Techno-economic evaluation and life cycle assessment for sustainable alternative biorefinery concepts using the organic fraction of municipal solid waste

Sofia-Maria Ioannidou^a, José Pablo López-Gómez^b, Joachim Venus^b, Miguel Angel Valera^c, Vera Eßmann^d, Irantzu Alegria-Dallo^e, Ioannis K. Kookos^f, Apostolis Koutinas^a and Dimitrios Ladakis^a

^a Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.

^b Microbiome Biotechnology Department, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, Potsdam, 14469, Germany

^c Instituto Tecnologico del Plastico (AIMPLAS), Calle Gustave Eiffel 4, 46980 Paterna, Spain

^d Covestro Deutschland AG, Kaiser-Wilhelm-Allee 60, 51373 Leverkusen, Germany

^e National Renewable Energy Centre (CENER), Av. Ciudad de la Innovación 7, E31621 Sarriguren, Spain

^f Department of Chemical Engineering, University of Patras, 26504 Rio, Greece

Supplementary Information

Table S1. Optimal bioreactor design parameters for lactic acid production in various annual capacities. The bioreactor design optimization was based on the methodology developed by Dheskali et al.¹⁷

Annual capacity (t)	10,000	20,000	40,000	50,000	60,000
Loading time, τ _ι (h)	2	2	2	4	4
Uploading time, τ _{ul} (h)	5	5	5	3	3
Number of batches per year, N _b	1579	1579	1579	2631	2631
Number of bioreactors per batch, N _f	6	6	6	10	10
Working volume of each bioreactor V₅ (m³)	105.5	211.1	422.2	316.7	380.1

Table S2. Optimal bioreactor design parameters for succinic acid production in various annual capacities. The bioreactor design optimization was based on the methodology developed by Dheskali et al.¹⁷

Annual capacity (t)	10,000	20,000	40,000	50,000	60,000
Loading time, τ _ι (h)	2	2	2	2	4
Uploading time, τ _{ul} (h)	6	4	2	2	2
Number of batches per year, N_b	1314	1971	3942	3942	3942
Number of bioreactors per batch, N _f	7	10	19	19	20
Working volume of each bioreactor, V _b (m³)	258.8	345.1	345.1	431.4	517.7

Raw Material	Unitary prices 2018 (\$/t)
HCI	61
NaOH	400
Nutrients	950
Ethanol	680
Petroleum ether	1,000
Acetone	1,500
KOH (85%)	400
NPG	1,500
HXDO	3,500
Additives for HMAs	1,894
Additives for PUDs	5,500
Enzyme	1,000
Water	0.435

Table S3. Unitary cost of raw materials.³⁰

	Unit	SA	LA	Biosurfactants	HMAs	PP	PUDs
Sugars	kg/kg _{product}	1.78	1.43	-	-	-	-
Solid residues (dry)	kg/kg _{product}	-	-	11.9	-	-	-
1,6-hexanediol	kg/kg _{product}	-	-	-	-	0.44	-
Neopentyl glycol	kg/kg _{product}	-	-	-	-	0.26	-
Succinic acid	kg/kg _{product}	-	-	-	-	0.63	-
Lactic acid	kg/kg _{product}	-	-	-	0.96	-	-
Additives	kg/kg _{product}	-	-	-	0.41	-	0.14
Nutrients	kg/kg _{product}	0.29	-	-	-	-	-
HCI	kg/kg _{product}	1.34	-	1.84	-	-	-
NaOH	kg/kg _{product}	1.20	0.04	0.23	-	-	-
KOH (85%)	kg/kg _{product}	-	-	0.82	-	-	-
Ethanol	kg/kg _{product}	-	-	0.23	-	-	-
Petroleum ether	kg/kg _{product}	-	-	0.17	-	-	-
Acetone	kg/kg _{product}	-	-	-	-	-	0.67
Enzyme	kg/kg _{product}	-	-	0.048	-	-	-
Water	kg/kg _{product}	2.05	6.4	-	-	-	0.61
Electricity	kWh/kg _{produ}	3.93	3.97	3.02	2.82	0.01	0.01
Steam	kg/kg _{product}	0.89	2.36	1.32	0.41	3.56	0.52
Cooling water	kg/kg _{product}	171.74	39.9	27.70	16.07	-	22.55

Table S5. Parameters of the DCF analysis taken from Humbird et al.¹⁵

Discount rate (or interest rate)	10 %
Plant life time	30 years
Equity financing	100 %
	200% declining
Depreciation via MACRS	balance and 7 year
	recovery period
Corporate tax rate	35 %
Plant construction duration	3 years
% of project cost in the 1st, 2nd and 3rd year of construction	8 % - 60% - 32 %
Working capital	5 % of FCI
Salvage value	0
Land costs	0

Table S6. Greenhouse gas emission of the fossil- and bio-based counterparts of the endproducts derived from OFMSW

Fossil- and bio-based counterpart	GHG (kg CO ₂ -eq/kg _{product})	Reference	
Bio-based LA from corn-derived glucose	0.3-1.2	De Matos et al. ³⁵	
Fossil-based SA	1.89	Dewulf et al. ³⁷	
Bio-based SA from corn-derived glucose	0.88	Cok et al. ¹¹	
Fossil-based surfactants	2.1	Schowanek et al. ³⁸	
Fossil adhesives	5.0	McDevitt et al. ³⁹	
Adipic acid based PUDs	3.4	EPDLA ⁴⁰	

Figure S1. Fixed capital investment (a), cost of manufacture (b) per kg lactic acid as a function of lactic acid annual production capacity.

Figure S2. Fixed capital investment (a) and cost of manufacture (b) per kg succinic acid as a function of

Figure S3. Environmental performance of all processes in GHG emissions for base case scenario and alternative approach having as OFMSW management 100% landfilling (a) and 37.45% recycling/62.55% landfilling (b).