---Supporting Information---

Electrocatalytic amino acid synthesis from biomassderivable keto acids over ball milled carbon nanotubes

Yiying Xiao^{†,‡}, Chia Wei Lim[‡], Jinquan Chang^{†,‡}, Qixin Yuan[‡], Lei Wang^{*‡}, Ning Yan^{*†,‡}

[†]Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China [‡]Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore

*Corresponding authors:

Lei Wang, Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585. Email: <u>wanglei8@nus.edu.sg</u> Ning Yan, Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585. Email: <u>ning.yan@nus.edu.sg</u>

Table of Contents

Number of pages in the supporting information: 29 Number of figures in the supporting information: 18 Number of tables in the supporting information: 3 Number of schemes in the supporting information: 2

Figure S1 TEM images of a) bulk CNT, b) BM1h-CNT, c) BM2h-CNT, d) BM3h-CNT, e) BM4h-CNT and f) BM5h-CNT.

Figure S2 SEM images of **a)** bulk CNT, **b)** BM1h-CNT, **c)** BM2h-CNT, **d)** BM3h-CNT, **e)** BM4h-CNT and **f)** BM5h-CNT (scale bar: 100 nm).

Figure S3 High resolution transmission electron microscopy (HRTEM) images of **a)** bulk CNT and **b, c)** BM3h-CNT.

Figure S4 XRD patterns of bulk CNT and BMXh-CNTs (X = 1, 2, 3, 4, 5).

Figure S5 a) XPS survey spectra and **b)** XPS high resolution C 1s spectra of bulk CNT and BMXh-CNTs (X = 1, 2, 3, 4, 5).

Figure S6 Physical characterizations of N-CNT. a) SEM image (scale bar: 500 nm). **b)** TEM image. **c)** XRD pattern. The peaks at around 25.4° and 42.6° are attributed to the (002) graphite plane reflection and (100) in plane reflection, respectively. **d)** XPS survey spectra. **e)** XPS high resolution C 1s spectra. **f)** XPS high resolution N 1s spectra.

Figure S7 Physical characterizations of CNT-NH₂. a) SEM image (scale bar: 500 nm). **b)** TEM image. **c)** XRD pattern. The peaks at around 25.4° and 42.6° are attributed to the (002) graphite plane reflection and (100) in plane reflection, respectively. **d)** XPS survey spectra. **e)** XPS high resolution C 1s spectra. **f)** XPS high resolution N 1s spectra.

Figure S8 Faradaic efficiencies and glutamic acid formation rate of the BM3h-CNT catalysed room-temperature constant potential electrolysis of 2-ketoglutaric acid under different pH (-0.39 V *vs.* RHE, 100 mM 2-ketoglutaric acid, 6 M NH₃/NH₄⁺, 1 h reaction time).

Figure S9 Formation rate of 2-hydroxyglutaric acid during the BM3h-CNT catalysed roomtemperature constant potential electrolysis of 2-ketoglutaric acid for 1 h under different **a**) applied potentials (100 mM 2-ketoglutaric acid, 3 M NH₃, pH 10), **b**) 2-ketoglutaric acid concentrations (-0.39 V *vs.* RHE, 3 M NH₃, pH 10), **c**) NH₃ concentrations (-0.39 V *vs.* RHE, 100 mM 2-ketoglutaric acid, pH 10) and **d**) pH (-0.39 V *vs.* RHE, 100 mM 2-ketoglutaric acid, 6 M NH₃/NH₄⁺).

Figure S10 ¹H NMR spectra of reaction solutions for the synthesis of glutamic acid varying the substrate concentrations.

Figure S11 ¹H NMR spectra of the reaction solutions for the synthesis of **a**) glycine, **b**) pyruvic acid, **c**) 2-aminobutyric acid, **d**) aspartic acid, **e**) norvaline, **f**) glutamic acid, **g**) phenylglycine, **h**) phenylalanine and **i**) tyrosine.

Figure S12 ¹H NMR spectra and calibration curve for quantification of glutamic acid. **a)** ¹H NMR spectra of glutamic acid with various concentrations. **b)** The calibration curve for glutamic acid.

Figure S13 Kinetic modelling of electrocatalytic reductive amination of 2-ketoglutaric acid. a) Reaction pathway for the electro-reductive amination reaction used for modelling. **b)** Experimental results (circles) and kinetic model prediction (dashed lines) for the concentration profiles of glutamic acid (F) and 2-hydroxyglutaric acid (G) during extended duration electrolysis.

We have conducted kinetic modeling of the reaction to quantitatively verify the reaction pathway network and the rate-determining step we proposed. Based on our experimental results (Figure 5), the formation of glutamic acid is first order with respect to both 2-ketoglutaric acid and ammonia at low and moderate concentrations, and the rate determining step is the first electron transfer process. Thus, a simple reaction pathway as depicted in Figure S13a is used as the basis of the kinetic model.

Assume the ketone-imine chemical equilibrium is attained instantaneously at all time:

$$k_f[NH_3][A] \approx k_b[C] \Longrightarrow K = \frac{[C]}{[NH_3][A]} = \frac{k_f}{k_b}$$

Rate equations for each species:

$$\frac{d[A]}{dt} = -k_2[A] - k_f[NH_3][A] + k_b[C] \approx -k_2[A] \Longrightarrow [A] = [A]_{t=0}e^{-k_2t}$$

$$\frac{d[C]}{dt} = k_f[NH_3][A] - k_b[C] - k_1[C] \approx -k_1[C] \Longrightarrow [C] = [C]_{t=0}e^{-k_1t}$$

$$\frac{d[F]}{dt} = k_1[C] = k_1[C]_{t=0}e^{-k_1t} \Longrightarrow [F] = [C]_{t=0}(1 - e^{-k_1t})$$

$$\frac{d[G]}{dt} = k_2[A] = k_2[A]_{t=0}e^{-k_2t} \Longrightarrow [G] = [A]_{t=0}(1 - e^{-k_2t})$$

The ketone-imine chemical equilibrium is attained instantaneously at t = 0 with the added amount of A (concentration [A]_{feed}):

$$K = \frac{[C]_{t=0}}{[NH_3][A]_{t=0}} \Longrightarrow [C]_{t=0} = K[NH_3][A]_{t=0}$$

Mass balance for species A at t = 0:

$$[A]_{t=0} + [C]_{t=0} = [A]_{feed} \Longrightarrow [C]_{t=0} = [A]_{feed} - [A]_{t=0}$$

Therefore:

$$K[NH_3][A]_{t=0} = [A]_{feed} - [A]_{t=0}$$

$$[A]_{t=0} = \frac{[A]_{feed}}{1 + K[NH_3]} \text{ and } [C]_{t=0} = \frac{K[NH_3][A]_{feed}}{1 + K[NH_3]}$$

Concentration profiles for species F and G become:

$$[F] = \frac{K[NH_3][A]_{feed}}{1 + K[NH_3]} (1 - e^{-k_1 t})$$
$$[G] = \frac{[A]_{feed}}{1 + K[NH_3]} (1 - e^{-k_2 t})$$

Utilising our results for the extended duration electrolysis (Figure 3f), we use the method of least squares to obtain the fitted parameter values: $K = 3.63 \times 10^{-4} \text{ mM}^{-1}$, $k_1 = 0.318 \text{ h}^{-1}$, $k_2 = 0.033 \text{ h}^{-1}$. As shown in Figure S13b, the kinetic model prediction agrees reasonably well with the experimental results, implying that the model assumptions are justified under these reaction conditions.

CA: 125.1° \pm 0.8°

CA: 132.2° \pm 0.9°

Figure S14 Contact angles (CAs) of **a**) carbon paper and **b**) carbon paper covered with BM3h-CNT. The values of CAs were averages calculated based on three independent measurements.

Figure S15 CV curves of **a**) BM3h-CNT with and without 100 mM 2-ketoglutaric acid in a 3 M NH₃/NH₄⁺ buffer (pH 10) with a scan rate of 50 mV/s. **b**) bulk CNT or BM3h-CNT with 100 mM 2-ketoglutaric acid in a 3 M NH₃/NH₄⁺ buffer (pH 10) with a scan rate of 50 mV/s. **c**) BM3h-CNT with 60 mM or 100 mM 2-ketoglutaric acid in a 3 M NH₃/NH₄⁺ buffer (pH 10) with a scan rate of 200 mV/s. **d**) BM3h-CNT with 100 mM 2-ketoglutaric acid in a 3 M NH₃/NH₄⁺ buffer (pH 10) with a scan rate of 200 mV/s. **d**) BM3h-CNT with 100 mM 2-ketoglutaric acid in a 3 M NH₃/NH₄⁺ buffer (pH 10) with various scan rates. To convert to V vs. RHE, use the equation: E_{RHE} (V) = $E_{Ag/AgCl}$ (V) + 0.210 V + 0.059 V × pH - *i*R.

Figure S16 CV curves of BM3h-CNT with **a**) 60 mM glyoxylic acid, **b**) 60 mM pyruvic acid, **c**) 60 mM 2-ketobutyric acid, **d**) 60 mM oxaloacetic acid, **e**) 60 mM 2-ketoglutaric acid, **f**) 60 mM 2-oxovaleric acid, **g**) 20 mM phenylglyoxylic acid, **h**) 20 mM sodium phenylpyruvate and **i**) 20 mM 4-hydroxyphenylpyruvic acid in a 3 M NH₃/NH₄⁺ buffer (pH 10) with a scan rate of 10 mV/s. To convert to V *vs.* RHE, use the equation: E_{RHE} (V) = $E_{\text{Ag/AgCI}}$ (V) + 0.210 V + 0.059 V × pH - *iR*.

Figure S17 LSV curves of BM3h-CNT with various substrates in a 3 M NH₃/NH₄⁺ buffer (pH 10) with a scan rate of 20 mV/s. **a)** 60 mM substrates, **b)** 20 mM substrates. To convert to V *vs.* RHE, use the equation: E_{RHE} (V) = $E_{\text{Ag/AgCI}}$ (V) + 0.210 V + 0.059 V × pH - *iR*.

Figure S18 Schematic diagram of the electrochemical system for amino acids synthesis.

Scheme S1 Possible reasons for the drop in FE when the concentrations of the substrate were high. **a**) Reduction or reductive amination of the dimer formed by the concurrent condensation of the substrate. **b**) Condensation of the substrate and the product.

cat = catalyst surface

Scheme S2 Two reported possible mechanisms for ERA. **a)** The *in situ* formed imino acid is directly reduced. **b)** The catalyst surface is covered by hydride, then the addition of hydrogen atom to the imino acid occurs.

Substrate	Catalyst	Nitroge n source	Potential (V <i>vs.</i> RHE)	Durati on (h)	Product & FE (%) & Yield (%)		Ref.	
2-ketoglutaric acid (100 mM)				8	glutamic acid	82.6	58.4	This
2-ketoglutaric acid (60 mM)	- - - BM3h- CNT		(6 -0.39		glutamic acid	90.0	23.2	
2-oxovaleric acid (60 mM)		NH ₃ (6 M)			norvaline	91.3	31.4	
oxaloacetic acid (60 mM)					aspartic acid	46.9	2.8	
2-ketobutyric acid (60 mM)					2- aminobutyric acid	59.2	11.9	
pyruvic acid (60 mM)				1	alanine	45.0	7.4	wor k
glyoxylic acid (60 mM)					glycine	87.4	3.0	
phenylgloxylic acid (20 mM)					phenylglycin e	31.4	25.8	
phenylpyruvic acid (20 mM)					phenylalanin e	92.8	25.9	
4- hydroxypheny I-pyruvic acid (20 mM)					tyrosine	72.9	13.2	
oxalic acid (160 mM)	cal. Ti foil	NH₂OH (192 mM)	-0.7	2	glycine	56	-	1
pyruvic acid (160 mM)		NH₃ (6 M)	-0.32	- 2	alanine	28.7	-	
pyruvic acid (160 mM)	- _ TiO₂/Ti _ mesh	TiO₂/Ti mesh NH₂OH (192 mM)	-0.5		alanine	99	-	2
glyoxylic acid (160 mM)					glycine	96	-	
oxaloacetic acid (160 mM)	- 				aspartic acid	96	-	

Table S1 Comparison of the electrocatalytic amino acids synthesis from keto acids in this work with literature.

2-ketoglutaric acid (160 mM)					glutamic acid	95	-	
4-methyl-2- oxovaleric acid (80 mM)					leucine	91	-	
phenylpyruvic acid (20 mM)		-			phenylalanin e	87	-	
4- hydroxypheny I- pyruvic acid (20 mM)			-0.6	5	tyrosine	75	-	
2-ketoglutaric acid (10 mM)	Hg	NH ₃ (1.24 M)	-0.32	4.5	glutamic acid	-	53	3
phenylglyoxyli c acid (70 mM)		NH ₃ (5 M)	-0.22	24	2- phenylglycin e	91	88	
2-ketoglutaric acid (86 mM)		Hg NH ₃ (2 M)		24	glutamic acid	63	42	
pyruvic acid (93 mM)	Hg		-0.49	18.5	alanine	58	33	4
2-ketobutyric acid (80 mM)				25	2- aminobutyric acid	96	48	
2-keto-5- phenylvaleric acid (52 mM)			-0.63	73	2-amino-5- phenylvaleri c acid	37	24	
phenylglyoxyli c acid (74 mM)	Pd black	Pd black NH ₃ (15.5		24	2- phenylglycin e	93	83	
2-ketoglutaric acid (86 mM)	Pt-AA1 *	M)	-0.069	24	glutamic 8: acid 8:		64	
pyruvic acid (93 mM)		NH ₃ (4.7 M)	-0.029	18.5	alanine	64	37	5
2-ketobutyric acid (80 mM)	Pt-AA2 *	* NH ₃ (15.5	-0.049	25	2- aminobutyric acid	73	59	
2-keto-5- phenylvaleric acid (52 mM)		M) -	-0.069	73	2-amino-5- phenylvaleri c acid	56	40	

* The AA1 electrode consisted of a mixture of Teflon powder and platinum black compressed onto tantalum gauze and the AA2 electrode was similar but was compressed on tantalum expanded metal.

Material	BET surface area (m² g⁻¹)			
bulk CNT	189.260			
BM1h-CNT	205.583			
BM2h-CNT	201.797			
BM3h-CNT	197.080			
BM4h-CNT	213.756			
BM5h-CNT	203.670			
N-CNT	47.5474			
CNT-NH ₂	202.129			

 Table S2 BET surface area of various CNT materials.

Material	Outer diameter (nm)	Length (µm)	Electrical conductivity (S/cm)	Purity (wt.%)	Ash (wt.%)
bulk CNT *	5-18	10-20	-	-	-
N-CNT	30-80	10-30	-	> 95	< 1.5
CNT-NH ₂	8-15	~50	> 100	> 95	-

 Table S3 Specifications of the CNT materials.

* The information for this material is based on our TEM and SEM images due to the lack of details provided by the manufacturer.

References

- 1. T. Fukushima and M. Yamauchi, J. Electroanal. Chem., 2021, 51, 99-106.
- 2. T. Fukushima and M. Yamauchi, ChemComm, 2019, 55, 14721-14724.
- 3. A. Anne, S. Danions and J. Moiroux, New J. Chem, 1994, 18, 1169-1174.
- 4. E. Jeffery and A. Meisters, Aust. J. Chem., 1978, 31, 73-78.
- 5. E. Jeffery, O. Johansen and A. Meisters, Aust. J. Chem., 1978, 31, 79-84.