Supporting information

Back-to-cyclic-monomers: chemical recycling of silicone wastes using a [polydentate ligand-potassium silanolate] complex

Nam Duc Vu,^a Aurélie Boulegue-Mondière,^b Nicolas Durand,^b Jean Raynaud*^a and Vincent Monteil*^a

^aLaboratory of Catalysis, Polymerization, Processes and Materials, CP2M (UMR 5128, CNRS/Université de Lyon 1- Claude Bernard/CPE Lyon), Université de Lyon, 43 Bd du 11 Nov. 1918, 69616 Villeurbanne cedex, France. Email : *jean.raynaud@univ-lyon1.fr, vincent.monteil@univ-lyon1.fr*

^bElkem Silicones, R&D Chemistry, R&I centre « ATRiON », 9 rue Spécia 69190 Saint-Fons, France.

1. General information

All silicone oils, catalysts and solvents used were purchased from commercial suppliers (*e.g.* Sigma-Aldrich, TCI Chemical, Fisher, abcr) or supplied by our industrial partner (Elkem Silicones©) then were used without further purification. Nuclear magnetic resonance spectra were recorded on a Brüker DRX 300 (¹H-300 MHz, ¹³C-75 MHz and ²⁹Si-59.6 MHz). Chemical shifts are given in ppm with reference to residual CHCl₃ central peaks: 7.26 ppm for proton, 77.16 ppm for carbon, respectively; residue acetone-d6 central peaks: 2.05 ppm for proton, 206.26 and 29.84 ppm for carbon, respectively; J values are given in Hertz (Hz). Abbreviations are defined as follows: s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quadruplet, m = multiplet, br = broad.

2. General procedures

2.1. General procedure for the depolymerisation of siloxanes oil 1 (decagram scale)

In a flask (50 mL) connecting with a short Vigreux column, siloxane oil **1** (10 mL, 9.5 g, 120 mmol Me₂SiO unit), KOSiMe₃ (14 mg, 0.1 mol%), 18C6 (30 mg, 0.1 mol%) were introduced then this mixture was heated at 140°C for 1 hour. Then, the reaction mixture was distillated under reduced pressure (140°C, 10mbar) to give a mixture of cyclosiloxanes D₃, D₄, D₅ (9.2 g, 97% yield) as a colourless liquid. ¹H-NMR (300 MHz, CDCl₃): δ_{H} = 0.17 (CH₃ in D₃), 0.09 (CH₃ in D₄), 0.08 (CH₃ in D₅); ¹³C-NMR (75 MHz, CDCl₃): δ_{C} = 1.08 (CH₃ in D₃), 0.93 (CH₃ in D₄), 1.05 (CH₃ in D₅); ²⁹Si-NMR (59.6 MHz, CDCl₃): δ_{Si} = 7.2 ((Me₃Si)₂O), -8.4 (SiMe₂O in D₃), -19.2 (SiMe₂O in D₄), -21.6 (SiMe₂O in D₅).

2.2. General procedure for the depolymerisation of waste siloxanes oil 2 (100 g scale)

In a flask (250 mL) connecting with a long Vigreux column, waste siloxane oil **2** (100 g), KOSiMe₃ (142 mg, 0.1 mol%), 18C6 (300 mg, 0.1 mol%) were introduced then this mixture was heated at 140°C for 1 hour. Then, the reaction mixture was distillated under reduced pressure (140°C, 10mbar) in 3 hours to give a mixture of cyclosiloxanes D_3 , D_4 , D_5 (99 g, 99% yield) as a colourless liquid.

2.3. General procedure for the polymerisation of a mixture of cyclic siloxanes oil (100 g scale)

An obtained mixture of siloxanes from the depolymerisation of waste silicone oil **2** (99 g) and hexamethyldisiloxane (0.6 g) were introduced in a three-neck round bottom flask then this mixture was heated to 160°C. At this temperature, KOSiMe₃ (50 ppm) and 18C6 (4 ppm) were added and the polymerisation experiment were performed at 160°C for 3 hours. Then, the reaction was cooled down to room temperature and a neutralized solution containing phosphoric acid was introduced. Finally, the result mixture was evaporated (devolatilization step) under reduced pressure (170°C, 1 mbar) for 3 hours to give a silicone oil (87 g, 87% yield) as a colourless liquid. ¹H-NMR (300 MHz, CDCl₃): δ_{H} = 0.07 (s); ¹³C-NMR (75 MHz, CDCl₃): δ_{C} = 1.2; ²⁹Si-NMR (59.6 MHz, CDCl₃): δ_{Si} = -21.9 (SiMe₂O), 7.3 (OSiMe₃); SEC (toluene): M_n= 8200 g/mol (DPI = 2).

2.4. General procedure for the catalyst recycling (decagram scale)

In a flask (50 mL) connecting with a short Vigreux column, siloxane oil **1** (10 mL, 9.5 g, 120 mmol Me₂SiO unit), KOSiMe₃ (14 mg, 0.1 mol%), 18C6 (30 mg, 0.1 mol%) were introduced then this mixture was heated at 140°C for 1 hour. Then, the reaction mixture was distillated under reduced pressure (140°C, 10mbar) to give a mixture of cyclosiloxanes (D₃, D₄, D₅) (9.15 g, 96% yield) as a colourless liquid. After removing most of volatile products, the catalysts were remained in a residue with a little of polysiloxanes. The catalyst was reused by adding further amounts of silicone oil after complete turnover. A small amount of silicone oil is always kept in the flask at the end of the distillation to prevent the sublimation of pure catalyst or complexing agent (KOSiMe₃, 18C6). Finally, after 5 cycles, the flask was cooled down, then a small amount of CDCl₃ was introduced to dissolve this residue and analysed it in ²⁹Si-NMR.

2.5. General procedure for depolymerization of fluorosilicone 12

In a flask (50 mL) connecting with a short Vigreux column, siloxane oil **12** (10.6 g, 120 mmol Me₂SiO unit), KOSiMe₃ (14 mg, 0.1 mol%), 18C6 (30 mg, 0.1 mol%) were introduced then this mixture was heated at 160°C for 1 hour. Then, the reaction mixture was distillated under reduced pressure (160°C, 0.1 mbar) to give a mixture of fluoro-substituted cyclosiloxanes D_4^F (2 enantioisomers), D_5^F , D_6^F (9.6 g, 92% yield) as a colourless oil. A higher temperature and lower pressure are required due to the formation of D_4^F (2 enantioisomers), D_5^F , D_6^F that are higher boiling point products than conventional cyclosiloxanes (D_3 , D_4 , D_5). ¹**H-NMR** (300 MHz, acetone-d₆): δ_{H} = 0.26 (t, J =1.9, Si-CH₃, D_4), 0.28 (s, Si-CH₃, D_5), 0.30 (s, Si-CH₃, D_6), 0.87 (m, CH₂-CH₂-CF₃ in D_4 , D_5 , D_6), 2.24 (m, CH₂-CH₂-CF₃ in D_4 , D_5 , D_6); ¹³C-NMR (75 MHz, acetone-d₆): δ_C = -0.7 (Si-CH₃, D_4), -0.6 (Si-CH₃, D_5), -0.2 (Si-CH₃, D_6), 9.7 (CH₂-CH₂-CF₃ in D_4), 9.9 (CH₂-CH₂-CF₃ in D_5), 10.3 (CH₂-CH₂-CF₃ in D_6), 28.6 (CH₂-CH₂-CF₃ in D_4), 29.0 (CH₂-CH₂-CF₃ in D_5), 28.1 (CH₂-CH₂-CF₃ in D_5), 134.8 (CH₂-CH₂-CF₃ in D_6); ²⁹Si-NMR (59.6 MHz, acetone-d₆): -20.2 and -20.4 (2 enantioisomers in D_4), -22.2 (D5), -22.4 (D6); ¹⁹F-NMR (282 MHz, acetone-d₆): -68.77, -68.80, -68.83, -68.86 (2 isomers D_4 +D₅+D₆); Ratio of each cyclosiloxane was determined by ²⁹Si-NMR: $D_4/D_5/D_6$ =47/48/5.

3. Optimised conditions

	* H 1806 (0.5 m * Si 0) y 2) 150°C, 5 m * 2) 150°C, 5 m * 2) 150°C, 5 m	5 mol%) iol%) int (10wt%) Me ₂ Si ar Si Me ₂ Me ₂ Si Me ₂ Me ₂ Me ₂ Si Me ₂ Me ₂ Si Me	$\begin{array}{c} & Me_2 \\ & & Me_2Si \\ & & & Me_2Si \\ & & & Me_2 \\ Si \\ Si \\ & & & SiMe_2 \\ & & & Si \\ & & & Me_2 \\ Si \\ & & & Me_2 \\ & & & & & Me_2 \\ & & & & & Me_2 \\ & & & & & & & Me_2 \\ & & & & & & & Me_2 \\ & & & & & & & Me_2 \\ & & & & & & & & Me_2 \\ & & & & & & & & Me_2 \\ & & & & & & & & Me_2 \\ & & & & & & & & Me_2 \\ & & & & & & & & & Me_2 \\ & & & & & & & & Me_2 \\ & & & & & & & & Me_2 \\ & & & & & & & & & Me_2 \\ & & & & & & & & & Me_2 \\ & & & & & & & & & Me_2 \\ & & & & & & & & & & Me_2 \\ & & & & & & & & & & Me_2 \\ & & & & & & & & & & & & & \\ & & & & $
	Diluent	Reaction conditions	Yield of cyclosiloxanes
n	-C ₁₈ H ₃₇ -OH	150°C, 5 mbar	75
n	-C ₁₆ H ₃₃ -OH	150°C, 5 mbar	74
n	-C ₂₂ H ₄₅ -OH	150°C, 5 mbar	74
2-decy	'l-1-tetradecanol	150°C, 5 mbar	74
C ₃₀ H	H ₆₂ (squalane)	150°C, 5 mbar	0
	<i>n</i> -C ₂₂ H ₄₆	150°C, 5 mbar	61
			80.0 — E L.D. —
	Me ₃ SiO		
	Me ₃ SiO ⁻		

Table S1: Screening diluents for the depolymerisation of industrial waste oil

Figure S1a: ¹H-NMR of [KOSiMe₃-18C6] complex in d₈-THF (25°C, 300 MHz)

Figure S1b: ¹³C-NMR of [KOSiMe₃-18C6] complex in d₈-THF (25°C, 75 MHz)

Figure S1c: ²⁹Si-NMR of [KOSiMe₃-18C6] complex in d₈-THF (25°C, 59.6 MHz)

Figure S2: ²⁹Si-NMR of distillation fraction in d-chloroform (150 mg in 0.5 mL CDCl₃, 25°C)

Figure S3: ²⁹Si-NMR of initial oil, distillation fraction and residue in d-chloroform

4. ¹H, ¹³C, ¹⁹F and ²⁹Si-NMR spectrum

Figure S4: ¹H-NMR spectrum of depolymerization products of silicone oil $\mathbf{1}$ (D_3 , D_4 , D_5) (25°C, CDCl₃, 300 MHz)

Figure S5: ¹³C-NMR spectrum of depolymerization products of silicone oil **1** (D₃, D₄, D₅) (25°C, CDCl₃, 75 MHz)

Figure S6: ²⁹Si-NMR spectrum of depolymerization products of silicone oil $\mathbf{1}$ (D₃, D₄, D₅) (25°C, CDCl₃, 59.6 MHz)

Figure S7: ²⁹Si-NMR spectrum of depolymerization products of silicone oil **2** (D₃, D₄, D₅) (25°C, CDCl₃, 59.6 MHz)

Figure S8: ²⁹Si-NMR spectrum of depolymerization products of silicone gum 4 + 1 (D_3 , D_4 , D_5) (25°C, CDCl₃, 59.6 MHz)

Figure S9: ²⁹Si-NMR spectrum of depolymerization products of silicone oil **5** (D₃, D₄, D₅) (25°C, CDCl₃, 59.6 MHz)

Figure S10: ²⁹Si-NMR spectrum of depolymerization products of silicone oil **6** (D₃, D₄, D₅) (25°C, CDCl₃, 59.6 MHz)

Figure S11: ²⁹Si-NMR spectrum of depolymerization products of silicone oil 6 + 1 (D_3 , D_4 , D_5) (25°C, CDCl₃, 59.6 MHz)

Figure S12: ¹H-NMR spectrum of depolymerization products of silicone oil **7** (D₃, D₄, D₅) (25°C, CDCl₃, 300 MHz)

Figure S13: ²⁹Si-NMR spectrum of depolymerization products of silicone oil **7** (D₃, D₄, D₅) (25°C, CDCl₃, 59.6 MHz)

Figure S14: ²⁹Si-NMR spectrum of depolymerization products of silicone oil **8** + **1** (D₃, D₄, D₅) (25°C, CDCl₃, 59.6 MHz)

Figure S15: ²⁹Si-NMR spectrum of depolymerization products of silicone oil **9 + 1** (D₃, D₄, D₅) (25°C, CDCl₃, 59.6 MHz)

Figure S17: ²⁹Si-NMR spectrum of depolymerization products of silicone oil **11** (25°C, CDCl₃, 59.6 MHz)

Figure S18: ²⁹Si-NMR spectrum of depolymerization products of RTV2 + 1 (25°C, $CDCl_3$, 59.6 MHz)

Figure S19: ¹H-NMR spectrum of depolymerization products of silicone oil **12** (25°C, d₆-acetone, 300 MHz)

Figure S20: ¹³C-NMR spectrum of depolymerization products of silicone oil **12** (25°C, d₆-acetone, 75 MHz)

 $\angle \frac{-20.18}{2.20.40}$ $\boxed{7.22.25}$

Figure S21: ²⁹Si-NMR spectrum of depolymerization products of silicone oil **12** (25°C, d_6 -acetone, 59.6 MHz)

-68.77 -68.80 -68.83 -68.86

Figure S22: ¹⁹F-NMR spectrum of depolymerization products of silicone oil **12** (25°C, d_6 -acetone, 284 MHz)

Figure S23: ¹H-NMR spectrum of lab-synthesized silicone oil (25°C, CDCl₃, 300 MHz)

Figure S25: ²⁹Si-NMR spectrum of lab-synthesized silicone oil (25°C, CDCl₃, 59.6 MHz)

Figure S26: ²⁹Si-NMR spectrum of depolymerization products of industrial silicone waste (25°C, CDCl₃, 59.6 MHz)

5. SEC analysis of lab-synthesized silicone oil

Figure S27: SEC chromatogram after incomplete devolatilization (some cyclics are still present, elution after 26mL or 26min)

Peak RV - (ml)	19,873	
Mn - (Daltons)	7 866	
Mw - (Daltons)	16 385	
Mz - (Daltons)	25 647	
Mp - (Daltons)	17 333	
Mw / Mn	2,083	
Percent Above Mw: 0	100,000	
Percent Below Mw: 0	0,000	
Mw 10.0% Low	2 336	
Mw 10.0% High	41 053	
Wt Fr (Peak)	1,000	
RI Area - (mvml)	33,12	
UV Area - (mvml)	0,00	
Annotation		
Method File		05-04-2022 sans FRM-0006.vcm
Limits File		
Date Acquired		Apr 29, 2022 - 13:02:58
Solvent		Toluène
Acquisition Operator		admin : Administrator
Calculation Operator		admin : Administrator
Column Set		GMHxl
System		Viscotek.Toluène
Flow Rate - (ml/min)		1,000
Inj Volume - (ul)		100,0
Volume Increment - (ml)		0,00333
Detector Temp (deg C)		35,0
Column Temp (deg C)		35,0
OmniSEC Build Number		406

Conventional Calibration - Homopolymers : Results

Figure S28: SEC chromatogram after complete devolatilization (absence of volatile cyclics: D3/D4/D5)