Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Catalyst-Free Intramolecular Radical Cyclization Cascades initiated by direct homolysis of C_{sp}^3 -Br under visible light

Panyi Huang,^a Zhiyang Yan,^a Jiaxin Ling, ^a Peixuan Li, ^a Jiayang Wang, ^b Jianjun Li, ^a Bin Sun, ^{*a} and Can Jin ^{*a}

^a College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; E-mail: jincan@zjut.edu.cn.

^b School of Life Sciences, Huzhou University, Huzhou, Zhejiang, PR China.

Table of Contents

General consideration	1
Experimental Procedure	2
1. Synthesis of substrates	2
2. Screening of Reaction Conditions	3
3.General procedure for the synthesis of product 2a	4
4.The Gram Scale Reaction	4
5. Mechanism investigation	5
6. X-ray structure of 2y	12
7. Characterization data for the products	13
8. References	31
9. ¹ H, ¹³ C and ¹⁹ F NMR spectra of the products and photocatalysts	32

General consideration

Unless otherwise specified, all reagents and solvents were obtained from commercial suppliers and used without further purification. The NMR spectra were recorded on a Bruker Avance 400 or 600 spectrometers at 400 MHz or 600MHz in CDCl₃ using tetramethylsilane as the internal standard. Chemical shifts (δ) are reported in ppm and coupling constants (*J*) in hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, dd = doublet of doublet, t = triplet, dt = doublet of triplet, td = triplet of doublet, q = quartet, m = multiplet, ddd = doublet of doublet of doublet. Melting points were determined using a Büchi B-540 capillary melting point apparatus. High-resolution mass spectra were obtained with a Bruker Impact II UHR-QTOF. by ESI on a TOF mass analyzer. Steady-state and time-resolved emission spectroscopy were determined using an Edinburgh FLS1000. Column chromatography was performed on silica gel (200–300 mesh).

The Material of the Irradiation Vessel

Manufacturer: Xi 'an WATTCAS experimental equipment co. LTD

Model: WP-TEC-1020HSL

Broadband source: $\lambda = 400-405$ nm

Material of the irradiation vessel : borosilicate reaction tube Distance from the light source to the irradiation vessel : 2.0 cm photon flux density: 5.044×10^{-8} einstein s⁻¹

Not use any filters

Figure S1 (Photographed by author Panyi Huang)

Experimental Procedures

1. Synthesis of substrates

1.1 Synthesis of α-bromo-α,α-difluoroacetamides¹

General procedure: A 20 mL tube equipped with a magnetic stir bar was charged with lanthanum trifluoromethane sulfonate (0.25 mmol, 5.0 mol %). The tube was backfilled with argon, and then ethyl bromodifluoroacetate (6.0 mmol) and amine (5.0 mmol) were added. The mixture was stirred at room temperature and monitored by TLC. After the amine was exhausted, the mixture was purified by silica gel column chromatography to give the target amide.

1.2 Synthesis of diverse 3-difluorolactam substituted chroman-4-ones^{2,3}

General procedure: To a solution of salicylaldehyde or its derivatives **A** (0.016 mol, 1 equiv.) in dry MeCN (25 mL) was added K_2CO_3 (0.018 mol. 1.1 equiv.) and (*E*)-1.4-dibromo-2-butene (0.018 mol, 1.1 equiv.). The mixture was stirred under reflux for 4 hours and then poured into water (100 mL). The resulting mixture was extracted with DCM (3 × 50 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure to obtain crude product **B**. The crude product **B** was purified by silica gel column chromatography with Petroleum ether/EtOAc to give the target product **B**.

To a stirred solution of 2-bromo-2,2-difluoro-N-phenylacetamide (3.92 mmol, 1.00 equiv.) in THF (25 mL) was added sodium hydride (4.31 mmol, 1.1 equiv.) at 0 °C. The mixture was stirred for 30 min and **B** (4.31 mmol, 1.10 equiv.) was added. The resulting mixture was stirred at 85 °C until the reaction was completed (monitored by TLC), which was then diluted with water and extracted three times with CH_2Cl_2 . The

combined organic layers were dried over Na_2SO_4 and concentrated under reduced pressure to obtain crude product **C**. The crude product **C** was purified by silica gel column chromatography with Petroleum ether/EtOAc to give the target product **C**.

2. Screening of Reaction Conditions

	$ \begin{array}{c} $	F <mark>Br ⊻isibl</mark> F Base, S	re lights solvent, N ₂ , rt	Ar N HHF 2a
entry	Light source	solvent	additive	yield (%) ^b
1°	400-405 nm	DMSO	-	41
2	400-405 nm	DMSO	-	27
3	400-405 nm	DMSO	Na ₂ CO ₃	53
4	400-405 nm	DMSO	NaHCO ₃	57
5	400-405 nm	DMSO	NaOH	48
6	400-405nm	DMSO	TEA	73
7	400-405 nm	DMSO	DMAP	82
8	400-405nm	DMSO	DBU	80
9	400-405nm	DMF	DMAP	70
10	400-405nm	MeCN	DMAP	66
11	400-405nm	EtOAc	DMAP	trace
12	400-405nm	DCM	DMAP	trace
13	400-405nm	CHCl ₃	DMAP	21%
14	365-370 nm	DMSO	DMAP	68
15	380-385 nm	DMSO	DMAP	71
16	420-425 nm	DMSO	DMAP	75
17	450-455 nm	DMSO	DMAP	trace
18	Dark	DMSO	DMAP	N.D.
19 ^d	400-405nm	DMSO	DMAP	trace

	04	D		•
' L'A h l A	N ' I	La contrara	~ 10 to 100	17011040
гяте		кеяснон	()())()()	пzяноп
Iant	N1 •	Redetion	opum	Ization

^{*a*} Reaction conditions: **1a** (0.2 mmol), additive (0.3 mmol), solvent (2 mL), rt, 400 nm, 10 h. ^{*b*} Isolated yield. ^{*c*} Ir(ppy)_{3 (}5 mol%). ^{*d*} under air.

3. General procedure for the synthesis of products

3.1 Synthesis of product 2a

General procedure: A mixture of 2-(allyloxy)aryl aldehyde derivatives **1a** (0.2 mmol), DMAP (0.3 mmol), and DMSO (2 mL) were added to a reaction tube. The tube was evacuated and backfilled with N_2 for three times. The mixture was then irradiated by 400–405 nm (10 w) for 10 h. After completion of the reaction, the resulting mixture was extracted with CH₂Cl₂ and the organic phase was then removed under vacuum. The residue was purified by column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product **2a**.

4. The Gram Scale Reaction

General procedure: A mixture of 2-(allyloxy)aryl aldehyde derivatives **1a** (5 mmol), DMAP (7.5 mmol), and DMSO (8 mL) were added to a 50 mL reaction tube. The tube was evacuated and backfilled with N₂ for three times. The mixture was then irradiated by 400–405 nm (10 w) for 24 h. After completion of the reaction, the resulting mixture was extracted with CH_2Cl_2 . The organic phase was evaporated under vacuum. The residue was purified by column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product **2a** with a 79% yield.

5. Mechanism investigation

5.1 Thermal sensitive reaction

A mixture of 2-(allyloxy)aryl aldehyde derivatives **1a** (0.2 mmol), DMAP (0.3 mmol) and DMSO (2 mL) were added to a reaction tube. The tube was evacuated and backfilled with N_2 for three times. The reaction was carried out in dark conditions, and the corresponding product **2a** was not obtained even after heating at 50 °C for 10 hours.

5.2. C-X control Experiment

General procedure: A mixture of 2-(allyloxy)aryl aldehyde derivatives 1a or 1ai-1aj (0.2 mmol), DMAP (0.3 mmol), and DMSO (2 mL) were added to a reaction tube. The tube was evacuated and backfilled with N₂ for three times. The mixture was then irradiated by 400–405 nm (10 w) for 10 h. The resulting mixture was extracted with CH_2Cl_2 and the organic phase was then removed under vacuum. The residue was purified by column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product 2a.

5.3 UV-visible absorption Spectra of 1a

Figure S2. Absorption spectra of 1a (dissolved in DMSO)

5.4 The electron paramagnetic resonance (EPR) experiments

To determine the species of radical involved in the present reaction, 5,5-dimethylpyrroline-*N*-oxide (DMPO) were employed. There was no signal when DMPO was added into DMSO solution of 2-(allyloxy)aryl aldehyde derivatives (**1a**) and DMAP without light irradiation (Figure S6a). Irradiation of the above solution under N₂ with blue LEDs (400-405 nm) resulted in the formation of a strong characteristic signal of alkyl radical with DMPO (Figure S6b), indicating the formation of fluoroalkyl radical in the reaction.

Figure S3. Electron spin resonance (ESR) spectra of DMPO with fluoroalkyl radical (a) A solution of DMPO (0.20 mol/L) with 2-(allyloxy)aryl aldehyde derivatives (1a) and DMAP in DMSO without light irradiation.

(b) A solution of DMPO (0.20 mol/L) with 2-(allyloxy)aryl aldehyde derivatives (1a) and DMAP in DMSO under blue LEDs (400-405 nm) irradiation for 15min.

5.5 Radical trapped experiment using 1,1-diphenylethylene as a radical scavenger

A mixture of 2-(allyloxy)aryl aldehyde derivatives **1a** (0.2 mmol), DMAP (0.3 mmol) diphenylethylene (0.6 mmol) and DMSO (2 mL) were added to a reaction tube. The tube was evacuated and backfilled with N_2 for three times. The mixture was then irradiated by 400–405 nm (10 w) for 10 h. Only trace amounts of product **2a** was detected monitored by TLC.

5.6 Radical trapped experiment using TEMPO as a radical scavenger

A mixture of 2-(allyloxy)aryl aldehyde derivatives **1a** (0.2 mmol), DMAP (0.3 mmol) TEMPO (94 mg, 0.6 mmol) and DMSO (2 mL) were added to a reaction tube. The tube was evacuated and backfilled with N₂ for three times. The mixture was then irradiated by 400–405 nm (10 w) for 10 h. Subsequently, the reaction mixture was diluted with ethyl acetate (20 mL), transferred to a 60 mL separatory funnel, and washed with water. After evaporation of the solvent, the crude reaction mixture was then purified by column chromatography. The adduct **TEMPO-alkyl** was detected by NMR analysis. **¹H NMR (400 MHz, CDCl₃)** δ 10.49 (S, 1H), 7.90 – 7.80 (m, 1H), 7.59 – 7.50 (m, 1H), 7.43 – 7.31 (m, 3H), 7.24 – 7.17 (m, 2H), 7.09 – 7.01 (m, 1H), 6.99 – 6.91 (m, 1H), 6.06 – 5.90 (m, 1H), 5.86 – 5.74 (m, 1H), 4.65 (d, *J* = 4.7 Hz, 2H), 4.37 (d, *J* = 6.1 Hz, 2H), 1.55 – 1.42 (m, 4H), 1.35 – 1.21 (m, 2H), 0.92 (d, *J* = 11.7 Hz, 10H). ¹³C **NMR (101 MHz, CDCl₃)** δ 189.61, 160.72, 160.11 (C-F, ²*J*_{C-F}, *J* = 37.8 Hz), 140.25, 135.84, 129.27, 129.08, 129.03, 128.96, 128.45, 127.58, 125.08, 120.95, 116.66 (C-F, ¹*J*_{C-F}, *J* = 274.7 Hz), 112.89, 68.01, 60.91, 53.27, 40.17, 33.35, 21.02, 16.85. ¹⁹F **NMR (376 MHz, CDCl₃)** δ -66.31.

Figure S4. ¹H NMR spectra of TEMPO-alkyl.

Figure S6. ¹⁹F NMR spectra of TEMPO-alkyl.

5.7 Bromine radical trapping experiment

A mixture of 2-(allyloxy)aryl aldehyde derivatives **1a** (0.6 mmol), DMAP (0.9 mmol) allylbenzene (0.25 ml) and DMSO (2 mL) were added to a reaction tube. The tube was evacuated and backfilled with N₂ for three times. The mixture was then irradiated by 400–405 nm (10 w) for 24 h. Subsequently, the mixture was diluted with water (20.0 mL) and extracted with DCM (3 x 15.0 mL). After evaporation of the solvent, the crude reaction mixture was then purified by column chromatography. The adduct **dibromide** was detected by NMR analysis. ¹**H NMR (400 MHz, CDCl₃)** δ 7.49 – 7.39 (m, 5H), 4.51 – 4.42 (m, 1H), 3.91 (dd, *J* = 10.5, 4.2 Hz, 1H), 3.73 (dd, *J* = 10.5, 8.9 Hz, 1H), 3.61 (dd, *J* = 14.5, 4.8 Hz, 1H), 3.24 (dd, *J* = 14.5, 7.8 Hz, 1H). ¹³**C NMR (101 MHz, CDCl₃)** δ 136.99, 129.69, 128.70, 127.38, 52.70, 42.15, 36.39.

¹H NMR (CDCl₃, 400MHz)

Figure S7. ¹H NMR spectra of dibromide.

Figure S8. ¹³C NMR spectra of dibromide.

5.8 On/off experiments of 2a

Figure S9. On/off experiments of 2a.

6. X-ray structure of 2y

CCDC: 2236364

Figure S10. Crystal data and details of data collection and refinement for compound 2y.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) exp_2605_auto

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: exp_2605_auto

Bond precision:	C-C = 0.0038 A	Wavelength=1	1.54184
Cell:	a=17.1352(4)	b=7.89497(16)	c=14.2824(4)
	alpha=90	beta=110.302(3)	gamma=90
Temperature:	293 K		
	Calculated	Reported	
Volume	1812.12(8)	1812.11(8)	
Space group	P 21/c	P 1 21/c 1	
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C20 H14 F5 N O3	C20 H14 F5	N 03
Sum formula	C20 H14 F5 N O3	C20 H14 F5	N 03
Mr	411.32	411.32	
Dx,g cm-3	1.508	1.508	
Z	4	4	
Mu (mm-1)	1.188	1.188	
F000	840.0	840.0	
F000'	843.51		
h,k,lmax	20,9,17	20,9,17	
Nref	3311	3278	
Tmin, Tmax	0.920,0.942	0.091,1.00	D
Tmin'	0.920		
Correction metho AbsCorr = MULTI-	d= # Reported T Li SCAN	imits: Tmin=0.091 Tmax	x=1.000
Data completenes	s= 0.990	Theta(max) = 68.112	
R(reflections)=	0.0662(2582)		wR2(reflections)= 0.1987(3278)

S = 1.027 Npar= 290

7. Characterization Data for the Products

3,3-difluoro-4-(4-oxochroman-3-yl)-1-phenylpyrrolidin-2-one (2a)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (56 mg, 82%), m.p. 129.4–130.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.86 (m, 1H), 7.71 – 7.64 (m, 2H), 7.59 – 7.52 (m, 1H), 7.43 (s, 2H), 7.27 (s, 1H), 7.11 – 7.03 (m, 2H), 4.87 – 4.79 (m, 1H), 4.60 – 4.51 (m, 1H), 4.29 (t, *J* = 8.8 Hz, 1H), 3.90 (s, 1H), 3.29 – 3.20 (m, 1H), 3.02 – 2.86 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.96, 161.52, 161.16 (C-F, ²*J*_{C-F}, *J* = 30.3 Hz), 137.65, 136.77, 129.19, 127.30, 126.31, 121.92, 120.03, 119.98, 118.04, 117.42 (C-F, ¹*J*_{C-F}, *J* = 250.4 Hz), 68.48, 47.86, 43.88, 37.25 (C-F, ²*J*_{C-F}, *J* = 20.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.27, -105.98, -116.75, -117.46; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₅F₂NNaO₃ 366.0912; Found 366.0898.

3,3-difluoro-4-(6-methyl-4-oxochroman-3-yl)-1-phenylpyrrolidin-2-one (2b)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (56 mg, 78%), m.p. 167.7–168.8 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, J = 7.8 Hz, 3H), 7.44 (t, J = 8.0 Hz, 2H), 7.37 (dd, J = 8.5, 2.1 Hz, 1H), 7.27 (t, J = 7.4 Hz, 1H), 6.96 (d, J = 8.5 Hz, 1H), 4.83 – 4.77 (m, 1H), 4.57 – 4.51 (m, 1H), 4.26 (t, J = 9.6 Hz, 1H), 3.91 (t, J = 9.6 Hz, 1H), 3.24 – 3.18 (m, 1H), 3.04 – 2.86 (m, 1H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 192.15, 161.22 (C-F, ²J_{C-F}, J = 30.0 Hz), 159.63, 137.91, 137.66, 131.46, 129.20, 126.80, 126.33, 120.02, 119.61, 117.83, 117.33 (C-F, ¹J_{C-F}, J = 248.8 Hz), 68.49, 47.82, 43.90, 37.32 (C-F, ²J_{C-F}, J = 20.4 Hz), 20.43.¹⁹F NMR (565 MHz, CDCl₃) δ -105.49, -105.96, -116.93, -117.41; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₇F₂NNaO₃ 380.1069; Found 380.1072.

3,3-difluoro-4-(6-methoxy-4-oxochroman-3-yl)-1-phenylpyrrolidin-2-one (2c)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (54 mg, 73%), m.p. 152.9–154.3 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, J = 7.8 Hz, 2H), 7.44 (t, J = 8.0 Hz, 2H), 7.31 (d, J = 3.1 Hz, 1H), 7.28 (t, J = 6.1 Hz, 1H), 7.17 (dd, J = 9.0, 3.2 Hz, 1H), 7.00 (d, J = 9.0 Hz, 1H), 4.81 – 4.75 (m, 1H), 4.59 – 4.49 (m, 1H), 4.31 – 4.21 (m, 1H), 3.92 (t, J = 9.6 Hz, 1H), 3.83 (s, 3H), 3.25 – 3.18 (m, 1H), 3.03 – 2.88 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 192.01, 161.20 (C-F, ² J_{C-F} , J = 30.0 Hz), 156.31, 154.44, 137.65, 129.21, 126.34, 126.07, 120.00, 119.78, 119.38, 117.31 (C-F, ¹ J_{C-F} , J = 249.6 Hz), 107.51, 68.63, 55.81, 47.78, 43.82, 37.31 (C-F, ² J_{C-F} , J = 20.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -105.48, -105.95, -116.92, -117.40; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₇F₂NNaO₄ 396.1018; Found 396.1026.

3,3-difluoro-4-(6-fluoro-4-oxochroman-3-yl)-1-phenylpyrrolidin-2-one (2d)

The product was purified by column chromatography on silica gel (eluent: 10:1 petroleum ether: ethyl acetate) as a white solid (62 mg, 87%), m.p. 162.4–163.9 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, J = 7.8 Hz, 2H), 7.56 – 7.52 (m, 1H), 7.45 (t, J = 8.0 Hz, 2H), 7.30 – 7.27 (m, 2H), 7.09 – 7.03 (m, 1H), 4.86 – 4.79 (m, 1H), 4.58 – 4.51 (m, 1H), 4.30 (t, J = 9.6 Hz, 1H), 3.90 (t, J = 9.6 Hz, 1H), 3.30 – 3.20 (m, 1H), 3.00 – 2.88 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 191.27 (C-F, ⁴ J_{C-F} , J = 1.6 Hz), 161.05 (C-F, ² J_{C-F} , J = 29.8 Hz), 157.84 (C-F, ⁴ J_{C-F} , J = 1.4 Hz), 157.44 (C-F, ¹ J_{C-F} , J = 243.0 Hz), 137.59, 129.24, 126.41, 124.45 (C-F, ² J_{C-F} , J = 24.6 Hz), 120.40 (C-F, ³ J_{C-F} , J = 6.6 Hz), 120.02, 119.83 (C-F, ³ J_{C-F} , J = 7.4 Hz), 117.29 (C-F, ¹ J_{C-F} , J = 249.4 Hz), 112.21 (C-F, ² J_{C-F} , J = 23.4 Hz), 68.71, 47.80 (C-F, ³ J_{C-F} , J = 7.1 Hz), 43.75 (C-F, ³ J_{C-F} , J = 4.7 Hz), 37.29 (C-F, ² J_{C-F} , J = 20.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -105.43,

-105.91, -116.87, -117.34, -120.43; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{19}H_{14}F_3NNaO_3$ 384.0818; Found 384.0801.

4-(6-chloro-4-oxochroman-3-yl)-3,3-difluoro-1-phenylpyrrolidin-2-one (2e)

The product was purified by column chromatography on silica gel (eluent: 10:1 petroleum ether: ethyl acetate) as a white solid (68 mg, 85%), m.p. 187.2–188.3 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, *J* = 2.5 Hz, 1H), 7.68 (d, *J* = 8.1 Hz, 2H), 7.50 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.45 (t, *J* = 7.9 Hz, 2H), 7.28 (t, *J* = 8.4 Hz, 1H), 7.03 (d, *J* = 8.9 Hz, 1H), 4.88 – 4.82 (m, 1H), 4.59 – 4.53 (m, 1H), 4.30 (t, *J* = 9.4 Hz, 1H), 3.89 (t, *J* = 9.5 Hz, 1H), 3.30 – 3.21 (m, 1H), 2.99 – 2.86 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 190.91, 161.01 (C-F, ²*J*_{C-F}, *J* = 29.7 Hz), 159.97, 137.56, 136.64, 129.25, 127.54, 126.60, 126.43, 120.78, 120.03, 119.81, 117.27 (C-F, ¹*J*_{C-F}, *J* = 249.3 Hz), 68.64, 47.78 (C-F, ³*J*_{C-F}, *J* = 7.0 Hz), 43.69 (C-F, ³*J*_{C-F}, *J* = 4.6 Hz), 37.29 (C-F, ³*J*_{C-F}, *J* = 20.5 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -105.41, -105.89, -116.82, -117.29; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₄ClF₂NNaO₃ 400.0522; Found 400.0509.

4-(6-bromo-4-oxochroman-3-yl)-3,3-difluoro-1-phenylpyrrolidin-2-one (2f)

The product was purified by column chromatography on silica gel (eluent: 10:1 petroleum ether: ethyl acetate) as a white solid (64 mg, 80%), m.p. 199.2–200.3 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.03 – 7.99 (m, 1H), 7.68 (d, *J* = 8.5 Hz, 2H), 7.65 – 7.61 (m, 1H), 7.47 – 7.42 (m, 2H), 7.31 – 7.26 (m, 1H), 6.98 (d, *J* = 8.8 Hz, 1H), 4.86 (dd, *J* = 11.8, 4.3 Hz, 1H), 4.63 – 4.51 (m, 1H), 4.34 – 4.26 (m, 1H), 3.89 (t, *J* = 9.6 Hz, 1H), 3.32 – 3.15 (m, 1H), 3.00 – 2.86 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 190.76, 161.00 (C-F, ²*J*_{C-F}, *J* = 29.4 Hz), 160.41, 139.40, 137.56, 129.73, 129.25, 126.43, 121.26, 120.14, 120.03, 117.26 (C-F, ¹*J*_{C-F}, *J* = 249.4 Hz), 114.63, 68.60, 47.77 (C-F, ³*J*_{C-F}, *J* = 7.1 Hz), 43.65 (C-F, ³*J*_{C-F}, *J* = 4.6 Hz), 37.29 (C-F, ²*J*_{C-F}, *J* = 20.4 Hz). ¹⁹F NMR (565

MHz, CDCl₃) δ -105.42, -105.89, -116.81, -117.29; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₅BrF₂NO₃ 422.0198; Found 422.0204.

3,3-difluoro-4-(7-methyl-4-oxochroman-3-yl)-1-phenylpyrrolidin-2-one (2g)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (53 mg, 74%), m.p. 168.8–170.3 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, *J* = 8.0 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.44 (t, *J* = 8.0 Hz, 2H), 7.26 (t, *J* = 7.2 Hz, 1H), 6.90 (d, *J* = 8.1 Hz, 1H), 6.86 (s, 1H), 4.83 – 4.78 (m, 1H), 4.57 – 4.51 (m, 1H), 4.30 – 4.25 (m, 1H), 3.91 (t, *J* = 9.6 Hz, 1H), 3.24 – 3.18 (m, 1H), 2.99 – 2.88 (m, 1H), 2.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 191.59, 161.57, 161.22 (C-F, ²*J*_{C-F}, *J* = 29.9 Hz), 148.57, 137.66, 129.19, 127.18, 126.31, 123.36, 120.00, 117.97, 117.77, 117.41 (C-F, ¹*J*_{C-F}, *J* = 249.5 Hz), 68.51, 47.85 (C-F, ³*J*_{C-F}, *J* = 7.1 Hz), 43.77 (C-F, ³*J*_{C-F}, *J* = 4.4 Hz), 37.36 (C-F, ²*J*_{C-F}, *J* = 20.4 Hz), 22.01. ¹⁹F NMR (565 MHz, CDCl₃) δ -105.47, -105.94, -116.93, -117.40; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₇F₂NNaO₃ 380.1069; Found 380.1055.

3,3-difluoro-4-(7-methoxy-4-oxochroman-3-yl)-1-phenylpyrrolidin-2-one (2h)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (52 mg, 70%), m.p. 155.3–156.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.9 Hz, 1H), 7.69 (d, J = 7.7 Hz, 2H), 7.44 (t, J = 8.0 Hz, 2H), 7.27 (t, J = 7.6 Hz, 1H), 6.67 – 6.62 (m, 1H), 6.48 (d, J = 2.4 Hz, 1H), 4.84 – 4.78 (m, 1H), 4.61 – 4.53 (m, 1H), 4.31 – 4.23 (m, 1H), 3.93 (t, J = 10.5 Hz, 1H), 3.88 (s, 3H), 3.22 – 3.13 (m, 1H), 3.01 – 2.86 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 190.41, 166.65, 163.61, 161.27 (C-F, ² J_{C-F} , J = 29.8 Hz), 137.68, 129.20, 129.06, 126.32, 120.01, 117.47 (C-F, ¹ J_{C-F} , J = 249.3 Hz), 113.83, 110.88, 100.65, 68.83, 55.79, 47.86 (C-F, ³ J_{C-F} , J = 7.2 Hz), 43.45 (C-F, ³ J_{C-F} , J = 4.4 Hz), 37.43 (C-F,

 ${}^{2}J_{C-F}$, J = 20.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -105.56, -106.03, -117.02, -117.49; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₇F₂NNaO₄ 396.1018; Found 396.1005. **3,3-difluoro-4-(7-fluoro-4-oxochroman-3-yl)-1-phenylpyrrolidin-2-one (2i)**

The product was purified by column chromatography on silica gel (eluent: 10:1 petroleum ether: ethyl acetate) as a yellow solid (61 mg, 85%), m.p. 174.2–175.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 8.6, 6.7 Hz, 1H), 7.58 (d, J = 8.1 Hz, 2H), 7.33 (t, J = 7.9 Hz, 2H), 7.20 – 7.14 (m, 1H), 6.75 – 6.68 (m, 1H), 6.67 – 6.56 (m, 1H), 4.76 (dd, J = 11.7, 4.2 Hz, 1H), 4.47 (dd, J = 11.5, 9.5 Hz, 1H), 4.20 (t, J = 9.5 Hz, 1H), 3.79 (t, J = 9.6 Hz, 1H), 2.24 – 2.06 (m, 1H), 2.89 – 2.75 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 190.53, 167.85 (C–F, ¹J_{C-F}, J = 257.9 Hz), 163.22 (C–F, ³J_{C-F}, J = 13.8 Hz), 161.04 (C–F, ²J_{C-F}, J = 29.7 Hz), 137.60, 129.97 (C–F, ³J_{C-F}, J = 11.5 Hz), 129.22, 126.37, 119.99, 117.28 (C–F, ¹J_{C-F}, J = 249.5 Hz), 116.99, 110.56 (C–F, ²J_{C-F}, J = 22.9 Hz), 104.86 (C–F, ²J_{C-F}, J = 24.7 Hz), 68.97, 47.84 (C–F, ³J_{C-F}, J = 7.1 Hz), 43.60 (C–F, ³J_{C-F}, J = 4.5 Hz), 37.31 (C–F, ²J_{C-F}, J = 20.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ - 98.65, -105.40, -105.87, -116.84, -117.31; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₅F₃NO₃ 362.0999; Found 362.0995.

4-(7-chloro-4-oxochroman-3-yl)-3,3-difluoro-1-phenylpyrrolidin-2-one (2j)

The product was purified by column chromatography on silica gel (eluent: 10:1 petroleum ether: ethyl acetate) as a white solid (68 mg, 90%), m.p. 189.8–191.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.3 Hz, 1H), 7.68 (d, *J* = 7.9 Hz, 2H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.30 – 7.23 (m, 1H), 7.12 – 7.02 (m, 2H), 4.92 – 4.81 (m, 1H), 4.62 – 4.51 (m, 1H), 4.31 (t, *J* = 9.4 Hz, 1H), 3.89 (t, *J* = 9.4 Hz, 1H), 3.32 – 3.21 (m, 1H), 3.03 – 2.81 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 190.94, 161.81, 161.01 (C-F, ²*J*_C-F, *J* = 30.2 Hz), 142.78, 137.59, 129.23, 128.55, 126.39, 122.82, 119.99, 118.60, 118.19, 117.25 (C-F, ¹*J*_{C-F}, *J* = 249.5 Hz), 68.83, 47.86, 43.75, 37.31 (t, *J* = 20.4 Hz). ¹⁹F NMR

(565 MHz, CDCl₃) δ -105.37, -105.85, -116.79, -117.27; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₄ClF₂NNaO₃ 400.0522; Found 400.0518.

4-(7-bromo-4-oxochroman-3-yl)-3,3-difluoro-1-phenylpyrrolidin-2-one (2k)

The product was purified by column chromatography on silica gel (eluent: 10:1 petroleum ether: ethyl acetate) as a white solid (70 mg, 83%), m.p. 202.7–204.1 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, *J* = 8.4 Hz, 1H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.31 – 7.26 (m, 2H), 7.23 (d, *J* = 8.4 Hz, 1H), 4.89 – 4.83 (m, 1H), 4.62 – 4.52 (m, 1H), 4.31 (t, *J* = 9.4 Hz, 1H), 3.89 (t, *J* = 9.5 Hz, 1H), 3.31 – 3.20 (m, 1H), 3.01 – 2.83 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 191.12, 161.66, 161.01 (C-F, ²*J*_C, *F*, *J* = 29.4 Hz), 137.59, 131.37, 129.23, 128.51, 126.40, 125.68, 121.27, 120.01, 118.94, 117.23 (C-F, ¹*J*_{C-F}, *J* = 249.5 Hz), 68.82, 47.86, 43.79, 37.33 (C-F, ³*J*_{C-F}, *J* = 20.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -105.37, -105.84, -116.79, -117.26; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₄BrF₂NNaO₃ 444.0017; Found 444.0014.

3,3-difluoro-4-(8-methyl-4-oxochroman-3-yl)-1-phenylpyrrolidin-2-one (21)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (48 mg, 67%), m.p. 156.3–157.6 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, J = 7.9 Hz, 1H), 7.72 – 7.67 (m, 2H), 7.47 – 7.39 (m, 3H), 7.31 – 7.24 (m, 1H), 7.04 – 6.92 (m, 1H), 4.94 – 4.83 (m, 1H), 4.62 – 4.51 (m, 1H), 4.35 – 4.27 (m, 1H), 3.92 – 3.84 (m, 1H), 3.30 – 3.20 (m, 1H), 3.07 – 2.88 (m, 1H), 2.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 192.38, 161.23 (C-F, ²*J*_{C-F}, *J* = 30.2 Hz), 159.79, 137.69, 137.58, 129.21, 127.46, 126.31, 124.85, 121.32, 119.99, 119.71, 117.46 (C-F, ¹*J*_{C-F}, *J* = 249.2 Hz), 68.42, 47.89 (C-F, ³*J*_{C-F}, *J* = 7.1 Hz), 43.73 (C-F, ³*J*_{C-F}, *J* = 4.4 Hz), 37.29 (C-F, ²*J*_{C-F}, *J* = 20.4 Hz), 15.53. ¹⁹F NMR (565 MHz, CDCl₃) δ -105.37, -105.84, -116.82, -117.30; HRMS (ESI) m/z: [M+Na]⁺ Calcd for

C₂₀H₁₇F₂NNaO₃ 380.1069; Found 380.1057.

3,3-difluoro-4-(5-methyl-4-oxochroman-3-yl)-1-phenylpyrrolidin-2-one (2m)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (49 mg, 69%), m.p. 137.5–138.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.7 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.38 (t, J = 7.6 Hz, 1H), 7.30 – 7.22 (dt, J = 8.4, 1.0 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 6.86 (d, J = 7.4 Hz, 1H), 4.84 – 4.75 (m, 1H), 4.54 – 4.46 (m, 1H), 4.31 (t, J = 9.5 Hz, 1H), 3.87 (t, 1H), 3.27 – 3.17 (m, 1H), 3.04 – 2.84 (m, 1H), 2.65 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.32, 162.51, 161.27 (C-F, ²J_{C-F}, J = 29.8 Hz), 142.37, 137.70, 135.37, 129.18, 126.31, 125.05, 120.07, 118.65, 117.52 (C-F, ¹J_{C-F}, J = 249.3 Hz), 115.95, 67.85, 48.03 (C-F, ³J_{C-F}, J = 7.3 Hz), 45.00 (C-F, ³J_{C-F}, J = 4.2 Hz), 37.44 (C-F, ²J_{C-F}, J = 20.3 Hz), 22.81. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.29, -105.97, -116.82, -117.48; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₇F₂NNaO₃ 380.1069; Found 380.1054.

4-(5-chloro-4-oxochroman-3-yl)-3,3-difluoro-1-phenylpyrrolidin-2-one (2n)

The product was purified by column chromatography on silica gel (eluent: 10:1 petroleum ether: ethyl acetate) as a white solid (59 mg, 78%), m.p. 154.7–115.6 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, J = 7.8 Hz, 2H), 7.45 – 7.37 (m, 3H), 7.26 (t, J = 7.4 Hz, 1H), 7.10 (d, J = 7.9 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 4.90 – 4.83 (m, 1H), 4.53 – 4.46 (m, 1H), 4.41 (J = 9.0 Hz, 1H), 3.90 – 3.81 (m, 1H), 3.37 – 3.27 (m, 1H), 3.04 – 2.82 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 190.26, 162.85, 161.02 (C-F, ² J_{C-F} , J = 30.9 Hz), 137.61, 135.48, 134.44, 129.21, 126.36, 125.08, 119.99, 117.44 (C-F, ¹ J_{C-F} , J = 244.2 Hz), 117.39, 117.11, 68.08, 47.99 (C-F, ³ J_{C-F} , J = 7.0 Hz), 44.72 (C-F, ³ J_{C-F} , J = 4.4 Hz), 37.30 (C-F, ² J_{C-F} , J = 20.2 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -

105.18, -105.65, -116.61, -117.08; HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{19}H_{15}ClF_2NO_3$ 378.0703; Found 378.0697.

4-(6,8-di-tert-butyl-4-oxochroman-3-yl)-3,3-difluoro-1-phenylpyrrolidin-2-one (20)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (57 mg, 63%), m.p. 214.3–215.9 °C. ¹H NMR (600 MHz, DMSO) δ 7.70 (d, J = 7.8 Hz, 2H), 7.66 (d, J = 2.4 Hz, 1H), 7.56 (d, J = 2.5 Hz, 1H), 7.48 (t, J = 8.0 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 4.79 – 4.72 (m, 1H), 4.58 (t, J = 10.7 Hz, 1H), 4.17 (t, J = 9.4 Hz, 1H), 4.01 (t, J = 8.3 Hz, 1H), 3.46 – 3.40 (m, 1H), 3.29 – 3.22 (m, 1H), 1.39 (s, 9H), 1.28 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 192.90, 161.30 (C-F, ² $_{J_{C-F}}$, J = 29.7 Hz), 158.67, 143.98, 138.69, 137.72, 131.59, 129.18, 126.28, 121.20, 120.01, 119.98, 117.41 (C-F, ² $_{J_{C-F}}$, J = 250.3 Hz), 68.00, 47.88, 43.74, 37.43 (C-F, ² $_{J_{C-F}}$, J = 20.4 Hz), 35.17, 34.54, 31.26, 29.66. ¹⁹F NMR (565 MHz, DMSO) δ -102.10, -102.56, -114.22, -114.69; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₇H₃₁F₂NNaO₃ 478.2164; Found 478.2154.

3,3-difluoro-4-(1-oxo-2,3-dihydro-1H-benzo[f]chromen-2-yl)-1-phenylpyrrolidin-2-one (2p)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (56mg, 71%), m.p. 176.7–177.9 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.39 (d, J = 8.6 Hz, 1H), 7.99 (d, J = 9.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.74 – 7.64 (m, 3H), 7.48 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 8.0 Hz, 2H), 7.26 (d, J = 7.4 Hz, 1H), 7.17 (d, J = 9.0 Hz, 1H), 4.96 – 4.87 (m, 1H), 4.73 – 4.63 (m, 1H), 4.28 (t, J = 9.4 Hz, 1H), 3.94 (t, J = 9.5 Hz, 1H), 3.36 – 3.26 (m, 1H), 3.09 – 2.93 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 192.73, 163.73, 161.27 (C-F, ²J_{C-F}, J = 29.7

Hz), 138.34, 137.68, 131.37, 130.01, 129.33, 129.19, 128.72, 126.32, 125.43, 125.23, 120.05, 118.54, 117.48 (C-F, ${}^{1}J_{C-F}$, J = 249.8 Hz), 111.62, 68.39, 47.94 (C-F, ${}^{3}J_{C-F}$, J = 7.2 Hz), 44.51 (C-F, ${}^{3}J_{C-F}$, J = 4.4 Hz), 37.56 (C-F, ${}^{2}J_{C-F}$, J = 20.2 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -105.44, -105.91, -116.88, -117.35; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₈F₂NO₃ 394.1249; Found 394.1243.

3,3-difluoro-4-(4-oxo-7-(thiophen-3-yl)chroman-3-yl)-1-phenylpyrrolidin-2-one (2q)

The product was purified by column chromatography on silica gel (eluent: 20:1 petroleum ether: ethyl acetate) as a white solid (63 mg, 74%), m.p. 153.8–154.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 2.2 Hz, 1H), 7.83 – 7.78 (m, 1H), 7.69 (d, J = 7.9 Hz, 2H), 7.48 – 7.41 (m, 4H), 7.40 – 7.37 (m, 1H), 7.28 (t, J = 7.4 Hz, 1H), 7.10 (d, J = 8.6 Hz, 1H), 4.91 – 4.81 (m, 1H), 4.65 – 4.55 (m, 1H), 4.30 (t, J = 9.4 Hz, 1H), 3.92 (t, J = 9.5 Hz, 1H), 3.33 – 3.24 (m, 1H), 3.07 – 2.89 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.99, 161.14 (C-F, ² J_{C-F} , J = 29.9 Hz), 160.59, 140.43, 137.63, 134.89, 130.07, 129.23, 126.74, 126.37, 125.93, 124.43, 120.28, 120.01, 118.59, 117.30 (C-F, ¹ J_{C-F} , J = 250.0 Hz), 68.56, 47.84, 43.93, 37.32 (C-F, ² J_{C-F} , J = 20.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.25, -105.96, -116.72, -117.43; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₇F₂NNaO₃S 448.0789; Found 448.0793.

1-acetyl-3-(4,4-difluoro-5-oxo-1-phenylpyrrolidin-3-yl)-2,3-dihydroquinolin-4(1H)one (2r)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (53 mg, 69%), m.p. 180.7–181.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.7 Hz, 1H), 7.80 – 7.68 (m, 3H), 7.61 (t, *J* =

7.4 Hz, 1H), 7.45 (t, J = 7.8 Hz, 2H), 7.31 – 7.26 (m, 2H), 4.87 (d, J = 11.9 Hz, 1H), 4.47 (t, J = 9.4 Hz, 1H), 4.01 – 3.83 (m, 2H), 3.29 – 3.19 (m, 1H), 2.96 – 2.81 (m, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.94, 169.48, 160.95 (C-F, ² J_{C-F} , J =31.7 Hz), 143.71, 137.63, 134.91, 129.24, 127.83, 126.39, 125.36, 124.38, 124.12, 120.05, 117.52 (C-F, ¹ J_{C-F} , J = 250.6 Hz), 48.39, 47.69, 46.48, 38.60 (C-F, ² J_{C-F} , J =20.0 Hz), 23.44. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.33, -105.04, -116.61, -117.32; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₁₈F₂N₂NaO₃ 407.1177; Found 407.1174 **3,3-difluoro-1-(4-fluorophenyl)-4-(4-oxochroman-3-yl)pyrrolidin-2-one (2s)**

The product was purified by column chromatography on silica gel (eluent: 10:1 petroleum ether: ethyl acetate) as a white solid (60 mg, 83%), m.p. 132.4–133.6 °C. ¹H NMR (600 MHz, DMSO) δ 7.79 (d, J = 7.7 Hz, 1H), 7.74 (dd, J = 8.7, 4.8 Hz, 2H), 7.62 (t, J = 7.7 Hz, 1H), 7.32 (t, J = 8.1 Hz, 2H), 7.11 (t, J = 8.3 Hz, 2H), 4.78 – 4.69 (m, 1H), 4.59 (t, J = 11.0 Hz, 1H), 4.18 (t, J = 9.2 Hz, 1H), 4.03 – 3.93 (m, 1H), 3.53 – 3.44 (m, 1H), 3.32 – 3.22 (m, 1H). ¹³C NMR (151 MHz, DMSO) δ 192.05, 161.45, 161.37 (C-F, ²J_{C-F}, J = 30.4 Hz), 160.14 (C-F, ¹J_{C-F}, J = 243.6 Hz), 136.98, 134.59 (C-F, ⁴J_{C-F}, J = 2.6 Hz), 127.24, 123.06 (C-F, ³J_{C-F}, J = 8.3 Hz), 122.09, 120.60, 118.74 (C-F, ¹J_{C-F}, J = 250.1 Hz), 118.23, 116.31 (C-F, ²J_{C-F}, J = 20.2 Hz). ¹⁹F NMR (565 MHz, DMSO) δ -102.00, -102.47, -114.06, -114.53, -115.65; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₄F₃NNaO₃ 384.0818; Found 384.0803.

1-(4-chlorophenyl)-3,3-difluoro-4-(4-oxochroman-3-yl)pyrrolidin-2-one (2t)

The product was purified by column chromatography on silica gel (eluent: 10:1

petroleum ether: ethyl acetate) as a white solid (65 mg, 86%), m.p. 136.2–137.5 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.90 (dd, J = 7.9, 1.7 Hz, 1H), 7.69 – 7.63 (m, 2H), 7.59 – 7.54 (m, 1H), 7.43 – 7.38 (m, 2H), 7.12 – 7.03 (m, 2H), 4.88 – 4.81 (m, 1H), 4.61 – 4.51 (m, 1H), 4.29 (t, J = 9.6 Hz, 1H), 3.88 (t, J = 9.6 Hz, 1H), 3.29 – 3.22 (m, 1H), 3.02 – 2.89 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 191.94, 161.53, 161.16 (C-F, ² J_{C-F} , J = 30.0 Hz), 136.86, 136.19, 131.66, 129.29, 127.32, 121.98, 121.08, 119.98, 118.07, 117.14 (C-F, ¹ J_{C-F} , J = 249.3 Hz), 68.45, 47.79, 43.86, 37.24 (C-F, ² J_{C-F} , J = 20.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -105.49, -105.96, -116.73, -117.21; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₅ClF₂NO₃ 378.0703; Found 378.0699.

1-(4-bromophenyl)-3,3-difluoro-4-(4-oxochroman-3-yl)pyrrolidin-2-one (2u)

The product was purified by column chromatography on silica gel (eluent: 10:1 petroleum ether: ethyl acetate) as a white solid (50 mg, 77%), m.p. 154.1–155.4 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.89 (dd, J = 7.9, 1.6 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.57 – 7.52 (m, 3H), 7.13 – 7.07 (m, 1H), 7.05 (d, J = 8.3 Hz, 1H), 4.83 (dd, J = 11.6, 4.2 Hz, 1H), 4.55 (dd, J = 11.7, 9.2 Hz, 1H), 4.32 – 4.24 (m, 1H), 3.87 (t, J = 9.6 Hz, 1H), 3.31 – 3.20 (m, 1H), 3.03 – 2.88 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 191.93, 161.53, 161.16 (C-F, ²*J*_{C-F}, J = 30.0 Hz), 136.86, 136.70, 132.24, 127.31, 121.98, 121.33, 119.98, 119.43, 118.07, 117.19 (C-F, ¹*J*_{C-F}, J = 249.4 Hz), 68.45, 47.72, 43.85, 37.21 (C-F, ²*J*_{C-F}, J = 20.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -105.47, -105.94, -116.70, -117.18; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₅BrF₂NO₃ 422.0198; Found 422.0196.

3,3-difluoro-4-(4-oxochroman-3-yl)-1-(p-tolyl)pyrrolidin-2-one (2v)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (56 mg, 79%), m.p. 136.6–137.9 °C. ¹H NMR (600 MHz, DMSO) δ 7.79 (d, J = 7.3 Hz, 1H), 7.65 – 7.56 (m, 3H), 7.28 (d, J = 8.1 Hz, 2H), 7.15 – 7.09 (m, 2H), 4.73 (dd, J = 11.3, 4.4 Hz, 1H), 4.58 (t, J = 11.0 Hz, 1H), 4.18 (t, J = 9.3 Hz, 1H), 3.97 (t, J = 8.3 Hz, 1H), 3.56 – 3.44 (m, 1H), 3.31 – 3.21 (m, 1H), 2.32 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 192.08, 161.43, 161.18 (C-F, ²J_{C-F}, J = 30.9 Hz), 136.96, 135.85, 135.76, 129.95, 127.22, 122.08, 120.62, 120.60, 118.82 (C-F, ¹J_{C-F}, J = 249.7 Hz), 118.22, 68.58, 47.78 (C-F, ³J_{C-F}, J = 6.1 Hz), 44.03 (C-F, ³J_{C-F}, J = 4.0 Hz), 36.11 (C-F, ²J_{C-F}, J = 20.4 Hz), 20.97. ¹⁹F NMR (565 MHz, DMSO) δ -102.03, -102.49, -114.04, -114.50; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₇F₂NNaO₃ 380.1069; Found 380.1055.

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (61 mg, 82%), m.p. 134.5–135.6 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.89 (dd, J = 7.9, 1.6 Hz, 1H), 7.61 – 7.53 (m, 3H), 7.11 – 7.03 (m, 2H), 6.97 – 6.92 (m, 2H), 4.84 (dd, J = 11.6, 4.3 Hz, 1H), 4.56 (dd, J = 11.7, 9.0 Hz, 1H), 4.24 (t, J = 9.5 Hz, 1H), 3.87 (t, J = 9.6 Hz, 1H), 3.83 (s, 3H), 3.29 – 3.19 (m, 1H), 3.01 – 2.86 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 192.02, 161.54, 160.86 (C-F, ²*J*_{C-F}, *J* = 29.8 Hz), 157.76, 136.77, 130.72, 127.31, 121.92, 121.72, 120.03, 118.05, 117.50 (C-F, ¹*J*_{C-F}, *J* = 249.3 Hz), 114.34, 68.52, 55.51, 48.18 (C-F, ³*J*_{C-F}, *J* = 7.1 Hz), 43.91 (C-F, ³*J*_{C-F}, *J* = 4.5 Hz), 37.35 (C-F, ²*J*_{C-F}, *J* = 20.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -105.28, -105.75, -116.66, -117.13; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₇F₂NNaO₄ 396.1018; Found 396.1006.

1-(3-chlorophenyl)-3,3-difluoro-4-(4-oxochroman-3-yl)pyrrolidin-2-one (2x)

The product was purified by column chromatography on silica gel (eluent: 10:1 petroleum ether: ethyl acetate) as a white solid (65 mg, 86%), m.p. 136.7–137.9 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.89 (dd, J = 7.9, 1.5 Hz, 1H), 7.74 (t, J = 1.9 Hz, 1H), 7.62 (dd, J = 8.2, 1.4 Hz, 1H), 7.58 – 7.53 (m, 1H), 7.36 (t, J = 8.1 Hz, 1H), 7.24 (dd, J = 8.0, 1.1 Hz, 1H), 7.12 – 7.07 (m, 1H), 7.05 (d, J = 8.3 Hz, 1H), 4.84 (dd, J = 11.6, 4.2 Hz, 1H), 4.55 (dd, J = 11.7, 9.3 Hz, 1H), 4.33 – 4.27 (m, 1H), 3.87 (t, J = 9.6 Hz, 1H), 3.30 – 3.21 (m, 1H), 3.03 – 2.87 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 191.91, 161.53, 161.24 (C-F, ²J_{C-F}, J = 29.9 Hz), 138.72, 136.85, 135.02, 130.22, 127.32, 126.35, 121.98, 119.98, 118.05, 117.85, 117.14 (C-F, ¹J_{C-F}, J = 249.5 Hz), 68.45, 47.77, 43.85, 37.25 (C-F, ²J_{C-F}, J = 20.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -105.53, -106.00, -116.77, -117.25; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₄ClF₂NNaO₃ 400.0522; Found 400.0508.

3,3-difluoro-4-(4-oxochroman-3-yl)-1-(3-(trifluoromethyl)phenyl)pyrrolidin-2one (2y)

The product was purified by column chromatography on silica gel (eluent: 10:1 petroleum ether: ethyl acetate) as a white solid (53 mg, 65%), m.p. 156.5–157.6 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.96 – 7.92 (m, 2H), 7.90 – 7.87 (m, 1H), 7.58 – 7.50 (m, 3H), 7.10 – 7.02 (m, 2H), 4.86 – 4.80 (m, 1H), 4.58 – 4.49 (m, 1H), 4.35 (t, *J* = 9.5 Hz, 1H), 3.92 (t, *J* = 9.5 Hz, 1H), 3.29 – 3.24 (m, 1H), 3.00 – 2.90 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 191.91, 161.52, 161.40 (C-F, ²*J*_{C-F}, *J* = 30.1 Hz), 138.19, 136.84, 131.66 (C-F, ²*J*_{C-F}, *J* = 32.8 Hz), 129.84, 127.27, 123.60 (C-F, ¹*J*_{C-F}, *J* = 272.6 Hz), 122.99, 122.79 (C-F, ³*J*_{C-F}, *J* = 3.6 Hz), 121.96, 119.97, 118.03, 117.07 (C-F, ¹*J*_{C-F}, *J* = 249.4 Hz), 116.51 (C-F, ³*J*_{C-F}, *J* = 3.8 Hz), 68.42, 47.74 (C-F, ³*J*_{C-F}, *J* = 7.1 Hz), 43.82 (C-F, ³*J*_{C-F}, *J* = 4.3 Hz), 37.26 (C-F, ³*J*_{C-F}, *J* = 20.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -62.70, -105.56, -106.04, -116.80, -117.27; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₄F₅NNaO₃ 434.0786; Found 434.0773.

3,3-difluoro-4-(4-oxochroman-3-yl)-1-(m-tolyl)pyrrolidin-2-one (2z)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (55 mg, 77%), m.p. 139.7–140.9 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, J = 7.3 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.48 (s, 2H), 7.31 (t, J = 8.1 Hz, 1H), 7.11 – 7.03 (m, 3H), 4.89 – 4.80 (m, 1H), 4.59 – 4.53 (m, 1H), 4.28 (t, J = 9.4 Hz, 1H), 3.89 (t, J = 9.4 Hz, 1H), 3.30 – 3.21 (m, 1H), 3.01 – 2.87 (m, 1H), 2.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 192.02, 161.55, 161.11 (C-F, ²J_{C-F}, J = 31.7 Hz), 139.22, 137.59, 136.77, 129.00, 127.30, 127.15, 121.92, 120.63, 120.03, 118.05, 117.38 (C-F, ¹J_{C-F}, J = 250.2 Hz), 117.21, 68.51, 47.96, 43.91, 37.31 (C-F, ²J_{C-F}, J = 20.4 Hz), 21.54. ¹⁹F NMR (565 MHz, CDCl₃) δ -105.35, -105.82, -116.90, -117.37; HRMS (ESI) m/z: [M+Na]⁺ C₂₀H₁₇F₂NNaO₃ 380.1069; Found 380.1056.

3,3-difluoro-1-(3-methoxyphenyl)-4-(4-oxochroman-3-yl)pyrrolidin-2-one (2aa)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (54 mg, 72%), m.p. 152.3–153.7 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.88 (dd, J = 7.9, 1.6 Hz, 1H), 7.58 – 7.52 (m, 1H), 7.39 (t, J = 2.2 Hz, 1H), 7.31 (t, J = 8.2 Hz, 1H), 7.16 (dd, J = 8.1, 1.5 Hz, 1H), 7.09 – 7.06 (m, 1H), 7.04 (d, J = 8.3 Hz, 1H), 6.80 (dd, J = 8.2, 2.2 Hz, 1H), 4.82 (dd, J = 11.6, 4.3 Hz, 1H), 4.54 (dd, J = 11.7, 9.2 Hz, 1H), 4.31 – 4.24 (m, 1H), 3.91 – 3.84 (m, 1H), 3.83 (s, 3H), 3.28 – 3.20 (m, 1H), 3.01 – 2.83 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 191.93, 161.51, 161.20 (C-F, ²J_{C-F}, J = 29.8 Hz), 160.14, 138.80, 136.76, 129.89, 127.31, 121.92, 120.02, 118.03, 117.35 (C-F, ¹J_{C-F}, J = 249.4 Hz), 112.08, 111.89, 106.08,

68.49, 55.44, 47.97, 43.88, 37.21 (C-F, ${}^{2}J_{C-F}$, J = 20.4 Hz). ${}^{19}F$ NMR (565 MHz, CDCl₃) δ -105.35, -105.82, -116.79, -117.27; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₇F₂NNaO₄ 396.1018; Found 396.1000.

3,3-difluoro-4-(4-oxochroman-3-yl)-1-(o-tolyl)pyrrolidin-2-one (2ab)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (41 mg, 58%), m.p. 143.2–144.6 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.4 Hz, 2H), 7.49 – 7.38 (m, 3H), 7.26 (d, J = 7.3 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 4.88 (dd, J = 11.6, 4.3 Hz, 1H), 4.57 (dd, J = 11.6, 9.4 Hz, 1H), 4.37 – 4.28 (m, 1H), 3.90 (t, J = 9.6 Hz, 1H), 3.29 – 3.21 (m, 1H), 3.03 – 2.88 (m, 1H), 2.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 192.38, 161.23 (C-F, ²*J*_{C-F}, J = 29.8 Hz), 159.78, 137.66, 137.58, 129.21, 127.46, 126.33, 124.85, 121.32, 120.01, 119.69, 117.38 (C-F, ¹*J*_{C-F}, J = 249.2 Hz), 68.42, 47.92, 43.75, 37.33 (C-F, ²*J*_{C-F}, J = 20.3 Hz), 15.53. ¹⁹F NMR (565 MHz, CDCl₃) δ -105.42, -105.90, -116.87, -117.34; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₇F₂NNaO₃ 380.1069; Found 380.1054.

1-(3,4-dimethylphenyl)-3,3-difluoro-4-(4-oxochroman-3-yl)pyrrolidin-2-one (2ac)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (52 mg, 70%), m.p. 146.9–148.3 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.90 (dd, J = 7.9, 1.7 Hz, 1H), 7.58 – 7.54 (m, 1H), 7.44 (d, J = 2.2 Hz, 1H), 7.39 (dd, J = 8.2, 2.4 Hz, 1H), 7.17 (d, J = 8.2 Hz, 1H), 7.11 – 7.07 (m, 1H), 7.06 (d, J = 8.4 Hz, 1H), 4.84 (dd, J = 11.5, 4.3 Hz, 1H), 4.56 (dd, J = 11.7, 9.1 Hz, 1H), 4.28 – 4.22 (m, 1H), 3.91 – 3.81 (m, 1H), 3.31 – 3.20 (m, 1H), 3.03 – 2.86

(m, 1H), 2.30 (s, 3H), 2.27 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 192.07, 161.55, 160.97 (C-F, ²*J*_{C-F}, *J* = 29.6 Hz), 137.61, 136.77, 135.37, 134.99, 130.15, 127.30, 121.92, 121.24, 120.04, 118.06, 117.60, 117.49 (C-F, ¹*J*_{C-F}, *J* = 249.2 Hz), 68.53, 48.00 (C-F, ³*J*_{C-F}, *J* = 7.1 Hz), 43.93 (C-F, ³*J*_{C-F}, *J* = 4.5 Hz), 37.33 (C-F, ²*J*_{C-F}, *J* = 20.4 Hz), 19.98, 19.31. ¹⁹F NMR (565 MHz, CDCl₃) δ -105.31, -105.78, -116.81, -117.29; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₁₉F₂NNaO₃ 394.1225; Found 394.1214.

1-(3,4-dichlorophenyl)-3,3-difluoro-4-(4-oxochroman-3-yl)pyrrolidin-2-one (2ad)

The product was purified by column chromatography on silica gel (eluent: 10:1 petroleum ether: ethyl acetate) as a white solid (72 mg, 88%), m.p. 162.4–163.6 °C. ¹H NMR (600 MHz, DMSO) δ 8.03 (d, J = 2.1 Hz, 1H), 7.80 – 7.77 (m, 1H), 7.75 – 7.70 (m, 2H), 7.64 – 7.59 (m, 1H), 7.13 – 7.09 (m, 2H), 4.73 (dd, J = 11.4, 4.7 Hz, 1H), 4.60 (t, J = 11.1 Hz, 1H), 4.21 (t, J = 9.4 Hz, 1H), 4.06 – 3.99 (m, 1H), 3.54 – 3.47 (m, 1H), 3.33 – 3.21 (m, 1H). ¹³C NMR (151 MHz, DMSO) δ 191.97, 161.80 (C-F, ² J_{C-F} , J = 30.7 Hz), 161.43, 138.06, 137.00, 131.94, 131.41, 128.37, 127.21, 122.18, 122.07, 120.69, 120.55, 118.48 (C-F, ¹ J_{C-F} , J = 251.5 Hz), 118.21, 68.54, 47.52, 44.13, 35.91 (C-F, ² J_{C-F} , J = 20.2 Hz). ¹⁹F NMR (565 MHz, DMSO) δ -101.53, -102.00, -113.92, -114.39; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₃Cl₂F₂NNaO₃ 434.0133; Found 434.0130.

1-(3-chloro-5-methylphenyl)-3,3-difluoro-4-(4-oxochroman-3-yl)pyrrolidin-2-one (2ae)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (62 mg, 79%), m.p. 154.1–155.4 °C. ¹H

NMR (600 MHz, CDCl₃) δ 7.90 (dd, J = 7.8, 1.3 Hz, 1H), 7.61 – 7.51 (m, 2H), 7.41 (s, 1H), 7.15 – 7.00 (m, 3H), 4.84 (dd, J = 11.6, 4.1 Hz, 1H), 4.55 (dd, J = 11.6, 9.3 Hz, 1H), 4.28 (t, J = 9.4 Hz, 1H), 3.86 (t, J = 9.5 Hz, 1H), 3.34 – 3.18 (m, 1H), 3.00 – 2.84 (m, 1H), 2.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 191.97, 161.54, 161.19 (C-F, ²*J*_{C-F}, J = 29.9 Hz), 140.76, 138.48, 136.85, 134.64, 127.31, 127.05, 121.98, 119.99, 118.60, 118.06, 117.21, 117.12 (C-F, ³*J*_{C-F}, J = 249.4 Hz), 68.46, 47.84 (C-F, ³*J*_{C-F}, J = 7.1 Hz), 43.85 (C-F, ³*J*_{C-F}, J = 4.4 Hz), 37.25 (C-F, ²*J*_{C-F}, J = 20.4 Hz), 21.42. ¹⁹F NMR (565 MHz, CDCl₃) δ -105.48, -105.95, -116.81, -117.29; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₆ClF₂NNaO₃ 414.0679; Found 414.0674.

3,3-difluoro-4-(4-oxochroman-3-yl)-1-(4-phenylbutyl)pyrrolidin-2-one (2af)

The product was purified by column chromatography on silica gel (eluent: 20:1 petroleum ether: ethyl acetate) as a white solid (66 mg, 83%), m.p. 140.5–141.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.1 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.28 (d, J = 6.4 Hz, 2H), 7.18 (t, J = 6.9 Hz, 3H), 7.11 – 7.02 (m, 2H), 4.83 – 4.73 (m, 1H), 4.56 – 4.47 (m, 1H), 3.73 (t, J = 9.3 Hz, 1H), 3.49 – 3.30 (m, 3H), 3.19 – 3.09 (m, 1H), 2.86 – 2.71 (m, 1H), 2.66 (t, J = 6.0 Hz, 2H), 1.68 – 1.59 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 192.09, 162.43 (C-F, ² J_{C-F} , J = 29.8Hz), 161.54, 141.65, 136.72, 128.42, 128.41, 127.29, 125.95, 121.87, 120.05, 118.05, 117.74 (C-F, ¹ J_{C-F} , J = 251.1 Hz), 68.55, 46.72, 43.91, 43.27, 37.66 (C-F, ² J_{C-F} , J = 20.6 Hz), 35.23, 28.24, 26.13. ¹⁹F NMR (376 MHz, CDCl₃) δ -106.61, -107.32, -116.59, -117.30. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₂₃F₂NNaO₃ 422.1538; Found 422.1534.

3,3-difluoro-1-(furan-2-ylmethyl)-4-(4-oxochroman-3-yl)pyrrolidin-2-one (2ag)

The product was purified by column chromatography on silica gel (eluent: 20:1 petroleum ether: ethyl acetate) as a white solid (55 mg, 79%), m.p. 121.7–122.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.9 Hz, 1H), 7.54 (t, J = 8.5 Hz, 1H), 7.40 (s, 1H), 7.11 – 7.00 (m, 2H), 6.40 – 6.29 (m, 2H), 4.82 – 4.74 (m, 1H), 4.55 (s, 2H), 4.52 – 4.45 (m, 1H), 3.82 (t, J = 9.5 Hz, 1H), 3.40 (t, J = 8.9 Hz, 1H), 3.18 – 3.07 (m, 1H), 2.87 – 2.71 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.99, 162.12 (C-F, ² J_{C-F} , J = 29.5Hz), 161.50, 147.77, 143.22, 136.69, 127.27, 121.86, 120.02, 118.02, 117.57 (C-F, ¹ J_{C-F} , J = 251.5 Hz), 110.61, 109.72, 68.53, 46.62, 43.91, 39.96, 37.62 (C-F, ² J_{C-F} , J = 20.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -106.54, -107.25, -116.58, -117.29. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₅F₂NNaO₄ 370.0861; Found 370.0858.

3-fluoro-4-(4-oxochroman-3-yl)-1-phenylpyrrolidin-2-one (2ah)

The product was purified by column chromatography on silica gel (eluent: 15:1 petroleum ether: ethyl acetate) as a white solid (56 mg, 86%), m.p. 121.4–122.7 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.91 (dd, J = 7.9, 1.6 Hz, 1H), 7.66 (dd, J = 8.6, 0.9 Hz, 2H), 7.58 – 7.53 (m, 1H), 7.44 – 7.37 (m, 2H), 7.25 – 7.20 (m, 1H), 7.11 – 7.07 (m, 1H), 7.05 (d, J = 8.4 Hz, 1H), 5.20 (dd, J = 52.9, 9.3 Hz, 1H), 4.79 – 4.72 (m, 1H), 4.57 – 4.48 (m, 1H), 4.25 (dd, J = 10.2, 8.7 Hz, 1H), 3.77 – 3.70 (m, 1H), 3.11 – 3.03 (m, 1H), 2.93 – 2.78 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 192.26, 166.75 (C-F, ²*J*_{C-F}, *J* = 21.4 Hz), 161.55, 138.20, 136.66, 129.05, 127.32, 125.60, 121.92, 120.25, 119.82, 118.01, 91.88 (C-F, ¹*J*_{C-F}, *J* = 191.3 Hz), 69.26, 47.94, 47.84 (C-F, ³*J*_{C-F}, *J* = 7.1 Hz), 37.54 (C-F, ²*J*_{C-F}, *J* = 18.1 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -187.83; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₆FNNaO₃ 348.1006; Found 348.0995.

8. References

1. Wang, L.;Wei, X. J.; Jia, W. L.; Zhong, J. J.; Wu, L. Z.; Liu, Q. Org. Lett. 2014, 16, 5842-5845.

2. Gualandi, A.; Rodeghiero, G.; Faraone, A.; Patuzzo, F.; Marchini, M.; Calogero, F.; Perciaccante, R.; Jansen, P. T.; Ceroni, P.; Cozzi, P. G. *Chem. Commun.* **2019**, *55*, 6838-6841.

3. Johannes, K.; Lukasz, W.; Nicolai, C. Angew. Chemie. 2022, doi: 10.1002/anie.202202306.

8¹H, ¹³C and ¹⁹F NMR spectra of products

¹⁹F NMR Spectrum of Compound 2a

¹H NMR Spectrum of Compound 2b

¹⁹F NMR Spectrum of Compound 2b

¹³C NMR Spectrum of Compound 2c

¹³C NMR Spectrum of Compound 2d

¹⁹F NMR Spectrum of Compound 2d

¹³C NMR Spectrum of Compound 2e

¹H NMR Spectrum of Compound 2f

¹⁹F NMR Spectrum of Compound 2f

¹H NMR (CDCl₃, 600MHz)

¹³C NMR Spectrum of Compound 2g

¹H NMR Spectrum of Compound 2h

¹⁹F NMR Spectrum of Compound 2h

¹H NMR (CDCl₃, 400MHz)

¹H NMR Spectrum of Compound 2i

¹³C NMR Spectrum of Compound 2i

¹H NMR Spectrum of Compound 2j

¹³C NMR (CDCl₃, 151MHz)

¹³C NMR Spectrum of Compound 2j

¹⁹F NMR Spectrum of Compound 2j

¹H NMR Spectrum of Compound 2k

¹³C NMR Spectrum of Compound 2k

¹H NMR Spectrum of Compound 21

¹⁹F NMR (CDCl₃, 565MHz)

¹⁹F NMR Spectrum of Compound 21

¹³C NMR Spectrum of Compound 2m

¹⁹F NMR Spectrum of Compound 2n

¹³C NMR Spectrum of Compound 20

¹⁹F NMR Spectrum of Compound 20

¹H NMR Spectrum of Compound 2p

¹⁹F NMR Spectrum of Compound 2p

¹H NMR (CDCl₃, 400MHz)

¹⁹F NMR (CDCl₃, 376MHz)

¹H NMR Spectrum of Compound 2r

¹⁹F NMR Spectrum of Compound 2r

¹³C NMR Spectrum of Compound 2s

¹⁹F NMR Spectrum of Compound 2s

¹⁹F NMR Spectrum of Compound 2t

¹H NMR Spectrum of Compound 2u

S63

¹H NMR Spectrum of Compound 2v

¹⁹F NMR Spectrum of Compound 2v

¹³C NMR Spectrum of Compound 2w

¹H NMR Spectrum of Compound 2x

¹⁹F NMR Spectrum of Compound 2x

¹³C NMR Spectrum of Compound 2y

¹H NMR Spectrum of Compound 2z

¹⁹F NMR Spectrum of Compound 2z

¹³C NMR Spectrum of Compound 2aa

¹H NMR Spectrum of Compound 2ab

¹⁹F NMR Spectrum of Compound 2ab

¹³C NMR Spectrum of Compound 2ac

¹⁹F NMR Spectrum of Compound 2ac

¹H NMR Spectrum of Compound 2ad

¹⁹F NMR Spectrum of Compound 2ad

¹³C NMR Spectrum of Compound 2ae

¹⁹F NMR Spectrum of Compound 2af

4 76 4 76 4 76 4 76 4 49 4 49 4 48

6.35 6.35 6.35 6.35 6.35 6.35 6.35 ¹³C NMR Spectrum of Compound 2ag

¹⁹F NMR (CDCl₃, 376MHz)

¹H NMR Spectrum of Compound 2ah

¹⁹F NMR Spectrum of Compound 2ah