Electronic Supplementary Information

Type I Strong Acceptor-Weak Acceptor Photosensitizing Assemblies for Regulated Aerobic

Oxidative Coupling of Anilines

Lovjot Kaur, Manoj Kumar* and Vandana Bhalla*

Department of Chemistry, UGC Centre of Advanced Study-II

Guru Nanak Dev University, Amritsar 143005, Punjab, India

Email: vanmanan@yahoo.co.in, mksharmaa@yahoo.co.in

Page	Contents
Number	
S4-S7	General methods and materials.
	Synthesis of DPZ-TPY , Azobenzenes.
S8	Comparison table for synthesis of azobenzene from arylamine and hydrazobenzene.
S9	Scheme for aerobic oxidative coupling of aryl amines using assemblies of TETPT and DPZ- Th .
C10	Synthesis scheme of derivative DPZ-TPY
510	Solvent dependent emission studies.
	Concentration dependent ¹ H NMR.
S11	DLS spectrum of assemblies of DPZ-TPY . Absorption spectra of derivative DPZ-TPY in presence of MV ²⁺ and TEOA under day-light and inert atmosphere.
S12	UV-vis absorption spectra of the cationic radical species of N,N,N',N'- tetramethyl- p-phenylenediamine generated by assemblies of DPZ-TPY . UV-vis spectra of ABDA in the presence of assemblies of DPZ-TPY under visible light irradiation
S13	UV-vis spectra of DPZ-TPY in DMSO: H_2O (1:1) upon irradiation. Cyclic voltammogram of DPZ-TPY .
S14	Schematic representation of HOMO/LUMO energy levels of DPZ-TPY assemblies. The fluorescence quenching spectra upon addition of aniline to DPZ-TPY assemblies in the absence of base and in the presence of base (KOH).

S15	Absorption spectrum of <i>trans</i> azobenzene.
	EDX spectra of assemblies of DPZ-TPY .
	ICP-AES studies of assemblies of DPZ-TPY .
S16	Optimization of reaction conditions for oxidative coupling of arylamines
S17	Emission behavior of assemblies of DPZ-TPY with variety of electron rich and
	electron deficient anilines as the reacting species.
S18	Table showing electron kinetics of variety of anilines.
	The fluorescence spectra upon addition of <i>p</i> -nitroaniline to DPZ-TPY assemblies.
S19	The energy requirement for conversion of reactants into radical cations as per DFT
	studies.
	Effect of high catalyst loading and longer time on gram-scale synthesis.
S20	The mass spectra of adduct (A).
<u>S21-25</u>	Characterization data of compound 2a-2n and 4a-4g .
<u>S26</u>	¹ HNMR spectra of compound 2a in CDCl ₃ .
<u>S27</u>	¹ CNMR spectra of compound 2a in CDCl ₃ .
S28	¹ HNMR spectra of compound 2b in CDCl ₃ .
<u>S29</u>	¹ CNMR spectra of compound 2b in CDCl ₃
S30	¹ HNMR spectra of compound 2c in CDCl ₃ .
<u>S31</u>	¹ CNMR spectra of compound $2c$ in CDCl ₃ .
S32	¹ HNMR spectra of compound 2d in CDCl ₃ .
<u>S33</u>	¹ CNMR spectra of compound 2d in CDCl ₃ .
<u>S34</u>	¹ HNMR spectra of compound 2e in CDCl ₃ .
S35	¹ CNMR spectra of compound 2e in CDCl ₃ .
S36	¹ HNMR spectra of compound 2f in CDCl ₃ .
S37	¹ CNMR spectra of compound 2f in CDCl ₃ .
S38	¹ HNMR spectra of compound 2g in CDCl ₃ .
<u>S39</u>	¹ CNMR spectra of compound $2g$ in CDCl ₃ .
<u>S40</u>	¹ HNMR spectra of compound 2h in CDCl ₃ .
<u>S41</u>	¹ CNMR spectra of compound 2h in CDCl ₃ .
<u>S42</u>	¹ HNMR spectra of compound 2j in CDCl ₃ .
<u>S43</u>	¹ CNMR spectra of compound 2j in CDCl ₃ .
<u>S44</u>	¹ HNMR spectra of compound 2k in CDCl ₃ .
S45	¹ CNMR spectra of compound 2k in CDCl ₃
S46	¹ HNMR spectra of compound 21 in CDCl ₃ .
S47	¹ CNMR spectra of compound 21 in CDCl ₃ .
S48	¹ HNMR spectra of compound 2m in CDCl ₃ .
S49	¹ CNMR spectra of compound 2m n CDCl ₃ .
S50	ESI-MS of 2m
S51	¹ HNMR spectra of compound 2n in CDCl ₃ .
S52	¹ CNMR spectra of compound 2n in CDCl ₃ .
S53	¹ HNMR spectra of compound $4a$ in CDCl ₃ .

S54	¹ CNMR spectra of compound 4a in CDCl ₃ .
S55	¹ HNMR spectra of compound 4b in CDCl ₃ .
S56	¹ CNMR spectra of compound 4b in CDCl ₃ .
S57	¹ HNMR spectra of compound 4c in CDCl ₃ .
S58	¹ CNMR spectra of compound 4c in CDCl ₃ .
S59	¹ HNMR spectra of compound 4d in CDCl ₃ .
S60	¹ CNMR spectra of compound 4d in CDCl ₃ .
S61	¹ HNMR spectra of compound 4e in CDCl ₃ .
S62	¹ CNMR spectra of compound 4e in CDCl ₃ .
S63	¹ HNMR spectra of compound 4f in CDCl ₃ .
S64	¹ CNMR spectra of compound 4f in CDCl ₃ .
S65	¹ HNMR spectra of compound 4g in CDCl ₃ .
S66	¹ CNMR spectra of compound 4g in CDCl ₃ .
S67	¹ HNMR spectra of compound 3a in CDCl ₃ .
S68	¹ HNMR spectra of compound 3b in CDCl ₃ .
S69	¹ HNMR spectra of compound $3c$ in CDCl ₃ .
S70	¹ HNMR spectra of compound 3d in CDCl ₃ .
S71	¹ HNMR spectra of compound 3e in CDCl ₃ .
S72	¹ HNMR spectra of compound 3f in CDCl ₃ .
S73	¹ HNMR spectra of compound 3g in CDCl ₃ .
S74	¹ HNMR spectra of compound 3h in CDCl ₃ .
S75	¹ HNMR spectra of derivative 3 in CDCl ₃ .
S76	¹ CNMR spectra of derivative 3 in CDCl ₃ .
S77	HRMS spectrum of derivative 3 .
S78	Computational studies
S82	References

General Experimental Methods and Materials

All the reagents were purchased from Aldrich and were used without further purification. HPLC grade solvents were used in UV-vis and fluorescence studies. UV-vis spectra were recorded on SHIMADZU UV-2450 spectrophotometer, with a quartz cuvette (path length 1 cm). The fluorescence spectra were recorded with HORIBA Scientific FLUOROMAX-4 and HORIBA QM-8075-21-C spectrofluorometer. The electrochemical measurements were performed at room temperature using a computer controlled potentiostat/galvanostat Autolab PGSTAT204 (Netherlands) Metrohm, equipped with FRA (frequency response analyzer) module. The NOVA software was used to collect, plot and analyze the raw data of various CV measurements. The dynamic light scattering (DLS) data were recorded with MALVERN Instruments (Nano-ZS). The melting points were calculated using Cole-Parmer MP 200D-120 Stuart Digital melting point apparatus. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance III HD 500 MHz, Bruker Avance Neo 500MHz and JEOL 400 MHz using CDCl₃ as solvent. Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad singlet), coupling constants *J* (Hz).

UV-vis and fluorescence studies.

The stock solution (10⁻³ M) of derivative **3** was prepared by dissolving 8.95 mg in 10.0 mL of DMSO. 15.0 μ L of this stock solution further diluted with H₂O and DMSO (1:1) to prepare 3.0 mL solutions of derivatives (5.0 μ M) and these solutions were used for each UV-vis and fluorescence experiments.

Synthesis of phenazine derivative DPZ-TPY

To a solution of 11, 12-dibromodibenzo [a,c]phenazine (0.40 g, 0.90 mmol) and 4-(2,2',6',2"-terpyridine-4'-yl) phenyl boronic acid (0.73 g, 2.09 mmol) in anhydrous dioxane (20 mL), 2 mL aqueous solution of K₂CO₃ (1 g, 7.28 mmol) was added followed by addition of [Pd(PPh₃)₄] (0.52 g, 0.45 mmol) under nitrogen atmosphere. The reaction mixture was refluxed overnight and dioxane was then removed under vacuum. The residue so obtained was treated with water and extracted with ethyl acetate, dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure and compound was purified by column chromatography using 80:20 (ethylacetate: hexane) as an eluent to give 85% of the derivative **DPZ-TPY** as pale yellow solid; mp: >250°C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 9.47-9.44 (m, 2H), 8.78 (s, 4H), 8.70-8.69 (m, 4H), 8.66 (d, J = 8Hz, 4H), 8.61 (d, J = 8Hz, 2H), 8.49 (s, 2H), 7.93 (d, J = 8Hz, 4H), 7.88 (d, J = 4 Hz, 1H), 7.86 (d, J = 4Hz, 2H), 7.85-7.83 (m, 2H), 7.82-7.80 (m, 2H), 7.78-7.76 (m, 1H), 7.54 (d, J = 8Hz, 4H), 7.35-7.31 (m, 4H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 156.3, 156.0, 149.6, 149.3, 149.1, 137.4, 136.8, 132.2, 130.7, 130.6, 130.4, 128.0, 127.2, 126.4, 123.7, 123.0, 121.3, 118.9; HRMS (ESI) m/z: [M+H]+ found to be 895.3306, calculated: 895.3298 (Fig. S68-S70).

General procedure for oxidative coupling of arylamines: The arylamine (1a-n) (1.0 mmol) in is dissolved in DMSO: H₂O (1:1) (3.0 mL) in a 10 mL round-bottom flask with the subsequent addition of KOH (1.5 equiv.) and **DPZ-TPY** assemblies (0.1 mol %) as a photocatalyst. The reaction mixture is allowed to stir continuously for 24 h under aerial condition and visible light irradiations (16 W White LED). The reaction vessel was dipped in water bath and the final temperature of the water bath was maintained between 25°C-28°C. After the completion of the reaction, the organic part was extracted with ethyl acetate and organic layer was dried over anhydrous sodium sulphate and distilled under reduced pressure. The products (**2a-n**) were isolated by chromatography using ethyl acetate and hexane as eluents. The isolated product was air dried overnight and identified by ¹H NMR spectroscopy (Fig. S19-S45).

Photocatalytic set-up for catalytic reaction.

General procedure for synthesis of azobenzenes from hydroazobenzene: The hydroazobenzene (1.0 mmol) prepared as per literature procedure¹ in is dissolved in DMSO: H₂O (1:1) (3.0 mL) in a 10 mL round-bottom flask with the subsequent addition of KOH (1.0 equiv.) and **DPZ-TPY** assemblies (0.1 mol %) as a photocatalyst. The reaction mixture is allowed to stir continuously for 10 h under aerial condition and visible light irradiation irradiations (16 W White LED). The reaction vessel was dipped in water bath and the final temperature of the water bath was maintained between 25°C-28°C. After the completion of the reaction, the organic part

was extracted with ethylacetate and organic layer was dried over anhydrous sodium sulphate and distilled under reduced pressure. The products (**4a-g**) were isolated by chromatography using ethyl acetate and hexane as eluents. The isolated product was air dried overnight and identified by ¹H NMR spectroscopy (Fig. S46-S59).

Table S1. Comparison table for synthesis of azobenzene from hydrazobenzene.

Entry	Journal	Catalyst	Catalyst loading	Reaction medium	Source of light/Temp	Atmosphere	Base	Additive	Time (h)	Yield (%)
1.	Present Manuscript	Supramolecular ensemble DPZ-TPY	0.1 mol%	DMSO/H ₂ O	Visible light	Aerial	КОН	-	24	93%
2.	J. Am. Chem. Soc. 2021 , 143, 2938- 2943	Ir(dF-CF ₃ - ppy) ₂ (dtbpy) ⁺	5 mol%	ACN	Blue LED	Aerial	K ₃ PO ₄		24	94%
3.	Angew. Chem. Int. Ed. 2021 , 60, 6382 – 6385	Molybdenum based catalyst [N(C4H9)4]2[M06O19]	1 mol%	Methanol	60°C	-	Na ₂ S ₂ O ₃	H ₂ O ₂ ,	24	95%
4.	<i>J.Org.Chem.</i> 201 7,82, 9873-9876	NCS	2 equiv.	DCM	-78°C to RT	-	DBU	-	2-10 min	87%
5.	<i>ACS Catal.</i> 2013 , 3, 478–486	Ag nanoparticles	6 mol %	DMSO	RT	Aerial	КОН	-	24	97%

Table S2. Comparison table for synthesis of azobenzene from arylamines

Entry	Journal	Catalyst	Catalyst loading	Reaction medium	Source of light/Temp	Atmosphere	Base	Additive	Time (h)	Yield (%)
1.	Present Manuscript	Supramolecular ensemble DPZ-TPY	0.1 mol%	DMSO/H ₂ O	Visible light	Aerial	КОН	-	10	92%
2.	<i>Green Chem.</i> , 2019, 21, 4189-4193	Eosin Y	2 mol%	ACN	CFL	Aerial	-	-	20	95%
3.	ACS Catal., 2018, 8, 7727-7733	Co and Ru photoredox catalyst	2 mol%	Ethanol	Visible light, 28°C	Argon	-	-	12	93%
4.	Angew. Chem. Int.Ed. 2016 , 55, 1-5	tBuOK	20 mol%	Liquid Ammonia	RT	Sealed	-	tBuOK	0.005	100%

Scheme S1. Aerobic oxidative coupling of arylamines using assemblies of TETPY and DPZ-Th.

Scheme S2. Synthesis of derivative DPZ-TPY.

Fig. S1. (A) Solvent dependent emission studies of DPZ-TPY assemblies in various solvents. (B) Emission spectrum of DPZ-TPY assemblies in DMSO: H_2O (1:1) solvent mixture.

Fig. S2. Concentration dependent ¹H NMR studies of **DPZ-TPY** assemblies showing upfield shift in the signals.

Fig. S3. DLS spectra of assemblies of DPZ-Th showing the particle size between 200-700 nm.

Fig. S4. (A) Absorption spectra of derivative **DPZ-TPY** (5 μ M) in presence of MV²⁺ (0.2 mM) and TEOA (50 mM) under day-light and inert atmosphere. (B) **DPZ-TPY** acts as photosensitizer and transports the electron to a sacrificial donor to acceptor under visible-light irradiation and inert atmosphere.

Fig. S5. UV-vis absorption spectra and photographs of the cationic radical species of N,N,N',N'-tetramethyl-pphenylenediamine generated by assemblies of **DPZ-TPY** (5 μ M) in the presence of visible light and oxygen.

Fig. S6. UV-vis spectra of ABDA in the presence of assemblies of DPZ-TPY $(5\mu M)$ under visible light irradiation.

Fig. S7. UV-vis spectra of derivative DPZ-TPY DMSO: H₂O (1:1) before and after irradiation of 36 h.

Fig. S8. Cyclic voltammogram of **DPZ-TPY** under N₂ saturated ACN. The potential was scanned at 100 mV s-1 using platinum (working), Ag/AgCl (reference) and platinum wire (counter) electrodes with (0.1 M) tetrabutylammonium hexafluorophosphate (TBAPF₆) as supporting electrolyte in ACN

Fig. S9. Schematic representation of HOMO/LUMO energy levels of DPZ-TPY assemblies.

Fig. S10. (A1 and B1) The fluorescence quenching spectra upon addition of aniline to DPZ-TPY assemblies in the absence of base and Stern-Volmer quenching plot. . (A2 and B2) The fluorescence quenching spectra upon addition of aniline to DPZ-TPY assemblies in the presence of base and Stern-Volmer quenching plot.

Fig. S11. Absorption spectrum of *trans* azobenzene (2a).

Element	Wt%	At%
СК	81.95	84.11
NK	18.05	15.89
Matrix	Correction	ZAF

Fig. S12. EDX spectra of assemblies of DPZ-TPY.

Sample	Pd
	ррт
DPZ-TPY	ND

ND MEANS LESS THAN 0.01PPM

Fig. S13. ICP-AES studies of assemblies of DPZ-TPY.

Table S3. Optimization of reaction conditions for oxidative coupling of arylamines^a

1a-n

Entry	Photocatalyst (supramolecular assemblies)	Base	Solvent system	Yield (%)
1.	DPZ-TPY	KOH(1.5 equiv.)	DMSO/H ₂ O (1:1)	93%
2 ^b .	DPZ-TPY	KOH (1.5 equiv.)	DMSO/H ₂ O (1:1)	91%
3.	DPZ-TPY	KOH(1.5 equiv.)	ACN	72%
4.	DPZ-TPY	KOH(1.5 equiv.)	THF	70%
5.	DPZ-TPY	KOH(1.5 equiv.)	EtOH	63%
6.	DPZ-TPY	KOH(1.5 equiv.)	DMF	75%
7.	DPZ-TPY	Triethylamine(1.5 equiv.)	DMSO/H ₂ O (1:1)	Traces
8.	DPZ-TPY	$K_2CO_3(1.5 \text{ equiv.})$	DMSO/H ₂ O (1:1)	55%
9.	DPZ-TPY	$K_3PO_4(1.5 \text{ equiv.})$	DMSO/H ₂ O (1:1)	60%
10.	DPZ-TPY	KOH (1.0equiv.)	DMSO/H ₂ O (1:1)	80%
11°.	DPZ-TPY	KOH(1.5 equiv.)	DMSO/H ₂ O (1:1)	47%

^aReaction conditions (unless otherwise noted): 1a (1.0 mmol), base (1.5 eqv), solvent (3 mL), assemblies of DPZ-TPY: 16 W white LED as the irradiation source, room temperature, 24 h, in aerial conditions.^b50°C. ^clight source turned on for 12 h and turned off for next 12 h.

Fig. S14. (A1, A2, A3 and A4) The fluorescence quenching spectra upon addition of *p*-methoxyaniline (2d), 3,4-dimethylaniline (2l), 4-aminoacetophenone (2j) and *p*-iodoaniline (2e) to DPZ-TPY assemblies (B1,B2,B3 and B4) Stern-Volmer quenching plot.

Table S4. Table showing Stern-Volmer constant values with yields.

S.No.	Substrate	K _{SV} (M ⁻¹)	Yields
1.	Aniline (1a)	8.35×10^{2}	2a , 93%
2.	<i>p</i> -methoxy aniline (1d)	8.02×10^2	2d , 86%
3.	<i>p</i> -iodoaniline (1e)	7.81×10^{2}	2e, 85%
4.	3,4-dimethylaniline (11)	7.67×10^{2}	21, 76%
5.	1-(4-aminophenyl)ethan-1-one (1j)	7.52×10^2	2j, 70%
6.	<i>p</i> -nitroaniline(1k)	No quenching observed	2k , 0%

Fig. S15. The fluorescence spectra upon addition of *p*-nitroaniline (1k) to DPZ-TPY assemblies.

Fig. S16. The energy requirement for conversion of reactants into radical cations calculated by B3LYP/6-31G(d,p) methods.

Fig. S17. Effect of high catalyst loading and longer time on the gram-scale synthesis.

Fig. S18. The mass spectra of adduct (A).

¹H NMR spectra of organic compound

1,2-diphenyldiazene (2a). ^{1,10} Yellow solid (93%): m.p.: 66-68 °C. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.94-7.91 (m, 4H), 7.65-7.47 (m, 4H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 152.7, 131.0, 129.1, 122.9.

1,2-di-*p*-tolyldiazene (2b).^{2,11} Yellow solid (90%): m.p.:140-142 °C. ¹H NMR (500 MHz, CDCl₃); δ (ppm) = 7.82 (d, *J* = 10 Hz, 4H), 7.31 (d, *J* = 10 Hz, 4H), 2.44 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 150.9, 141.2, 129.7, 122.7, 21.5.

1,2-di-o-tolyldiazene (2c). ² Yellow solid (85%): m.p.: 53-54 °C. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.62 (d, *J* = 8 Hz, 2H), 7.38-7.33 (m, 4H), 7.29-7.27 (m, 2H), 2.74 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 151.1, 138.0, 131.3, 130.7, 126.4, 115.9, 17.6.

1,2-bis(2-methoxyphenyl)diazene (2d).^{3,11} Yellow solid (88%): m.p.: 154.6-156.3 °C. ¹H NMR (500 MHz, CDCl₃); δ (ppm) = 7.89 (d, *J* = 10 Hz, 4H), 7.00 (d, *J* = 10 Hz, 4H), 3.89 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 161.6, 147.1, 124.4, 114.2, 55.6.

1,2-bis(2-iodophenyl)diazene (2e) ^{3,11} Orange solid (85%): m.p.: 242-244 °C. ¹H NMR (500 MHz, CDCl₃); δ (ppm) = 7.86 (d, *J* = 5 Hz, 4H), 7.64 (d, *J* = 10 Hz, 4H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 151.8, 138.4, 124.5, 98.1.

1,2-bis(4-bromophenyl)diazene (2f).^{1,11} Yellow solid (82%): m.p.: 205-207 °C. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.79 (d, *J* = 12 Hz, 4H), 7.65 (d, *J* = 8.0 Hz, 4H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 151.2, 132.4, 125.8, 124.4.

1,2-bis(2-chlorophenyl)diazene (2g).^{1,11} Yellow solid(82%): m.p.: 189-191 °C. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.87 (d, *J* = 8 Hz, 4H), 7.49 (d, *J* = 8 Hz, 4H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 150.8, 137.2, 129.4, 124.2.

1,2-bis(4-fluorophenyl)diazene (2h).^{1,11-12} Yellow solid (80%): m.p.: 93-95 °C. ¹H NMR (500 MHz, CDCl₃) δ (ppm) = 7.94 -7.91 (m, 4H), 7.21-7.13 (m, 4H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 164.4 (d, *J* = 251.2 Hz), 149.0 (d, *J* = 2.5 Hz), 124.8 (d, *J* = 10.0 Hz), 116.07 (d, *J* = 22.5 Hz).

Dimethyl 4,4'-(diazene-1,2-diyl)-bis(3-methylbenzoate) (2i): Yellow solid(45%): m.p.: 116-118°C. ¹H NMR (500 MHz, CDCl₃); δ (ppm) = 8.05 (s, 1H), 7.93 (d, *J* =10 Hz, 1H), 7.77-7.73 (m, 2 H), 7.62 (d, *J* =5Hz, 1H), 6.68 (d, *J* = 10 Hz, 1H), 3.95 (s, 3H), 3.85 (s, 3H), 2.78 (s, 3H), 2.20 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 167.3, 166.7, 153.5, 148.4, 138.3, 132.8, 132.3, 132.0, 129.3, 127.8, 121.5, 120.2, 115.9, 114.1, 58.3, 51.6, 17.6, 17.2.

1,2-Bis(4-acetylphenyl)diazene(2j) ¹¹ Red solid (72%): m.p.: 213-215°C. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 8.13 (d, *J*= 8Hz, 1H), 8.01 (d, *J*= 12Hz, 1H), 2.68 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 197.5, 154.9, 139.0, 129.5, 123.3, 27.0.

1,2-bis(3,4-dimethylphenyl)diazene (2l).⁷ Yellow solid (76%): m.p.: 157-157 °C. ¹H NMR (500 MHz, CDCl₃); δ (ppm) = 7.69 (s, 2H), 7.65 (d, *J* = 10 Hz, 2H). 7.27 (d, *J* = 10 Hz, 2H), 2.35 (s, 6H), 2.33 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 151.2, 139.9, 137.4, 130.2, 123.3, 120.7, 19.9, 19.8.

1,2-bis(2,5-dimethylphenyl)diazene (2m).⁸ Yellow solid (70%): m.p.: 115-117 °C. ¹H NMR (500 MHz, CDCl₃); δ (ppm) = 7.41 (s, 2H), 7.23-7.16 (m, 4H), 2.69 (s, 6H), 2.38 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 151.0, 136.0, 134.8, 131.4, 131.1, 116.2, 21.1, 17.2.

1,2-bis(3,4-dimethoxyphenyl)diazene (2n) ⁹ Yellow solid (72%): m.p.: 190-192°C. ¹H NMR (500 MHz, CDCl₃); δ (ppm) = 7.61-7.59 (m, 2H), 7.52 (d, *J*= 5Hz, 2H), 7.01 (d, *J*= 10Hz, 1H),

6.99 (s, 1H), 3.99 (s, 6H), 3.97 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 151.5, 149.6, 146.9, 120.2, 110.5, 102.1, 56.1, 56.0.

1-phenyl-2-(*p*-tolyl)diazene (4a). ^{1,10} orange solid (90%): m.p.: 65-67 °C. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.92-7.83 (m, 4H), 7.54-7.44 (m, 3H), 7.32 (d, *J* = 8Hz, 2H), 2.44 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 152.8, 150.9, 141.6, 130.8, 129.8, 129.1, 122.9, 122.8, 21.6. **1-(4-methoxyphenyl)-2-phenyldiazene (4b).** ^{1,10} Red solid (92%): m.p.: 52-54 °C. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.93 (d, *J* = 10Hz, 4H), 7.88 (d, *J* = 10Hz, 3H), 7.50 (m, *J*= 15 Hz, 2H), 7.43 (t, *J* = 15Hz, 1H), 7.02 (d, *J* = 10Hz, 2H), 3.89 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 162.1, 152.8, 147.0, 130.4, 129.0, 124.8, 122.6, 114.2, 55.6.

1-(4-iodophenyl)-2-phenyldiazene (4c).^{4,10} Yellow solid (85%): m.p.: 91-93°C. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.91 (m, *J* = 10Hz, 2H), 7.86 (d, *J* = 10Hz, 2H), 7.65 (d, *J* = 10Hz, 2 H), 7.53-7.47 (m, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 152.5, 152.0, 138.4, 131.4, 129.2, 124.5, 123.0, 97.6.

1-(4-bromophenyl)-2-phenyldiazene (4d).^{1,10} Yellow solid (88%): m.p.: 90-92°C. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.93-7.90 (m, 2H), 7.81 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 8 Hz, 2 H), 7.55-7.49 (m, 3 H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 152.5, 151.4, 132.3, 131.3, 129.2, 125.4, 124.4, 122.9.

1-(4-chlorophenyl)-2-phenyldiazene (4e). ^{1,10} Yellow solid (90%): m.p.: 81-83°C. ¹H NMR (500 MHz, CDCl₃); δ (ppm) = 7.92-7.87 (m, 4H), 7.54-7.44 (m, 5H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 152.5, 151.0, 136.9, 131.3, 129.3, 129.1, 124.1, 122.9.

1-(4-fluorophenyl)-2-phenyldiazene (4f). ^{1,10,12} Yellow solid (90%): m.p.: 76-78°C. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.97-7.89 (m, 4H), 7.55-7.47 (m, 3H), 7.23-7.17 (m, 2H). ¹³C

NMR (CDCl₃, 125 MHz) δ ppm) = 164.3 (d, *J* = 250.0 Hz), 152.5, 149.1 (d, *J* = 2.5 Hz), 131.0, 129.1, 124.8 (d, *J* = 8.7 Hz), 122.8, 116.0 (d, *J* = 22.5 Hz).

1-(4-nitrophenyl)-2-phenyldiazene (4g).^{5,6} Yellow solid (45%): m.p.: 134-135°C. ¹H NMR (500 MHz, CDCl₃); δ (ppm) = 8.39(d, *J* = 10 Hz , 2H), 8.04 (d, *J* = 10 Hz , 2H), 7.99-7.96 (m, 2H), 7.57-7.54 (m, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) = 155.7, 152.4, 148.7, 132.4, 129.3, 124.7, 123.4.

1,2-diphenylhydrazine (3a).¹² Yellow solid (70%).¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.22 (t, *J*=8 Hz, 4H), 6.86-6.82 (m, 5H), 5.61 (s, 2H).

1-phenyl-2-(p-tolyl)hydrazine (3b).¹ Pale yellow solid (70%).¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.25-7.19 (m, 2H), 7.0-7.01 (m, 2H), 6.86-6.75 (m, 5 H), 5.59 (s, 1H), 5.53 (s, 1H), 2.25 (s, 3H).

1-(4-methoxyphenyl)-2-phenylhydrazine (3c).¹ Pale yellow solid (72%).¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.25-7.20 (m, 2H), 6.86-6.80 (m, 7H), 5.58 (s, 1H), 5.44 (s, 1H), 3.75 (s, 3H). **1-(4-iodophenyl)-2-phenylhydrazine (3d).**¹ Yellow solid (65%).¹H NMR (400 MHz, CDCl₃); δ

(ppm) = 7.24-7.20 (m, 4H), 6.87-6.82 (m, 5H), 5.63 (s, 2H)

1-(4-bromophenyl)-2-phenylhydrazine (3e).¹ Yellow solid (68%). ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.31-7.28 (m, 2H), 7.24-7.20 (m, 2H), 6.87-6.75 (m, 5H), 5.64 (s, 2H).

1-(4-Chlorophenyl)-2-phenylhydrazine (3f).¹ Yellow solid (62%). ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.23-7.15 (m, 4H), 6.86-6.79 (m, 5H), 5.64 (s, 2H).

1-(4-fluorophenyl)-2-phenylhydrazine (3g).¹ Yellow solid (60%). ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.24-7.20 (m, 2H), 6.92 (t, *J*= 8Hz, 2H), 6.86-6.79 (m, 5H), 5.63 (s, 1H), 5.55 (s, 1H).

1-(4-nitrophenyl)-2-phenylhydrazine (3h).¹³ Yellow solid (52%). ¹H NMR (500 MHz, CDCl₃); δ (ppm) = 7.94-7.90 (m, 2H), 7.54-7.48 (m, 1H), 7.24-7.15 (m, 3H), 6.94-6.90 (m, 1H), 6.85-6.80 (m, 4H).

Fig. S19. ¹H NMR (400 MHz, CDCl₃) spectrum of 2a.

Fig. S20. ¹C NMR (125 MHz, CDCl₃) spectrum of 2a.

Fig. S21. ¹H NMR (500 MHz, CDCl₃) spectrum of 2b.

Fig. S22. ¹C NMR (125 MHz, CDCl₃) spectrum of 2b.

Fig. S23. ¹H NMR (400 MHz, CDCl₃) spectrum of **2c**.

Fig. S24. ¹C NMR (125 MHz, CDCl₃) spectrum of 2c.

Fig. S25. ¹H NMR (500 MHz, CDCl₃) spectrum of 2d.

Fig. S26. ¹C NMR (125 MHz, CDCl₃) spectrum of 2d.

Fig. S27. ¹H NMR (500 MHz, CDCl₃) spectrum of 2e.

Fig. S28. ¹C NMR (125 MHz, CDCl₃) spectrum of 2e.

Fig. S29. ¹H NMR (400 MHz, CDCl₃) spectrum of 2f.

Fig. S30. ¹C NMR (125 MHz, CDCl₃) spectrum of 2f.

Fig. S31. ¹H NMR (400 MHz, CDCl₃) spectrum of 2g.

Fig. S32. ¹C NMR (125 MHz, CDCl₃) spectrum of 2g.

Fig. S33. ¹H NMR (500 MHz, CDCl₃) spectrum of **2h**.

Fig. S34. ${}^{1}C$ NMR (125 MHz, CDCl₃) spectrum of 2h.

Fig. S35. ¹H NMR (500 MHz, CDCl₃) spectrum of 2i.

Fig. S36. ¹C NMR (125 MHz, CDCl₃) spectrum of 2i.

Fig. S37. ESI-MS of 2i.

Fig. S38. ¹H NMR (400 MHz, CDCl₃) spectrum of 2j.

Fig. S39. ¹C NMR (100 MHz, CDCl₃) spectrum of 2j.

Fig. S40. ¹H NMR (500 MHz, CDCl₃) spectrum of 2l.

Fig. S41. ¹C NMR (125 MHz, CDCl₃) spectrum of 2l.

Fig. S42. ¹H NMR (500 MHz, CDCl₃) spectrum of 2m.

Fig. S43. ¹C NMR (125 MHz, CDCl₃) spectrum of 2m.

Fig. S44. ¹H NMR (500 MHz, CDCl₃) spectrum of 2n.

Fig. S45. ¹C NMR (125 MHz, CDCl₃) spectrum of 2n.

Fig. S46. ¹H NMR (400 MHz, CDCl₃) spectrum of 4a.

Fig. S47. ¹C NMR (125 MHz, CDCl₃) spectrum of 4a.

Fig. S48. ¹H NMR (400 MHz, CDCl₃) spectrum of 4b.

Fig. S49. ¹C NMR (125 MHz, CDCl₃) spectrum of 4b.

Fig. S50. ¹H NMR (400 MHz, CDCl₃) spectrum of **4c**.

Fig. S51. ¹C NMR (125 MHz, CDCl₃) spectrum of 4c.

Fig. S52. ¹H NMR (400 MHz, CDCl₃) spectrum of 4d.

Fig. S53. ¹C NMR (125 MHz, CDCl₃) spectrum of 4d.

Fig. S54. ¹H NMR (500 MHz, CDCl₃) spectrum of 4e.

Fig. S55. ¹C NMR (125 MHz, CDCl₃) spectrum of 4e.

Fig. S56. ¹H NMR (400 MHz, CDCl₃) spectrum of 4f.

Fig. S57. ¹C NMR (125 MHz, CDCl₃) spectrum of 4f.

Fig. S58. ¹H NMR (500 MHz, CDCl₃) spectrum of 4g.

Fig. S59. ¹C NMR (125 MHz, CDCl₃) spectrum of 4g.

Fig. S60. ¹H NMR (400 MHz, CDCl₃) spectrum of 3a.

Fig. S61. ¹H NMR (400 MHz, CDCl₃) spectrum of 3b.

Fig. S62. ¹H NMR (400 MHz, CDCl₃) spectrum of **3c**.

Fig. S63. ¹H NMR (400 MHz, CDCl₃) spectrum of 3d.

Fig. S64. ¹H NMR (400 MHz, CDCl₃) spectrum of **3e**.

Fig. S65. ¹H NMR (400 MHz, CDCl₃) spectrum of **3f.**

Fig. S66. ¹H NMR (400 MHz, CDCl₃) spectrum of 3g.

Fig. S67. ¹H NMR (500 MHz, CDCl₃) spectrum of **3h** (crude).

Fig. S68. ¹H NMR (400 MHz, CDCl₃) spectrum of derivative 3.

Fig. S69. ¹³C NMR (125 MHz, CDCl₃) spectrum of derivative 3.

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Even Electron Ions 94 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 DPZ-TPY 250121-DPZ-TPY 12 (0.131) Cm (7:17-150:159)

Fig. S70. HRMS spectrum of derivative 3.

Page 1

[M+H]⁺

Computational methods:

Structure optimization and harmonic frequencies at ground-state were calculated employing DFT at the Becke's three parameter functional in combination with the Lee-Yang-Parr correlation functional (B3LYP) and 6-311g (d,p) basis set. All computational studies were performed using the Gaussian 09 program suite.¹⁴

Ground state optimized coordinates of aniline derivatives at B3LYP/6-311g(d,p) level of

theory.

Aniline (1a): E(B3LYP/6-311g(d,p)) = -287.6726629 hartrees, G = -287.585229 hartrees, H = -287.550159 hartrees.

С	-1.15228000	1.22049100	0.00000400
С	0.24015200	1.19058700	-0.00000600
С	0.92624300	-0.02906800	0.00000100
С	0.19289100	-1.21602100	-0.00001400
С	-1.20077700	-1.18832100	-0.00001100
С	-1.87682300	0.02946500	0.00001600
Н	-1.67140100	2.17270700	0.00001100
Н	0.80547000	2.11749000	0.00000000
Н	0.73698800	-2.15290500	-0.00003000
Н	-1.75773000	-2.11880000	-0.00001400
Н	-2.96076500	0.05188500	0.00002500
Ν	2.36719700	-0.11744800	-0.00002300
Н	2.75031200	0.35471800	-0.81379400
Н	2.75031100	0.35424200	0.81402300

Aniline radical cation (1a'): E(B3LYP/6-311g(d,p)) = -287.408764 hartrees, G = -287.321278 hartrees, H = -287.284822 hartrees.

С	-1.15184500	1.22850900	0.00006400
С	0.21860400	1.24263000	0.00019100
С	0.93521900	-0.00010400	0.00001600
С	0.21872500	-1.24263500	0.00023100
С	-1.15175300	-1.22849500	-0.00000900
С	-1.84907700	-0.00001200	-0.00021900

Н	-1.70434900	2.15959000	0.00012900
Н	0.77042800	2.17567900	0.00037000
Н	0.77041500	-2.17575400	0.00060200
Н	-1.70427600	-2.15957200	0.00006700
Н	-2.93243900	-0.00016800	-0.00061300
Ν	2.26892900	0.00007500	-0.00033800
Н	2.79907900	0.86332600	0.00015900
Н	2.79940500	-0.86298600	0.00000800

4-Methoxy aniline (1d): E(B3LYP/6-311g(d,p)) = -362.921315 hartrees, G = -362.831591 hartrees, H = -362.792645 hartrees.

С	-0.70237300	1.21371900	-0.00026600
С	0.68629800	1.19919500	-0.00582100
С	1.40070900	-0.00792000	-0.00648400
С	0.67017700	-1.20125400	-0.00541700
С	-0.72282300	-1.18921900	-0.00005600
С	-1.41968500	0.01756900	0.00214900
Н	-1.24722900	2.15016700	0.00216800
Н	1.22762400	2.14007600	-0.01435000
Н	1.19403100	-2.15183400	-0.01384800
Н	-1.26541500	-2.13061100	0.00299400
Ν	2.80387600	-0.01603600	-0.07952000
Н	3.24084600	0.81157800	0.30116000
Н	3.23194300	-0.85031100	0.29667100
0	-2.79123900	0.09357200	0.00939500
Н	-3.15283900	-0.79794000	0.00205400

4-Methoxy aniline radical cation (1d'): E(B3LYP/6-311g(d,p)) = -362.668071 hartrees, G = -362.577042 hartrees, H = -362.538190 hartrees.

С	0.69108100	-1.23933400	-0.00007300
С	-0.67265100	-1.23449100	-0.00007200
С	-1.38801300	0.00480400	0.00009800
С	-0.65851500	1.23549200	-0.00006200
С	0.70843300	1.22568800	-0.00009100
С	1.40648800	-0.01032000	-0.00015600
Н	1.25632400	-2.16267500	-0.00005100

Н	-1.22367600	-2.16776200	-0.00014800
Н	-1.19839200	2.17525300	-0.00017300
Н	1.26131600	2.15869800	-0.00006800
Ν	-2.72601700	0.01376400	0.00012900
Н	-3.25970600	-0.84503800	0.00020600
Н	-3.25023100	0.87827300	-0.00015200
0	2.72695200	-0.09891800	0.00011600
Н	3.15992900	0.76721400	0.00068000

4-nitro aniline (1k) : E(B3LYP/6-311g(d,p)) = -492.242834 hartrees, G = -492.156949 hartrees, H = -492.114289 hartrees.

С	-1.36274800	-1.21217100	-0.00412800
С	-2.08173500	0.00010400	-0.00377900
С	-1.36281200	1.21223500	-0.00410500
С	0.01989500	1.21260100	-0.00273700
С	0.70736300	0.00002600	-0.00201100
Н	0.58175500	-2.13628900	-0.00101100
Н	-1.90176200	-2.15333700	-0.00842400
Н	-1.90162000	2.15352100	-0.00842900
Н	0.58169700	2.13631800	-0.00097700
Ν	-3.45759700	-0.00007000	-0.05190400
Н	-3.93712800	-0.84759900	0.20597800
Н	-3.93742300	0.84730800	0.20592000
Ν	2.17005800	0.00000000	0.00254700
0	2.74298700	-1.08546600	0.00435500
0	2.74305900	1.08541100	0.00433000

4-nitro aniline radical cation (1k'): E(B3LYP/6-311g(d,p)) = -491.941380 hartrees, G = -491.856554 hartrees, H = -491.812982 hartrees.

С	-0.01886800	-1.22959500	-0.13735400
С	1.35055300	-1.23641500	-0.14308200
С	2.06705300	0.00002900	0.00000100
С	1.35057800	1.23649300	0.14296200
С	-0.01881200	1.22962200	0.13720000
С	-0.68868300	-0.00002600	-0.00004300
Н	-0.59526400	-2.14122700	-0.22537100

Н	1.90000500	-2.16430100	-0.25185600
Н	1.89999500	2.16440500	0.25172500
Н	-0.59521100	2.14124500	0.22522300
Ν	3.39837200	-0.00004300	0.00006400
Н	3.92986600	0.85800300	0.09495900
Н	3.92980600	-0.85817000	-0.09444700
Ν	-2.16907200	0.00001700	0.00003600
0	-2.70775000	-1.01936600	0.39032100
0	-2.70790200	1.01931300	-0.39020100

References

- 1. L. Wang, A. Ishida, Y. Hashidoko and M. Hashimoto, *Angew. Chem. Int. Ed.*, 2016, 56, 870-873.
- 2. B. Mondal, and P. S. Mukherjee, J. Am. Chem. Soc. 2018, 140, 12592-12601.
- 3. J. D. Sitter and A. K. Vannucci, J. Am. Chem. Soc., 2021, 143, 2938-2943.
- **4.** Z-Q. Wang, J.-X. Yu, S.-Q. Bai, B. Liu, C.-Y.Wang, and J.-H. Li, *ACS Omega*, 2020, **5**, 28856-28862.
- 5. K. Ueno and S. Akiyoshi, J. Am. Chem. Soc., 1954, 76, 3670-3672.
- 6. R. J. Tombari, J. R. Tuck, N. Yardeny, P. W. Gingrich, D. J. Tantillo and D. E. Olson, *Org. Biomol. Chem.*, 2021, 21, 7575-7580.
- 7. A. D. Hudwekar, P. K. Verma, J. Kour, S. Balgotra and S. D. Sawant, *Eur.J.Org. Chem.*, 2018, 2019, 1242-1250.
- X.-Y. Wang, Y.-L. Wang, J.-P. Li, Z.-F. Duan and Z.-Y. Zhang, Synth Commun., 2007, 29, 2271-2276.
- 9. R. A. Mustill and A. H. Rees, J. Org. Chem., 1983, 48, 5041-5043.
- 10. H. Lv, R. D. Laishram, J. Li, Y. Zhou, D. Xu, S. More, Y. Dai and B. Fana, *Green Chem.*, 2019, 21, 4055-4061.
- 11. S. Okumura, C. -H. Lin, Y. Takeda and S. Minakata, J. Org. Chem., 2013, 78, 12090-12105.
- **12.**M. K. Sahoo, K. Saravanakumar, G. Jaiswal and E. Balaraman, *ACS Catal.*, 2018, **8**, 7727-7733.
- K. M. Conner, A. M. C. Arostegui, D. D. Swanson and S. N. Brown, *Inorg. Chem.* 2018, 57, 16, 9696-9707.
- Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.