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1. General Information

Unless otherwise stated, all reagents and substrates were purchased from commercial sources
with the best quality and they were used without further purification. All the reactions were
carried out in open vessel using oven-dried Pyrex glassware unless otherwise specified. All
reactions are stirred magnetically unless otherwise specified. The progress of the optimization
reactions were monitored by gas chromatography. All products were characterized by NMR
spectra. Chemical shifts are expressed as J-value in parts per million (ppm) and were calibrated
using the residual protonated solvent as an internal standard. The peak patterns are indicated as
follows: s, singlet; d, doublet; t, triplet; m, multiplet and so on. The coupling constants, J, are
reported in Hertz (Hz). Photochemical reactions were performed using a Philiphs metal halide
lamp provides white light (150 W). Powder X-Ray Diffraction (PXRD) analysis was performed
by using Bruker D2 X-ray diffractometer (Cu Ko, 1.54 A). Transmission electron microscopy
(TEM), high angle annular dark field (HAADF), scanning transmission microscopy (STEM) and
related energy dispersive spectroscopy (EDS) images were recorded on a Hitachi HT7800 (TEM,
120 kV). Shimadzu 3600 Plus UV-Vis-NIR instrument was used for acquiring the ultraviolet-
visible diffuse reflectance spectra (UV-Vis DRS). Photoluminescence (PL) spectra were
conducted on Agilent Cary Eclipse PL spectrophotometer with an excitation wavelength of 350

nm.

2. Experimental Section

2.1. Synthesis and characterization of gCN/MnO/MnO(OH) catalyst!

The gCN/MnO/MnO(OH) heterojunction was synthesized by hydrothermal treatment method.!?
1.0 g of as-prepared gCN was dispersed in 70 mL water and then mixed with 1.5 mmol of
Mn(OCOCH3), and 2.8 mmol of Na,SO,4. The resultant mixture was stirred overnight. Later,
entire mixture was sonicated in an ultrasonic bath for 3 h and then with continuous sonication
drop wise the KMnOy solution (1.0 mmol) was added to the mixture. Subsequently, this new
mixture was further sonicated for 3 h and then transferred into a Teflonlined autoclave reactor
and heated at 170 °C for 12 h. Afterwards, the entire material was centrifuged several times with
water and then ethanol followed by dried for 3 h in an oven at 80 °C. As very detailed
characterization of gCN/MnO/MnO(OH) and its precursors were merely reported by us for the

purpose of comparison to another similar kind, such as GCN/MnO/MnO(OH)-PdAg, which
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shows good activity in the photocatalytic formic acid dehydrogenation reaction; here described
few essential characterization for ready references.!?

2.2. General procedure for the (trideutero)methylation of (iso)quinoliniums

(‘)‘ . L R CH3
_S._ { . } (iso)quinoliniums ‘\ A \/\T
H;C™ "CHj; CHy | ———————— [ oY
2
9CN/MnO/MnO(OH) (15 mg/mmol) if x = CH then y = N
water if x = N then y = CH

metal halide white light (150 W)
open to air, 8 h, 25 °C
CD;

R
_S. . L \ A
D;C CD; [.CD:J (iso)quinoliniums @\T
= 2
X
3

R =H, EDG or EWG

An oven-dried jacketed flask (made of Pyrex glass) equipped with a magnetic stir bar was
charged with (iso)quinolium trifluoroacetate (1, 0.5 mmol). To this, water (350 pl), DMSO (875
ul, added three times with 3 h gap between each addition) and gCN/MnO/MnO(OH) (8 mg)
were added. The flask was then water inlet and outlet was given by a side-jacket. Afterwards,
mixture was stirred few minutes to mix well and then with constant stirring irradiated using a
white-light of metal halide lamp (150 W) at a distance of 2 cm under open air atmosphere at 25
°C. After 8 h of stirring, the reaction mixture was neutralized with aqueous potassium carbonate
solution, product was extracted with ethyl acetate and then the ethyl acetate layer was separated
and dried over anhydrous Na,SO,, filtered and concentrated. The resulting gummy material was
passed through a short-pad of silica gel column chromatography using 10-20% ethyl acetate in n-
hexane mixture to obtain the desired product. For the synthesis of trideuteromethylated
(iso)quinolones, same procedure has been utilized. However, DMSO-ds has been utilized in

place of DMSO.

2.3. Procedure for gCN/MnO/MnO(OH) isolation and recycle

CH, . CH;
gCN/MnO/MnO(OH) [recycling]
A DMSO (1.75 mL)-water (0.7 mL) X
Kl/ metal halide white light (150 W) N/ CH,
v open to air, 8 h, 25 °C 21
11, 1 mmol

After the completion of reaction described above, it was centrifuged and with the help of syringe
with a needle; all solution sucked-out and then washed catalyst with ethyl acetate, ethanol and

water. Use of sonication is crucial throughout the washing process and recovered catalyst (with
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added fresh ethanol) needs sonication for at least 60 minutes after every two cycles in order to
achieve a product with about the same yield in subsequent runs. The reusability of the isolated
catalyst was investigated by the same procedure described above. The process was repeated up to

four times.

2.4. Procedure for control experiments

a)
TEMPO (10 equiv.)
®+ standard condition A >(j<
~ N\H ~ N * ’}l
1a
CHj O\CH3
2a, trace
TEMPO-CH,
b) detected by GCMS
KI (1 mM)
A . standard condition X
> N‘H _N
1a CHs
2a,ND
° COOH
COOH
gCN/MnO/MnO(OH) (15 mg/mmol) OH
water _
metal halide white light (150 W)
COOH open to air, 8 h, 25°C COOH
terephthalic acid 2-hydroxyterephthalic acid
detected by PL (Ana"™ = 425 nm)
d)

gCN/MnO/MnO(OH) (15 mg/mmol

)
A . aqg. H,0, (10 equiv.) A s Xl
+ +
/N‘H open to air, 8 h, 25 °C _N _N _N
CH CHs

1a No Light ,
2a, 66% 16% 5%
Reaction with TEMPO: A radical scavenger such as 2,2,6,6-tetramethylpiperidinoxy (TEMPO,
10.0 equiv) was added to the general procedure described in section 2.2. After 8 h, the crude
reaction mixture was diluted with ethyl acetate, dried using anhydrous Na,SO,, filtered and
analyzed by GCMS. GCMS analysis revealed that the formation of 1-methoxy-2,2,6,6-
tetramethylpiperidine.

S4



Reaction with KI: A hydroxide-radical quencher such as potassium iodide (KI) was added to the
general procedure described in section 2.2. After 8 h, the crude reaction mixture was diluted with
ethyl acetate, dried using anhydrous Na,SO,, filtered and analyzed by GCMS. GCMS analysis

revealed that there was no product 2a.

Reaction with terephthalic acid: An oven-dried jacketed flask (made of Pyrex glass) equipped
with a magnetic stir bar was charged with hydroxide-radical scavenger such as terephthalic acid
(0.5 mmol). To this, water (2.0 mL), and gCN/MnO/MnO(OH) (8 mg) were added. The flask
was then water inlet and outlet was given by a side-jacket. Afterwards, resultant heterogeneous
suspension was stirred and irradiated using a white-light of metal halide lamp (150 W) at a
distance of 2 cm under open air atmosphere at 25 °C. The reaction mixture was taken out at
different time intervals and analyzed by the fluorescence emission measurements. The sample
solutions were prepared with a final absorbance of 0.01 at 325 nm, the wavelength employed for

excitation and analyzed.

Reaction with H,O,: An oven-dried round-bottom flask equipped with a magnetic stir bar was
charged with (iso)quinolium trifluoroacetate (1, 0.5 mmol). To this, H,O, (5§ mmol), DMSO (875
pl, added three times with 3 h gap between each addition) and gCN/MnO/MnO(OH) (8 mg)
were added. Afterwards, mixture was stirred under open air atmosphere at 25 °C. After 8 h of
stirring, the reaction mixture was neutralized with aqueous potassium carbonate solution, product
was extracted with ethyl acetate and then the ethyl acetate layer was separated and dried over

anhydrous Na,SO,, filtered, concentrated and analyzed by GCMS.

Reaction at 40 °C (instead of 25 °C): Under the optimized condition, we did a reaction at an
elevated temperature (40 °C). Regrettably, we observed the formation of mixed products like 2-
methylated quinoline, 4-methylated quinoline, 7-methylated quinoline, 2,4-dimethylated
quinoline, 2,7-dimethylated quinoline, and so on. We believe that at high temperatures, it is
feasible to readily produce di- or tri-methylated iso(quinolines) than the mono-methylated
quinolines with this catalytic system. It is worthy to mention that the rate of the decomposition of
hydrogen peroxide is known to increase approximately 2.2 times for each 10 °C rise over the

range of 20-100 °C.'®
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Figure S1. Photographs of parts of a custom made photochemical reactor setup used to perform
reactions described in this work. Metal halide lamp with a magnetic stirrer and inbuilt fan (left)
and a jacketed flask made of Pyrex glass (right) were used.

Figure S2. a) HAADF-STEM image and b-f) elemental mapping of gCN/MnO/MnO(OH) after
7% cycle.(all scale bars in figure are 250 nm.)

2.5. Experimental characterization data for products

X
_N
CH3
2a

1-Methylisoquinoline (2a): Synthesized according to the general procedure described in section
2.2. Pale yellow oil (57 mg, 79% yield). R¢ (ethyl acetate): 0.55. 'H NMR (400 MHz, CDCl3) 6
8.39 (d, J=5.8 Hz, 1H), 8.13 (d, /= 8.2 Hz, 1H), 7.81 (d, /= 8.0 Hz, 1H), 7.65 (dd, J = 8.0, 6.8
Hz, 1H), 7.58 (dd, J = 8.0, 6.8 Hz, 1H), 7.52 (d, J = 5.6 Hz, 1H), 2.98 (s, 3H). 3C NMR (100
MHz, CDCl;) § 158.7, 141.8, 136.1, 130.1, 127.6, 127.3, 127.1, 125.6, 119.4, 22.4. Spectra data

are consistent with those reported in the literature.?
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N CH3
©g

CHj
2b

1,3-Dimethylisoquinoline (2b): Synthesized according to the general procedure described in
section 2.2. Pale yellow oil (57 mg, 72% yield). Rt (ethyl acetate): 0.50. "H NMR (400 MHz,
CDCl) 6 8.04 (d, J= 8.4 Hz, 1H), 7.69 (d, J = 8.2 Hz, 1H), 7.61 (dd, J = 8.2, 6.6 Hz, 1H), 7.49
(dd, J=8.2, 6.6 Hz, 1H), 7.32 (s, 1H), 2.94 (s, 3H), 2.65 (s, 3H). *C NMR (100 MHz, CDCl;) ¢
158.1, 150.2, 136.6, 129.7, 126.6, 126.0, 125.7, 125.5, 117.1, 24.2, 22.3. Spectra data are

consistent with those reported in the literature.?

H3C N
N

CH;
2c

1,6-Dimethylisoquinoline (2¢): Synthesized according to the general procedure described in
section 2.2. Yellow oil (59 mg, 74% yield). R¢ (ethyl acetate): 0.51. 'H NMR (400 MHz, CDCl;)
08.31(d,J=5.8 Hz, 1H), 7.96 (d, /= 8.6 Hz, 1H), 7.53 (s, 1H), 7.39-7.37 (m, 2H), 2.91 (s, 3H),
2.50 (s, 3H). 13C NMR (100 MHz, CDCl;) ¢ 158.1, 141.7, 140.1, 136.1, 129.2, 126.0, 125.8,
125.4,118.6,22.2, 21.8. Spectra data are consistent with those reported in the literature.?

CH;

H3C N
_N

CHj
2d

6-Isopropyl-1-methylisoquinoline (2d): Synthesized according to the general procedure
described in section 2.2. Colorless oil (36 mg, 39% yield). Ry (ethyl acetate): 0.49. 'H NMR (400
MHz, CDCL;) ¢ 8.31 (d, J = 6.0 Hz, 1H), 7.96 (d, J = 8.6 Hz, 1H), 7.48 (s, 1H), 7.37-7.33 (m,
2H), 2.93-2.88 (m, 4H), 1.24 (d, J = 7.1 Hz, 6H). '3C NMR (100 MHz, CDCl;) ¢ 158.2, 145.6,
140.0, 136.2, 130.1, 126.0, 125.9, 125.4, 118.7, 37.8, 22.3, 21.5. HRMS (ESI) m/z calculated for
CisHigN [(M+H)*] 186.1284, found 186.1291.
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N
H,CO 5

CH
2e ’

7-Methoxy-1-methylisoquinoline (2e): Synthesized according to the general procedure
described in section 2.2. Pale yellow oil (59 mg, 68% yield). Ry (ethyl acetate): 0.42. 'H NMR
(400 MHz, CDCls) 6 8.28 (d, J = 6.2 Hz, 1H), 7.96 (d, J = 8.8 Hz, 1H), 7.92 (d, J = 6.2 Hz, 1H),
7.69 (dd, J = 8.8, 2.4 Hz, 1H), 7.44 (d, J = 2.4 Hz, 1H), 3.98 (s, 3H), 2.90 (s, 3H). 13C NMR (100
MHz, CDCls) 6 160.8, 155.9, 133.7, 129.9, 129.0, 128.8, 128.7, 122.6, 104.4, 55.9, 22.4. Spectra

data are consistent with those reported in the literature.*

l N

N

CH
2f  °

1-Methyl-6-phenylisoquinoline (2f): Synthesized according to the general procedure described
in section 2.2. Pale yellow solid (84 mg, 76% yield, m. p. 62-63 °C). R; (ethyl acetate): 0.40. 'H
NMR (400 MHz, CDCls) 6 8.41 (m, 1H), 8.14 (d, J= 7.8 Hz, 1H), 7.95 (s, 1H), 7.80 (d, J = 7.8
Hz, 1H), 7.72-7.69 (m, 2H), 7.53-7.44 (m, 4H), 2.96 (s, 3H). 3*C NMR (100 MHz, CDCl;)
158.5, 142.4, 142.1, 140.0, 136.1, 128.9, 128.0, 127.4, 126.6, 126.4, 126.1, 124.6, 119.4, 22.3.

Spectra data are consistent with those reported in the literature.?
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6-Methylphenanthridine (2g): Synthesized according to the general procedure described in
section 2.2. Colorless solid (68 mg, 70% yield, m. p. 70-71 °C). R¢ (ethyl acetate): 0.36. '"H NMR
(400 MHz, CDCl3) ¢ 8.58 (d, J = 8.0 Hz, 1H), 8.50 (d, /= 8.0 Hz, 1H), 8.16 (d, J = 8.2 Hz, 1H),
8.10 (d, /= 8.0 Hz, 1H), 7.82 (ddd, /= 8.2, 7.0, 1.4 Hz, 1H), 7.71 (ddd, /= 8.2, 7.0, 1.4 Hz, 1H),
7.66 (ddd, J = 8.2, 7.0, 1.4 Hz, 1H), 7.61 (ddd, J = 8.2, 7.0, 1.4 Hz, 1H), 3.02 (s, 3H). 3C NMR
(100 MHz, CDCl;) 0 158.8, 143.7, 132.4, 130.4, 129.3, 128.4, 127.2, 126.4, 126.2, 125.8, 123.6,
122.2, 121.8, 23.4. Spectra data are consistent with those reported in the literature.’

2-Chloro-6-methylphenanthridine (2h): Synthesized according to the general procedure
described in section 2.2. Colorless solid (83 mg, 73% yield, m. p. 103-104 °C). R¢ (ethyl acetate):
0.37. "H NMR (400 MHz, CDCl5) ¢ 8.49 (d, J= 8.4 Hz, 1H), 8.43 (d, J= 1.2 Hz, 1H), 8.20 (d, J
=7.8 Hz, 1H), 8.01 (d, J= 8.8 Hz, 1H), 7.83 (t, J = 8.4 Hz, 1H), 7.73-7.70 (m, 1H), 7.62 (dd, J =
8.4,2.2 Hz, 1H), 3.01 (s, 3H). 3C NMR (100 MHz, CDCl;) 6 159.0, 142.1, 132.2, 131.5, 130.8,
130.7, 129.1, 127.9, 126.5, 126.1, 124.8, 122.3, 121.7, 23.3. Spectra data are consistent with

those reported in the literature.’
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X
N

CHs
2i

4-Bromo-1-methylisoquinoline (2i): Synthesized according to the general procedure described
in section 2.2. Pale yellow solid (87 mg, 78% yield, m. p. 87-89 °C). R (ethyl acetate): 0.52. 'H
NMR (400 MHz, CDCl;) ¢ 8.57 (s, 1H), 8.18 (d, /= 8.4 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.81
(t, J=17.6 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 2.93 (s, 3H). 13C NMR (100 MHz, CDCl;) ¢ 158.3,
143.4, 134.7, 131.4, 128.9, 128.2, 126.8, 126.2, 118.0, 22.3. HRMS (ESI) m/z calculated for
C1oHoBrN [(M+H)*] 221.9920, found 221.9916.

Br N
_N

CH;,
2j

6-Bromo-1-methylisoquinoline (2j): Synthesized according to the general procedure described
in section 2.2. Pale yellow semi-solid (91 mg, 82% yield). Ry (ethyl acetate): 0.50. 'H NMR (400
MHz, CDCls) ¢ 8.39 (d, J = 5.8 Hz, 1H), 7.97-7.92 (m, 2H), 7.64 (dd, /= 9.0, 1.8 Hz, 1H), 7.39
(d, J = 5.7 Hz, 1H), 2.92 (s, 3H). 13C NMR (100 MHz, CDCl3) ¢ 158.8, 142.8, 137.0, 130.5,
129.3, 127.4, 125.8, 124.6, 118.3, 22.3. Spectra data are consistent with those reported in the

X
cl N

CH3
2k

literature.*

7-Chloro-1-methylisoquinoline (2k): Synthesized according to the general procedure described
in section 2.2. Yellow oil (67 mg, 75% yield). R¢ (ethyl acetate): 0.50. 'H NMR (400 MHz,
CDCl;) ¢ 8.32 (d, J = 5.8 Hz, 1H), 7.88 (s, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.52 (d, J = 8.4 Hz,
1H), 7.35 (d, J = 5.8 Hz, 1H), 2.95 (s, 3H). 3C NMR (100 MHz, CDCl;) ¢ 157.8, 140.9, 136.8,
133.9, 132.0, 127.5, 126.9, 124.4, 119.0, 22.6. HRMS (ESI) m/z calculated for C;oHoCIN

[(M+H)*] 178.0427, found 178.0431.
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2,4-Dimethylquinoline (21): Synthesized according to the general procedure described in section
2.2. Pale yellow oil (64 mg, 81% yield). R¢ (n-hexane:ethyl acetate; 1:1): 0.53. '"H NMR (400
MHz, CDCl;) 0 8.03 (d, J = 8.2 Hz, 1H), 7.96 (dd, J = 8.2, 0.8 Hz, 1H), 7.67 (ddd, J = 8.2, 6.8,
1.2 Hz, 1H), 7.52 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.16 (s, 1H), 2.72 (s, 3H), 2.69 (s, 3H). 3C
NMR (100 MHz, CDCls) ¢ 158.7, 147.6, 144.2, 129.1, 129.0, 126.6, 125.4, 123.5, 122.7, 25.2,
18.5. Spectra data are consistent with those reported in the literature.®

CHs

N CHj;
2m

2,4-Dimethylquinoline (2m): Synthesized according to the general procedure described in
section 2.2. Pale yellow oil (66 mg, 83% yield). R¢ (n-hexane:ethyl acetate; 1:1): 0.53. Spectral
data are in accordance with those of 21 described above.b

CHs,

X

—

N~ ~CH,

Cl
20

8-Chloro-2,4-dimethylquinoline (20): Synthesized according to the general procedure
described in section 2.2. Colorless solid (79 mg, 82% yield, m. p. 71-73°C). R¢ (n-hexane:ethyl
acetate; 1:1): 0.52. '"H NMR (400 MHz, CDCl;) 6 7.84 (d, J = 9.0 Hz, 1H), 7.77 (d, J = 7.4 Hz,
1H), 7.39 (t, J = 7.8 Hz, 1H), 7.17 (s, 1H), 2.75 (s, 3H), 2.64 (s, 3H). '*C NMR (100 MHz,
CDCly) 6 159.8, 144.6, 144.1, 133.4, 129.3, 128.0, 125.1, 123.7, 122.8, 25.7, 19.1. Spectra data

are consistent with those reported in the literature.6

S11



m
_
N CH

2p
4-Chloro-2-methylquinoline (2p): Synthesized according to the general procedure described in
section 2.2. Pale yellow oil (75 mg, 84% yield). R¢ (n-hexane:ethyl acetate; 1:1): 0.55. 'H NMR
(400 MHz, CDCl3) 6 8.17 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.73 (ddd, J = 8.4, 7.0,
1.2 Hz, 1H), 7.59 (ddd, J = 8.4, 7.0, 1.2 Hz, 1H), 7.40 (s, 1H), 2.74 (s, 3H). 3C NMR (100 MHz,
CDCly) o 158.9, 148.5, 142.8, 130.6, 128.9, 127.0, 124.9, 124.0, 122.2, 25.1. Spectra data are

consistent with those reported in the literature.®

m
_
N CH

2q

3

4-Bromo-2-methylquinoline (2q): Synthesized according to the general procedure described in
section 2.2. Pale yellow solid (89 mg, 80% yield, m. p. 89-90 °C). R¢ (n-hexane:ethyl acetate;
1:1): 0.55. '"H NMR (400 MHz, CDCl;) ¢ 8.33 (s, 1H), 8.01 (d, J = 8.2 Hz, 1H), 7.70 (t, J = 7.8
Hz, 2H), 7.52 (dd, J = 7.8, 1.2 Hz, 1H), 2.87 (s, 3H). 3C NMR (CDCl;, 100 MHz) ¢ 157.6,
146.4, 138.5, 129.7, 128.8, 128.0, 126.7, 126.5, 118.9, 25.8. Spectra data are consistent with

those reported in the literature.’
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_____________________________

Synthesized according to the general procedure described in section 2.2 and obtained as a
mixture with 1.6:1 ratio of 2-methylquinoline (2r-1) and 4-methylquinolin (2r-2).
2-Methylquinoline (2r-1): Colorless oil (34 mg). 'H NMR (400 MHz, CDCls) 6 8.03 (d, J=9.0
Hz, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.68 (t, J = 7.8 Hz, 1H), 7.49 (t, J =
7.4 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 2.76 (s, 3H). 13C NMR (CDCl;, 100 MHz) ¢ 159.1, 147.8,
136.1, 129.3, 128.6, 127.5, 126.4, 125.6, 122.1, 25.4. Spectra data are consistent with those
reported in the literature.?

4-Methylquinoline (2r-2): Colorless oil (21 mg). 'H NMR (400 MHz, CDCl;) 6 8.77 (d, J = 4.4
Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 8.01 (d, J= 8.2 Hz, 1H), 7.71 (dd, J = 8.4, 6.8 Hz, 1H), 7.57
(dd, J= 8.2, 6.8 Hz, 1H), 7.24 (d, J = 4.4 Hz, 1H), 2.73 (s, 3H). 3C NMR (CDCl;, 100 MHz) ¢
150.1, 148.0, 144.3, 130.0, 129.1, 128.4, 126.3, 123.8, 121.9, 18.8. Spectra data are consistent

A
_N

CD
3a °

with those reported in the literature.?

1-Trideuteromethylisoquinoline (3a): Synthesized according to the general procedure
described in section 2.2. Colorless oil (57 mg, 77% yield). R (ethyl acetate): 0.55. 'TH NMR (400
MHz, CDCl;) 0 8.38 (d, J = 6.0 Hz, 1H), 8.11 (d, /= 8.2 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.67
(dd, J=8.2, 6.8 Hz, 1H), 7.59 (ddd, /= 8.2, 6.8, 1.2 Hz, 1H), 7.50 (d, J = 6.0 Hz, 1H). *C NMR
(CDClI;, 100 MHz) o 158.7, 141.6, 136.1, 130.2, 127.6, 127.3, 127.1, 125.8, 119.5, 22.2-21.9

(m). Spectra data are consistent with those reported in the literature.?
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~CHs
_N

CD;
3b

1-Trideuteromethyl-3-methylisoquinoline (3b): Synthesized according to the general
procedure described in section 2.2. Pale yellow semi-solid (59 mg, 73% yield). R¢ (ethyl acetate):
0.50. '"H NMR (400 MHz, CDCls) ¢ 8.05 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 8.2 Hz, 1H), 7.62 (dd,
J=28.2, 6.6 Hz, 1H), 7.49 (dd, J= 8.2, 6.6 Hz, 1H), 7.33 (s, 1H), 2.65 (s, 3H). *C NMR (CDCl;,
100 MHz) ¢ 158.1, 150.3, 136.7, 129.9, 126.7, 126.1, 125.7, 125.6, 117.3, 24.3, 22.2-21.8 (m).

Spectra data are consistent with those reported in the literature.®

X
N
HsCO ©

CD
3c 3

1-Trideuteromethyl-7-methoxyisoquinoline (3c¢): Synthesized according to the general
procedure described in section 2.2. Pale yellow oil (62 mg, 70% yield). R¢ (ethyl acetate): 0.42.
'H NMR (400 MHz, CDCl5) 6 8.29 (d, J= 6.4 Hz, 1H), 7.97 (d, /= 8.8 Hz, 1H), 7.93 (d, /= 6.4
Hz, 1H), 7.70 (dd, J = 8.8, 2.4 Hz, 1H), 7.43 (d, J = 2.4 Hz, 1H), 4.01 (s, 3H). 3C NMR (100
MHz, CDCl;) ¢ 160.9, 155.7, 133.6, 129.8, 129.1, 128.9, 128.8, 122.8, 104.2, 56.1, 22.4-22.0

(m). Spectra data are consistent with those reported in the literature.®

6-Trideuteromethylphenanthridine (3d): Synthesized according to the general procedure
described in section 2.2. Pale yellow solid (71 mg, 72% yield, m. p. 69-70 °C). R¢ (ethyl acetate):
0.36. 'H NMR (400 MHz, CDCl;) ¢ 8.60 (d, J= 8.2 Hz, 1H), 8.52 (d, /= 8.0 Hz, 1H), 8.20 (d, J
= 8.2 Hz, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.82 (ddd, J = 8.2, 7.0, 1.4 Hz, 1H), 7.71-7.65 (m, 2H),
7.62 (ddd, J = 8.2, 7.0, 1.4 Hz, 1H). 3*C NMR (100 MHz, CDCl;) ¢ 158.8, 143.8, 132.5, 130.4,
129.4, 128.5, 127.3, 126.5, 126.3, 125.9, 123.7, 122.3, 121.8, 22.9-22.5 (m). Spectra data are

consistent with those reported in the literature.’
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4-Bromo-1-trideuteromethylisoquinoline (3e¢): Synthesized according to the general procedure
described in section 2.2. Pale yellow solid (84 mg, 75% yield, m. p. 87-89 °C). R¢ (ethyl acetate):
0.52. '"H NMR (300 MHz, CDCl;) ¢ 8.58 (s, 1H), 8.17 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.4 Hz,
1H), 7.80 (t, J = 7.6 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H). 3C NMR (100 MHz, CDCl;) ¢ 158.2,
143.5, 134.7, 131.4, 128.8, 128.2, 126.7, 126.2, 118.01, 22.6-22.3 (m). Spectra data are

consistent with those reported in the literature.®

X
Cl N

CD
3 °

7-Chloro-1-trideuteromethylisoquinoline (3f): Synthesized according to the general procedure
described in section 2.2. Yellow oil (64 mg, 71% yield). Ry (ethyl acetate): 0.50. 'H NMR (400
MHz, CDCl;) 0 8.32 (d, J= 5.8 Hz, 1H), 7.87 (s, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.52 (d, J = 8.4
Hz, 1H), 7.35 (d, J = 5.8 Hz, 1H). *C NMR (100 MHz, CDCl;) ¢ 157.8, 140.9, 136.8, 134.0,
132.1, 127.5, 126.9, 124.4, 119.1, 22.3-22.0 (m). HRMS (ESI) m/z calculated for C;,H¢D;CIN

[(M+H)*] 181.0616, found 181.0611.
Br N
_N

CD
39 ®

6-Bromo-1-trideuteromethylisoquinoline (3g): Synthesized according to the general procedure
described in section 2.2. Off-white solid (88 mg, 78% yield, m. p. 88-89 °C). R¢ (ethyl acetate):
0.50. 'H NMR (400 MHz, CDCl3) 6 8.40 (d, J = 5.8 Hz, 1H), 7.99-7.93 (m, 2H), 7.66 (dd, J =
9.0, 1.8 Hz, 1H), 7.40 (d, J = 5.8 Hz, 1H). 3C NMR (100 MHz, CDCl;) ¢ 158.9, 142.9, 137.2,
130.6, 129.4, 127.6, 125.9, 124.7, 118.4, 22.3-22.0 (m). Spectra data are consistent with those

reported in the literature.®
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2-Trideuteromethyl-4-methylquinoline (3h): Synthesized according to the general procedure
described in section 2.2. Pale yellow oil (62 mg, 77% yield). R (n-hexane:ethyl acetate; 1:1):
0.53. '"H NMR (400 MHz, CDCl3) ¢ 8.04 (d, J= 8.2 Hz, 1H), 7.95 (d, J = 8.2 Hz, 1H), 7.67 (ddd,
J=18.2,6.8, 12 Hz, 1H), 7.51 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.14 (s, 1H), 2.68 (s, 3H). 13C
NMR (100 MHz, CDCls) 6 158.7, 147.6, 144.4, 129.2, 129.1, 126.7, 125.5, 123.6, 122.9, 25.1-

24.5 (m), 18.6. Spectra data are consistent with those reported in the literature.?

m
Z
N~ "CH

3i

3

4-Trideuteromethyl-2-methylquinoline (3i): Synthesized according to the general procedure
described in section 2.2. Colorless oil (60 mg, 74% yield). R (n-hexane:ethyl acetate; 1:1): 0.52.
'H NMR (400 MHz, CDCls) 6 8.02 (d, /= 8.2 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.68 (ddd, J =
8.2, 6.8, 1.2 Hz, 1H), 7.49 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.14 (s, 1H), 2.70 (s, 3H). 3C NMR
(100 MHz, CDCl3) ¢ 158.6, 147.7, 144.2, 129.2, 129.0, 126.6, 125.4, 123.5, 122.7, 25.2, 18.4-
18.0 (m). Spectra data are consistent with those reported in the literature.®

CHs

X

7

N~ >CD,

Cl
3

8-Chloro-2-trideuteromethyl-4-methylquinoline (3j): Synthesized according to the general
procedure described in section 2.2. Pale yellow solid (74 mg, 76% yield). R¢ (n-hexane:ethyl
acetate; 1:1): 0.52. '"H NMR (300 MHz, CDCl3) 6 'H NMR (400 MHz, CDCl3) 6 7.85 (d, J=9.0
Hz, 1H), 7.78 (d, J = 7.4 Hz, 1H), 7.38 (t, /= 7.8 Hz, 1H), 7.19 (s, 1H), 2.65 (s, 3H). 3C NMR
(100 MHz, CDCl3) ¢ 159.8, 144.7, 144.2, 133.3, 129.3, 128.1, 125.2, 123.7, 122.7, 25.4-25.0
(m), 19.0. HRMS (ESI) m/z calculated for C;;HgD;CIN [(M+H)*] 195.0771, found 195.0769.
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4-Chloro-2-trideuteromethylquinoline (3k): Synthesized according to the general procedure
described in section 2.2. Pale yellow oil (72 mg, 79% yield). R (n-hexane:ethyl acetate; 1:1):
0.55. '"H NMR (400 MHz, CDCl3) ¢ 8.18 (d, J= 8.4 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.74 (ddd,
J=28.4,7.0, 1.2 Hz, 1H), 7.58 (ddd, J = 8.4, 7.0, 1.2 Hz, 1H), 7.41 (s, IH). *C NMR (100 MHz,
CDCl;) 0 158.8, 148.5, 142.9, 130.6, 128.9, 126.9, 124.9, 124.0, 122.1, 25.2-24.8 (m). HRMS
(ESI) m/z calculated for C,oH¢D3;CIN [(M+H)*] 181.0613, found 181.0619.

m
—
N CD

3l

3

4-Bromo-2-trideuteromethylquinoline (31): Synthesized according to the general procedure
described in section 2.2. Pale yellow oil (89 mg, 79% yield). R (n-hexane:ethyl acetate; 1:1):
0.54. '"H NMR (400 MHz, CDCls) ¢ 8.34 (s, 1H), 8.01 (d, J = 8.2 Hz, 1H), 7.71 (t, J = 7.8 Hz,
2H), 7.51 (dd, J = 7.8, 1.2 Hz, 1H). 3C NMR (CDCl;, 100 MHz) ¢ 157.8, 146.4, 138.5, 129.7,
128.7, 128.0, 126.7, 126.5, 118.9, 25.7-25.2 (m). HRMS (ESI) m/z calculated for C;oHsD;BrN
[(M+H)"] 225.0109, found 225.0111.
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Figure S25. 'H (top) and 3C (bottom) spectra of 3f in CDCls.
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Figure S26. A typical GCMS spectra (top) and literature search result (bottom) of TEMPO-CHj;
(m/z = 171) adduct detected in the TEMPO radical trap experiment.
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