquinoline-6-carbonitrile (9i)

1-ethyl-3,4-dihydroquinolin-2(1H)-one (10a)

1-ethyl-5-fluoro-3,4-dihydroquinolin-2(1H)-one (10b)

S102

6-chloro-1-ethyl-3,4-dihydroquinolin-2(1H)-one (10e)

6-bromo-1-ethyl-3,4-dihydroquinolin-2(1H)-one (10f)

7-chloro-1-ethyl-3,4-dihydroquinolin-2(1H)-one (10h)

1-ethyl-2-oxo-1,2,3,4-tetrahydroquinoline-7-carbonitrile (10i)

1-ethyl-7-methyl-3,4-dihydroquinolin-2(1H)-one (10j)

S109

1-benzyl-3,4-dihydroquinolin-2(1H)-one (10l)

1-ethyl-6-(pyridin-3-yl)-3,4-dihydroquinolin-2(1H)-one (10m)

....

1-ethyl-6-(thiophen-2-yl)-3,4-dihydroquinolin-2(1H)-one (10n)

(Z)-1-ethyl-3-(3-hydroxybut-2-enoyl)-3,4-dihydroquinolin-2(1H)-one (11a)

(Z)-3-(3-hydroxybut-2-enoyl)-1-propyl-3,4-dihydroquinolin-2(1H)-one (11b)

(Z)-5-bromo-1-ethyl-3-(3-hydroxybut-2-enoyl)-3,4-dihydroquinolin-2(1H)-one (11d)

(Z)-7-chloro-1-ethyl-3-(3-hydroxybut-2-enoyl)-3,4-dihydroquinolin-2(1H)-one (11e)

(Z)-1-ethyl-3-(3-hydroxybut-2-enoyl)-7-methyl-3,4-dihydroquinolin-2(1H)-one (11f)

1-ethyl-3-(2-hydroxybenzoyl)-3,4-dihydroquinolin-2(1H)-one (13a)

5-bromo-1-ethyl-3-(2-hydroxybenzoyl)-3,4-dihydroquinolin-2(1H)-one (13d)

S128

7-chloro-1-ethyl-3-(2-hydroxybenzoyl)-3,4-dihydroquinolin-2(1H)-one (13e)

7-bromo-1-ethyl-3-(2-hydroxybenzoyl)-3,4-dihydroquinolin-2(1H)-one (13f)

3-(5-bromo-2-hydroxybenzoyl)-1-ethyl-3,4-dihydroquinolin-2(1H)-one (13h)

-11.827.53 7.32 7.32 7.32 7.19 7.19 7.19 7.10 7.10 7.10 6.91 6.91 6.89 74.63 74.61 74.62 74.61 74.65 74.61 74.05 74.05 74.05 73.45 74.65 74.557 $\bigwedge^{1.32}_{1.29}$ 0 OH 0 Ν Ét Ńе °- 1.21 ± °°] 1.07 ⊥ 1.054⁶ − 2.17⊣ $3.03 \pm$ 3.15⊸ $1.10 \pm$ 1.05 2.19 1.03 2.10 7 1.00 7.0 7. 5 6.5 6.0 fl (ppm) 12.5 11.5 10.5 9.5 9.0 8.5 8.0 2.5 2.0 1.5 1.0 0.5 0.0 5, 5 5. 0 4.5 --166.65 --160.96
 138.83

 137.95

 137.95

 137.95

 137.95

 128.20

 -127.91

 -124.66

 -123.24

 -123.24

 -123.24

 119.09

 114.83
 -201.79 ^{77.25}
^{77.00}
^{77.00}
^{77.00}
^{76.75} -48.28 37.88 29.06 20.58 12.72 0 ОН N Et Ô М́е 110 100 fl (ppm)

80 70 60 50 40 30 20 10 0

90

140 130 120

220 210 200

190 180 170 160 150

3-(2-hydroxybenzoyl)-1-propyl-3,4-dihydroquinolin-2(1H)-one (13j)

$\begin{array}{c} 11.90\\ 7.71\\ 7.71\\ 7.71\\ 7.71\\ 7.71\\ 7.72\\ 7.72\\ 7.73$

prop-2-yn-1-yl-1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (14a)

(1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)methanol (15a)

(1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)methyl acetate (16a)