Supporting Information

Cellulose nanocrystals for crop protection: leaf adhesion and controlled delivery of bioactive molecules

Like Ning^{1,2}, Chaoqun You^{1*}, Yuxin Jia¹, Jingqian Chen², Yu Zhang¹, Xun Li¹, Orlando J. Rojas^{2*}, Fei Wang^{1*}

¹ College of Chemical Engineering, Nanjing Forestry University; Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass; Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing 210037, PR China.

² Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2360, East Mall, Vancouver, BC V6T 1Z3, Canada.

Corresponding authors: FW, hgwf@njfu.edu.cn; OJR, orlando.rojas@ubc.ca and CY, chemyoucq@njfu.edu.cn.

Number of pages: 7 Tables: 4 Figures: 9

Complex	Composition				
Samples	XCM	CNC-COOH	β-CD	TA	
CNCs					
CNC-COOH					
βCNC			\checkmark		
ΧCM@βCNC	\checkmark	\checkmark			
TA/Cu@βCNC		\checkmark		\checkmark	
TA/Cu-XCM@CNC	\checkmark	\checkmark		\checkmark	
TA/Cu-XCM@βCNC	\checkmark	\checkmark	\checkmark	\checkmark	

Table S1 Formulation of all tested samples.

Table S2 Pesticide loading efficiency (LE) of XCM@βCNC, TA/Cu-XCM@βCNC.

	XCM@βCNC	TA/Cu-XCM@βCNC
LE (%)	4.77±0.03	9.04±0.02

Table S3 The hydrodynamic diameter of CNC, β CNC, XCM@ β CNC, and TA/Cu-XCM@ β CNC.

Sample	Hydrodynamic diameter (nm)		
CNCs	156		
βCNC	181		
XCM@βCNC	322		
ΤΑ/Ϲυ-ΧϹϺ@βϹΝϹ	242		

The release kinetics of TA/Cu-XCM@ β CNC was analyzed using Zero-order, First-order, Higuchi, Bhaskar, and Ritger Peppas models in Eq. (1), (2), (3), (4), (5):

Zero-order model: $M_t/M_{\infty} = a + kt.$ (1)

First-order model:
$$M_t/M_{\infty} = a(1 - e^{-kt}).$$
 (2)

Higuchi model:
$$M_t/M_{\infty} = kt^{1/2}$$
. (3)

Bhaskar model: $M_t / M_{\infty} = a(1 - e^{-kt0.65}).$ (4)

Ritger-Peppas model:
$$M_t/M_{\infty} = kt^n$$
. (5)

where M_t/M_{∞} is the accumulative release ratio (%) of XCM at time t, *a* is the initial concentration, *k* is the kinetic constant and *n* is the diffusion exponent.

n is an index which reflects release mechanism: Fickian diffusion (n < 0.43), non-Fickian or anomalous diffusion (0.43 < n < 0.85), and case II transport (n > 0.85)¹.

Table S4 Fitting results for XCM release curves of TA/Cu-XCM@βCNC at different pH values.

Fitting model	рН 6		pH 7		pH 8	
	kinetic equation	R ²	kinetic equation	R ²	kinetic equation	R ²
Zero-order	y = 32.82+1.50x	0.6089	y = 17.17+1.36x	0.8168	y = 15.44+1.56x	0.8726
First-order	$y = 59.23(1 - e^{-0.91x})$	0.9003	$y = 45.36(1 - e^{-0.24x})$	0.8602	$y = 50.48(1 - e^{-0.16x})$	0.9010
Higuchi	$y = 15.31 \ x^{1/2}$	0.4966	$y = 10.49 \ x^{1/2}$	0.8750	$y = 10.88 \ x^{1/2}$	0.9502
Bhaskar	$y = 62.45(1 - e^{-0.73x^{0.65}})$	0.9468	$y = 50.90(1 - e^{-0.32x^{0.65}})$	0.9506	$y = 60.70(1 - e^{-0.22x^{0.65}})$	0.9688
Ritger-Peppas	$y = 37.51 \ x^{0.18}$	0.9960	$y = 18.37 \ x^{0.30}$	0.9918	$y = 15.98 \ x^{0.36}$	0.9937

Figure S1 FTIR spectra of CNCs, CNC-COOH, β -CD and β CNC.

Figure S2 Size distribution of CNCs, βCNC, XCM@βCNC and TA/Cu-XCM@βCNC.

Figure S3 TGA curves of dried CNCs, CNC-COOH, βCNC, XCM@βCNC and TA/Cu-XCM@βCNC.

For the deposition properties of pesticide carriers on superhydrophobic surfaces, silanized glass slides were selected to simulate the leaves. One slide was placed horizontally and the other slide was fixed at a slope of $45^{\circ 2}$. Then, the formulations were sprayed on the siliconized glass slides with identical volumes. The deposition ratio (DR, %) was calculated using Eq. (6):

$$DR(\%) = \frac{w_i}{w_h} \times 100\%.$$
(6)

where w_i was the additional weight of the inclined slide; w_h was the additional weight of the horizontal slide. Each test was measured in six replicates.

Figure S4 Deposition profile of water, XCM, XCM@βCNC, TA/Cu-XCM@CNC and TA/Cu-XCM@βCNC on glass.

Figure S5 Fitting profiles of the XCM time-dependent release from TA/Cu-XCM@ β CNC using the Zero-order, First-order, Higuchi, and Bhaskar models, respectively.

Figure S6 Digital photos of R. solani that incubated with XCM solution.

Figure S7 Digital photos of *C. capsica* that incubated with XCM@βCNC, TA/Cu@βCNC and TA/Cu-XCM@βCNC.

Figure S8 Control efficiency of different suspensions against R. solani on pepper plants.

Figure S9 Digital photos to assess the insecticidal activity of water and TA/Cu@βCNC.

REFERENCES

- 1 G. Teng, C. Chen, N. Jing, C. Chen, Y. Duan, L. Zhang, Z. Wu and J. Zhang, *Chem. Eng. J.*, 2023, **451**, 139052.
- 2 Y. Zhang, B. Y. Liu, K. X. Huang, S. Y. Wang, R. L. Quirino, Z. X. Zhang and C. Q. Zhang, ACS Appl. Mater. Inter., 2020, 12, 37607-37618.