Supporting Information

Visible Light-Mediated Metal-Free Alkyl Suzuki-Miyaura Coupling of Alkyl Halides and Alkenylboronic Acids/Esters : A Green Method for the Synthesis Allyl Difluoride

Derivatives

Chuan-Hua Qu,^{a,#} Xiao Yan,^{b,#} Shu-Ting Li,^a Jian-Bo Liu,^a Zhi-GangXu,^a Zhong-Zhu Chen,^a Dian-Yong Tang,^{*,a} Huan-Xiang Liu,^{*,b} and Gui-Ting Song^{*,a}

^aInternational Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences. 319 Honghe Ave., Yongchuan, Chongqing, 402160, China. Email: <u>18996193522@163.com</u>.

^bFaculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China.

[#]These authors contributed equally.

Table of Contents

General Information
Experimental procedure for the metal-free difluoroalkylation of alkenylboronic acids
Experimental procedure for the metal-free difluoroalkylation of alkenylboronic acid
estersS4
Experimental procedure for the difluoroalkylation of alkenylboronic acid 1a with
difluoroacylindole 2m
Mechanistic consideration
1. HRMS analysis
2. UV/Vis plot
3. Luminescence quenching experiments
4. Light turn on/off experiment
5. Reaction quantum yield (Φ) measurment
6. Direct evidence of halogen bond interaction between bromodifluoroacylarene
and tertiary amine
7. Bromine radical trapping experiments with 1,1-diphenylethylene or
TEMPO
8. DFT calculation
Characterization data of compoundsS52
References
Copies ¹ H NMR, ¹³ C NMR, ¹⁹ F NMRS79

General Information

¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were measured on 400 MHz spectrometer, using CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts (δ) are given in ppm in relative to TMS, the coupling constants *J* are given in Hz. HRMS were obtained in the ESI mode. All reactions were carried out under Ar atmosphere unless otherwise noted. All solvents were obtained from commercial suppliers. α -Bromo difluoroacyl arenes^{S1} **2a-21** and α -Bromo difluoroacyl indole^{S2} **2m** were prepared according to the literature. Reactions were monitored by TLC on silica gelplates (GF254), and the analytical thin-layer chromatography (TLC) was performed on precoated, glass-backed silica gel plates. Monochromatic light source device is a customized product.

454nm monochromatic light source is shown in the figure below

photoreaction device with refrigeration circulating fluid

Experimental procedure for the metal-free difluoroalkylation of alkenylboronic acids

N,*N*-Diisopropylethylamine (70 μ L, 0.4 mmol, 2.0 eq), alkenylboric acids **1** (0.2 mmol, 1.0 eq) and α -bromo difluoroacylarenes **2** (0.6mmol, 3 eq) were added to a flame-dried Schlenk flask containing a stirring bar and purged by evacuating the flask and backfilling with N₂ three times. In the absence of light, anhydrous *N*,*N*-dimethylacetamide (1 ml, 0.2 M) was added and the flask was sealed. The mixture was then stirred under irradiation from 10 W blue LEDs. After 48 h, the crude products were purified by column chromatography over silica gel using hexanes/EtOAc as eluent to yield **3**.

Experimental procedure for the metal-free difluoroalkylation of

alkenylboronic acid esters

N,*N*-Diisopropylethylamine (70 μ L, 0.4 mmol, 2.0 eq), alkenylboric acid esters **1**[•] (0.2 mmol, 1.0 eq) and α -bromo difluoroacylarene **2a** (97mg, 0.33 mmol, 1.65 eq) were added to a flame-dried Schlenk flask containing a stirring bar and purged by evacuating the flask and backfilling with N₂ three times. In the absence of light, anhydrous *N*,*N*-dimethylacetamide (1 ml, 0.2 M) was added and the flask was sealed. The mixture was then stirred under irradiation from 10 W blue LEDs. After 48 h, the crude products were purified by column chromatography over silica gel using hexanes/EtOAc as eluent to yield **4**.

Other unsuccessful substrates

The amount of this cross-coupling **product** (3 mg, < 10% yield) is very small, and its spectrum is shown below.

By-product analysis

For the unreacted alkenyl boronic ester, we isolated new points that distinguish it from other than starting material **2a** and found the generation of hydrogenation by-products of **2a**, which may be due to hydrogen seizure by difluoroalkyl radicals, whose hydrogen source may be from DIPEA.

¹³C NMR (100 MHz)

S6

-40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -110 -120 fl (ppm) -150 -170 -180 -130 -140 -160

Experimental procedure for the difluoroalkylation of alkenylboronic acid 1a with difluoroacylindole 2m

N,N-Diisopropylethylamine (70 µL, 0.4 mmol, 2.0 eq), alkenylboric acid **1a** (30 mg, 0.2 mmol, 1.0 eq), α -bromo difluoroacylindole **2m** (86mg, 0.3 mmol, 1.5 eq), and *fac*-Ir(ppy)₃ (1.3 mg, 0.002 mmol, 1 mol%) were added to a flame-dried Schlenk flask containing a stirring bar and purged by evacuating the flask and backfilling with N₂ three times. In the absence of light, anhydrous *N,N*-dimethylacetamide (1 ml, 0.2 M) was added and the flask was sealed. The mixture was then stirred under irradiation from 10 W blue LEDs. After 24 h, the crude products were purified by column chromatography over silica gel using hexanes/EtOAc = 10% as eluent to yield **3am** 39 mg, 63% yield, yellow solid, E/Z = 3/1.

Gram-scale reaction of alkenylboronic acid 1a with α-bromodifluor oacylarene 2b

Before the start of the reaction

Reaction in progress

After Reaction

Alkenylboronic acid **1a** (0.44 g, 3 mmol, 1.0 eq) was added to a 25 mL flame-dried flask containing a stirring bar and purged by evacuating the flask and backfilling with N₂ three times. In the absence of light, DIPEA (1050 μ L, 6 mmol, 2.0 eq), α -bromo difluoroacylarene **2b** (2.11 g, 9 mmol, 3.0 eq) and anhydrous DMA (15 ml, 0.2 M) were added and the flask was sealed. The mixture was then stirred under irradiation from 24 W blue LEDs (Home-made gram-scale photoreactors). After completion of the reaction, the reaction solution was extracted with ethyl acetate and water, and the organic phase was concentrated under reduced pressure. The residue was purified by column chromatography over silica gel using hexanes as elucent to yield **3ab** (0.61 g, 79%).

Mechanistic consideration

1. HRMS Analysis

1.1 Radical trapping experiment with 1,1-diphenylethylene or TEMPO

Scheme S1. Trapping experiment in the standard reaction.

To a Schlenk tube charged with a magnetic stirring bar, substrate **1a** (0.2 mmol) was added and the Schlenk tube was purged with argon for three times. Subsequently, anhydrous DMA (1 ml), **2f**

(0.6 mmol, 167 mg) and 1,1-diphenylethylene (0.2 mmol, 35uL) were added in turn via syringes. The tightly sealed tube was then irradiated with a 10 W blue LEDs at room temperature for 48 h. The corresponding difluoroacetylated product **3af** was obtained in 23% yield (14 mg) after purification through flash column chromatography on silica gel. In the meanwhile, the CF₂COAr-trapped product **6** was isolated in 52% yield (39 mg, based on 1,1-diphenylethylene, Scheme S1), colorless oil, $R_f = 0.3$ (Hexane/Ethyl acetate = 95/5),

¹HNMR (400 MHz, CDCl₃): δ 7.76 (d, J = 8.8 Hz, 2H), 7.24-7.17 (m, 8H), 6.93 (d, J = 7.6 Hz, 2H), 6.78 (d, J = 8.4 Hz, 2H), 6.41 (t, J = 12.4 Hz, 1H), 2.98 (s, 6H) ppm;

¹³C NMR (100 MHz, CDCl₃):

185.4 (t, *J* = 29.2 Hz), 153.7, 150.2 (t, *J* = 8.6 Hz), 141.1, 137.5, 132.3, 129.8, 128.8, 128.3, 128.2, 127.8, 127.7, 120.9 (t, *J* = 26.7 Hz), 119.6, 115.7 (t, *J* = 245.9 Hz), 40.0 ppm;

¹⁹**F NMR** (376 MHz, CDCl₃): δ -87.5 (d, J = 12.8 Hz) ppm.

The most common used for intermediate identification is adding an additional reagent to trap the species. The persistent free radical 2,2,6,6-tetramethylpiperdine 1-oxyl (TEMPO) is usually served as a trapping reagent of carbon-centered radicals, also for intramolecular radical cyclization. Based on above reasons, we applied this radical trapping agent in our reaction to examine its behavior. Under the standard reaction conditions, when 3.0 equivalent of TEMPO (with respect to **1a**) was added to the reactions, after long exposure to irradiation (48 h) products **3ab** could not be detected (Scheme S2, Figure S1), but the radical trapping product **7** was detected by HRMS analysis.

Scheme S2. Trapping experiment in the standard reaction.

This result may suggest the formation of the radical species involved in our reaction conditions, there is another plausible explanation that visible light induced the formation of difluoroacyl radical species .

Figure S1. HRMS analysis of reaction mixture.

1.2 Trapping experiment with TEMPO free radical in different solvents

Scheme S3. Trapping experiment under solvent- and base-free conditions.

Although we have previously proved that ArCOCF₂Br can generate ArCOCF₂ radicals under light in the presence of no external base, considering that the heteroatoms in other reagents (e.g., solvent, substrate, or even water) may interact with ArCOCF₂Br in halogen bonding and thus induce radical generation under visible light radiation. Based on this analysis, we tried to perform the radical trapping experiment again under solvent- and base-free conditions. Under solvent- and base-free conditions, when 3.0 equivalent of TEMPO (with respect to **2g**) was added to the reactions, after long exposure to irradiation (24 h), the radical trapping product **8** was detected by HRMS analysis, albeit in low abundance. Based on the promotion of radical generation by organic bases as well as by heteroatomic atoms in substrate molecules and solvents, we propose a new concept — halogen bonding induced C_{sp}^{3} -Br homolytic mechanism.

2. UV/Vis Plot

All the UV-vis absorption spectra were recorded in 1 cm path quartz cuvettes using a Persee TU-1950 UV-visible spectrophotometer.

A UV-vis absorbance experiment has been carried out for confirming the formation of halogen bond complexs as illustrated in Figure S1. Condition: measured with DMA as a solvent. **1a** (0.12 mmol), **2a** (0.36 mmol), DIPEA (0.24 mmol), and DMA (3 mL).

Figure S2. UV/vis absorption spectra of the starting materials in isolation and combined recorded in DMA as solvent. The numbers a,b,c,d,e,f,g on the bottles correspond to 1a, 2a, DIPEA, 2a+DIPEA, 1a+2a, 1a+DIPEA,1a+2a+DIPEA respectively.

3. Luminescence quenching experiments

Stern-Volmer studies were carried out on an Agilent Cary Eclipse fluorescence spectrophotometer.

Experimental procedures: All the bromodifluoroacylarene 4-*t*BuPhCOCF₂Br **2a** (*in this manuscript*) solutions were excited at 371 nm and the emission intensity was collected at 380-650 nm. A screw-top quartz cuvette was charged with a solution of **2a** (0.1 mmol, 20 uL) in dry DMA (3.0 mL) and the initial emission was collected. Another series of samples, 33 mM (M = mol/L) **2a** in DMA with DIPEA as quencher in gradient concentrations, were tested and the emissions were collected.

Figure S3. Agilent Cary Eclipse fluorescence spectrophotometer

Quenching of **2a** was not observed for DIPEA, but fluorescence enhancement was observed. Stern-Volmer fluoresence quenching analysis showed that the excited state of *t*-BuPhCOCF₂Br **2a*** could not be quenched by DIPEA, with the emission of **2a***, upon excitation at 371 nm, being abnormally enhanced by DIPEA (Figure S4).This result may indicate that there is no electron transfer event between **2a** and DIPEA.^{S3} The enhanced fluorescence may indicate that DIPEA promotes the generation of difluoroalkyl radicals (see Figure 8).

Figure S4. UV/vis absorption spectra of the starting materials in isolation and combined recorded in DMA as solvent.

4. Light turn on/off experiment

The reaction mixture was irradiated for 2 hours. An aliquot of 0.10 mL was taken from the reaction mixture and injected into a vial containing 0.50 mL of CDCl₃ containing 1-bromo-4-(trifluoromethyl)benzene (0.1 mmol, 14 uL) as the internal standard. The yield of product was determined by crude ¹⁹*F NMR* analysis. The reaction mixture was then sealed under N₂ atmosphere and re-subjected to 10 W blue LEDs. The yields later on were determined in the same way after some time light on or off.

5. Reaction quantum yield (Φ)measurment

According to the above experimental results, we plan to use a monochromatic light source with a wavelength of 454nm as the light source of the reaction quantum yield experiment.

Determination of the light intensity at 454 nm

The quantum yield of the reaction was measured by chemical actinometry using 454 nm blue LEDs using potassium ferrioxalate following the procedure of E. E. Wegner (*J. Am. Chem. Soc.* **1966**, 88, 394), J. N. Demas (*J. Phys. Chem.* **1981**, 85, 2766), F. Glorius (*Org. Lett.* **2018**, 20, 1546), R. Shang (*Science*, **2019**, *363*, 1429), J. Zhong (*Chem. Commun.* **2019**, *55*, 10848) and T. P. Yoon (*Chem. Sci.* **2015**, *6*, 5426). 0.737 g of potassium ferrioxalate trihydrate was dissolved in 10 mL H₂SO₄ (0.05 M) and stored in the dark. Then, a buffer solution was prepared by dissolving 2.5 g of sodium acetate and 0.5 mL of H₂SO₄ (95-98%) in 50 mL of distilled water.

Blue LED photoreactor (Irradiation at 454 nm), Φ of ferrioxalate at 454 nm estimated to be 0.95 (Hatchard, C. G.; Parker, C. A. *Proc. Roy. Soc. (London)* **1956**, *A235*, 518–536). Photon flux ^{S4} > 1.45 x 10⁻⁶ einstein s⁻¹

Determination of the reaction quantum yield

To obtain the quantum yield (Φ) of the diffuoroalkylation of quinoxalinones. The number of ¹⁹F moles determined by NMR analysis of the product 3aa using were 1-bromo-4-(trifluoromethyl)benzene as internal standard. As such, this reaction was performed under the set of optimized reaction conditions under visible light irradiation of 454 nm blue LEDs. After 1800 s of light irradiation, 4.5×10^{-6} moles of **3aa** were obtained.

The quantum yield of this reaction was calculated using the following equation:

$$\Phi = \frac{mol \ of \ product \ formed}{photon \ flux \bullet t \bullet f}$$
$$f = 1 - 10^{-A}$$

Where:

 $A(454 \text{ nm}) = \text{is the absorbance at } 454 \text{ nm of the reaction which was measured placing 1 mL of the solution in a cuvette of path length 1 cm by UV/Vis spectrophotometry. The absorbance of the$

reaction mixture at 454 nm was measured to be 3.215, so the value of f is 0.999.

t = is the reaction time 1800 s

The quantum yield (Φ) of the reaction is less than 0.055 (see calculation below)

$$\Phi = \frac{mol \ of \ product \ formed}{photon \ flux \bullet t \bullet f} < \frac{4.5 \ x \ 10^{-6} \ mol}{1.45 \ x \ 10^{-6} \ einstein \ s^{-1} \ x \ 1800 \ x \ 0.999} = 1.7 \times 10^{-3}$$

6. Direct evidence of halogen bond interaction between bromodifluoroacylarenes and tertiary amines

6.1 Optimization of the reaction conditions

Source of oxygen

Entry	Et ₃ N	additive	Yield of 4a (%)
1	Common Et ₃ N	-	63
2	Common Et ₃ N	10eq H ₂ O	70
3	Dry Et ₃ N	300 mg Na ₂ SO ₄	54
4	Dry Et ₃ N	$10eq H_2O^{18}$	72
5	Common Et ₃ N	0.25mL H ₂ O	27

C₽

HRMS analysis of entry 3

m/z	Intens	ity	Relativ	/e↓
-262.1	.796	7988	19136.0	-100.00
-263.1	828	· 139 3	47200.0	17.44 ⊷
-264.1	859	-1140	08897.0	1.43 ₽

HRMS analysis of entry 4

Light source

Entry	solvent	light source	Yield of 4a (%)
1	THF (1 mL)/10eq	33 W CFL	55
	H_2O		
2	THF (1 mL)/10eq	10 W blue LEDs	70
	H_2O		
3	THF (1 mL)/10eq	10 W green LEDs	51
	H_2O		

Solvent

Me

Entry	solvent	light source	Yield of 4a (%)
1	THF/10eq H ₂ O	10 W blue LEDs	70
2	MeCN/10eq H ₂ O	10 W blue LEDs	86
3	DMF/10eq H ₂ O	10 W blue LEDs	12
4	MTBE/10eq H ₂ O	10 W blue LEDs	73
5	MeOH/10eq H ₂ O	10 W blue LEDs	10
6	H ₂ O/CTAB(1 ml/0.2 eq)	10 W blue LEDs	-
7	H ₂ O/SDS (1 mL/0.2 eq)	10 W blue LEDs	-
8	H ₂ O/Tween 80	10 W blue LEDs	-
	(1 mL/80uL)		
9	H ₂ O/TBAB (1 mL/0.2 eq)	10 W blue LEDs	-

6.2 Other tertiary amines examination

Experimental procedure for the metal-free reaction between tertiary amines and bromodifluoroacylarenes

 α -Bromo difluoroacylarenes 2 (0.3mmol, 1.5 eq.) were added to a flame-dried Schlenk flask containing a stirring bar and purged by evacuating the flask and backfilling with N₂ three times. In the absence of light, tertiary amines (0.2 mmol, 1.0 eq.), H₂O (2 mmol, 10 eq.), and anhydrous MeCN (1 ml, 0.2 M) were added and the flask was sealed. The mixture was then stirred under

irradiation from 10 W blue LEDs. After 48 h, the crude products were purified by column chromatography over silica gel using hexanes/EtOAc as eluent to yield **9**.

6.3 Possible mechanism (again proving the existence of bromine radicals):

Based on the relevant literature reports^{\$5} and our understanding, we speculated on the mechanism of the reaction. Firstly, based on the tertiary amine radical-type dealkylation reported,^{S5e} path B should be the more likely pathway, i.e., the tertiary amine radical cation is coupled with the difluoroalkyl radical to give the zwitterionic species III, followed by dealkylation to give the key intermediate IV. Subsequently, intermediate IV is stripped of two molecules of HF in the presence of water to give ketoamide 9a, a process that has been reported in the literature (see Fig S5 gray dashed box).^{S6,S5f} Furthermore, we confirmed by calculation that the real form of bromine radicals present in the system may be in the form of intermediate I. Due to the electron-deficient nature of the bromine radical, this intermediate has the potential to cause a significant increase in the polarization of the carbon-nitrogen bond of the tertiary amine, which in turn induces the breakage of the carbon-nitrogen bond of the tertiary amine to give nitrogen radical IV. Radical IV can also be coupled or added to the difluoroalkyl radical to give the key intermediate IV. Both of the above pathways we cannot completely exclude, and both could be present in this reaction system. In addition to the two possible dealkylation pathways mentioned above, the amine oxidation/hydrolysis pathway is also possible.^{S5b-d} Considering the oxidative nature^{S7} and the hydrogen atom transfer (HAT)^{S8-10} properties of bromine radicals, and combined S21

with the reports in the relevant literature,^{S5f-g} we speculate on this possible reaction pathway for path c. This pathway involves the electrophilicity^{S10j} of the bromine radical and the nucleophilicity^{S5g} of the α -amine alkyl radical. Firstly, in the presence of triethylamine/bromine radical complex **I**, the electron-rich α -amine alkyl radical **V** can be obtained by an intramolecular bromine radical-mediated HAT process.This radical can be easily combined with the electrophilic bromine radical to give intermediate **VI**, **VI** can be rapidly and irreversibly decomposed to give the thermodynamically stable imine bromine salt **VII**.^{S5g} **VII** can be hydrolyzed to give diethylamine **VIII**. **VIII** can be reacted with difluorobromoaryl ketone in the presence of visible light to give the key intermediate **IV**. The interaction of **IV** with water gives the final product **9a**. This stage of the reaction has been confirmed by our control experiments (Figure S6) and similar literature.^{S5f} *Therefore path c is more likely to be present in this reaction system*. In addition, the reaction for *N*-phenyltetrahydropyrrole can also be explained by halogen bonding.

Figure S5.

6.4 Control experiment:

To a Schlenk tube charged with a magnetic stirring bar, substrate **2a** (0.3 mmol, 88 mg) was added and the Schlenk tube was purged with N₂ for three times. Subsequently, anhydrous MeCN (1 ml), diethylamine (0.4 mmol, 41 uL) and H₂O (3 mmol,54 uL) were added in turn via syringes. The tightly sealed tube was then irradiated with a 10 W blue LEDs at room temperature for 48 h. The corresponding α -ketonamide **9a** was obtained in 68 % yield (53 mg) after purification through flash column chromatography on silica gel (Hexane/Ethyl acetate = 5/1).

This control experiment demonstrates that path c is the most likely mechanism:

Figure S6

7.Bromine radical trapping experiments with 1,1-diphenylethylene or TEMPO

Unfortunately, the bromine radical–TEMPO adduct was not detected, which might be a result of stability issues. However, when the reaction was carried out in the presence of 1,1-diphenylethylene with THF as the solvent, bromine radical-trapping adduct **10** was produced, evidencing the contribution of visible light in the C_{sp}^{3} –Br bond homolysis of difluorobromoaryl ketones (there may be halogen bonding facilitation, such as oxygen in tetrahydrofuran and

nitrogen in difluorobromoaryl ketones). No bromine radical quencher **10** was observed by adding organic bases such as triethylamine. In addition, when the bromine radical trapping experiment is carried out in DMA, the bromine radical quencher **10** was also not observed. The above experimental results indicate that organic bases can quench bromine radicals, which has been proved by our above experiments (Figure S5, path c), similarly, it has been reported in the literature that DMA may also quench bromine radicals. ^{S11}

3 eq.

58%

To a Schlenk tube charged with a magnetic stirring bar, **2f** (0.6 mmol, 167 mg) and 1,1-diphenylethylene (0.2 mmol, 35uL) were added and the Schlenk tube was purged with N₂ for three times. Subsequently, anhydrous THF (1 ml) was added. The tightly sealed tube was then irradiated with a 10 W blue LEDs at room temperature for 48 h. After purification through flash column chromatography on silica gel, the corresponding CF₂COAr-trapped product **6** and bromo-diphenylethylene **10** were obtained in 58% (44 mg) and 5% (2.6 mg) yield, respectively. The reaction was repeated 5 times and a total of 11 mg of compound **10** was collected, colorless oil, $R_f = 0.7$ (Hexane),

¹**HNMR** (400 MHz, CDCl₃): δ 7.44 – 7.34 (m, 3H), 7.30 (dd, *J* = 7.9, 1.8 Hz, 5H), 7.24 – 7.16 (m, 2H), 6.77 (s, 1H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): 146.9, 140.7, 139.1, 129.7, 128.5, 128.3, 128.1, 128.0, 127.6, 105.2 ppm;

ca. 5%

8. DFT calculation

Computational details: In this work, all DFT calculations were performed with Gaussian 16 program package.^{S12} All geometries were optimized by using B3LYP-D3(BJ) functional with Grimme's dispersion correction^{S13,S14} and 6-31G(d,p) basis set as well as vibrational frequency analysis at 298 K. The self-consistent reaction field (SCRF) and PCM^{S15} solvation model in N,N-dimethylacetamide solvent were adopted to evaluate the effect of solvent.

8.1 Modeled reaction conditions

8.2 Radical initiation step

Maxwell-Boltzmann distribution

Temperature:	298.15	Q _(Relat) :	1.012485

Index	ΔG (kcal/mol)	Q _{i(Relat)}	Percent
2b+DIPEA	0	1.0000	98.77%
complex-3	2.6	0.0124	1.23%
complex-1	5.8	0.0001	0.01%
complex-2	7	0.0000	0.00%

Both the EDAC pathway and the XB pathway are calibrated with the energy of intermediate A as the zero point to facilitate the comparison of the two pathways.

8.3 Path A: EDAC process

Reaction Coordinate

8.4 Path B: Halogen bond assisted C_{sp}^{3} -Br bond homolysis process

8.5 Energy of radical intermediate C in the E/Z configuration

Furthermore, we found from potential energy surface scans (shown below) that although the energy difference between E-C and Z-C is small, the process of flipping E-C to form Z-C is required to overcome an energy barrier. The energy required to overcome the flip results in a product E/Z conformation ratio.

8.6 Coordination

2b

Zero-point correction	on=		0.112799 (Hartree/Partic	le)
Thermal correction	to Energy=		0.123214	
Thermal correction	to Enthalpy=		0.124158	
Thermal correction	to Gibbs Free Ene	rgy=	0.074722	
Sum of electronic an	nd thermal Free Er	nergies=	-3154.433320	
С	-2.86217900	0.84038900	-1.18941200	
С	-1.84909600	0.80871600	-0.23557300	
С	-1.22018400	2.00344000	0.15713000	
С	-1.62334900	3.22045000	-0.42071200	
С	-2.63293900	3.24464200	-1.37442200	
С	-3.25429300	2.05302400	-1.76023300	
Н	-3.34671500	-0.08320900	-1.48725900	
Н	-1.56378000	-0.13872900	0.20036800	
Н	-1.13022100	4.13325800	-0.10734000	
Н	-2.93737500	4.18679600	-1.81763700	
Н	-4.04414200	2.07020900	-2.50432400	
С	-0.13888400	2.07202800	1.16244900	
С	0.41987500	0.75989200	1.77648200	
F	0.68468500	-0.17146200	0.83899600	
F	1.54609300	1.00298300	2.45279700	
0	0.36479900	3.10881900	1.55336400	
Br	-0.91464400	0.02463200	3.04559400	

E-1a

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=

0.158449 (Hartree/Particle) 0.168622 0.169566 0.121626

tronic and thermal Free Ene	ergies=	-485.607682
0.25520200	-3.56464000	-3.53183700
0.66504400	-2.26282200	-3.24893300
0.12270200	-1.54909500	-2.16569700
-0.85101300	-2.18439000	-1.37209900
-1.26154600	-3.48327900	-1.65407800
-0.71063500	-4.18030700	-2.73469700
0.68862000	-4.09691700	-4.37292400
1.41698300	-1.78520100	-3.87109700
-1.28999300	-1.65707000	-0.53158800
-2.01456300	-3.95640100	-1.03122500
-1.03367400	-5.19367200	-2.95156100
0.59296400	-0.18156200	-1.91378600
0.22807000	0.65105800	-0.91902800
1.32842100	0.17964700	-2.63247300
-0.50176200	0.31003100	-0.18511900
0.80840500	2.08543600	-0.76237600
1.71261300	2.53329400	-1.69521100
2.03601400	3.43021000	-1.54522200
0.37890400	2.82735400	0.31112000
0.76886700	3.70898600	0.37168400
	tronic and thermal Free End 0.25520200 0.66504400 0.12270200 -0.85101300 -1.26154600 -0.71063500 0.68862000 1.41698300 -1.28999300 -2.01456300 -1.03367400 0.59296400 0.22807000 1.32842100 -0.50176200 0.80840500 1.71261300 2.03601400 0.37890400 0.76886700	tronic and thermal Free Energies= 0.25520200 -3.56464000 0.66504400 -2.26282200 0.12270200 -1.54909500 -0.85101300 -2.18439000 -1.26154600 -3.48327900 -0.71063500 -4.18030700 0.68862000 -4.09691700 1.41698300 -1.78520100 -1.28999300 -1.65707000 -2.01456300 -3.95640100 -1.03367400 -5.19367200 0.59296400 -0.18156200 0.22807000 0.65105800 1.32842100 0.17964700 -0.50176200 0.31003100 0.80840500 2.08543600 1.71261300 2.53329400 2.03601400 3.43021000 0.37890400 2.82735400 0.76886700 3.70898600

DIPEA

Zero-point correction=			0.262213 (Hartree/Particle)
Thermal correction to	Energy=		0.274248	
Thermal correction to	Enthalpy=		0.275192	
Thermal correction to	Gibbs Free Energ	y=	0.225516	
Sum of electronic and the	nermal Free Energ	gies=	-370.886353	
Ν	2.66969100	0.15457900	-0.51673200	
С	2.55150400	1.48511900	0.10210100	
С	3.69796700	1.73471900	1.08907800	
С	1.18942200	1.79829300	0.74824600	
Н	2.68525300	2.19791600	-0.71889500	
Н	4.66131300	1.54979600	0.60591800	
Н	3.67690300	2.76907100	1.44728500	

Η	3.62715700	1.08425000	1.96726500
Н	1.14759500	2.84936400	1.05288200
Н	0.36563700	1.61946000	0.05061500
Н	1.02135600	1.18861800	1.64181100
С	2.39174100	-1.00286900	0.35331900
С	3.36486400	-2.14315700	0.02520600
С	0.93866700	-1.51785700	0.34547200
Н	2.61196100	-0.67523200	1.37430100
Н	4.39863600	-1.79812800	0.11222700
Н	3.21823700	-2.99183800	0.70190500
Н	3.21475200	-2.50652800	-0.99765500
Н	0.22318200	-0.72438000	0.56934600
Н	0.67154300	-1.95095300	-0.62366900
Н	0.81873000	-2.30436400	1.09788000
С	2.10937700	0.07497000	-1.86503500
С	3.01845700	0.71174400	-2.91848500
Н	1.10114800	0.52200700	-1.92828700
Н	1.98514400	-0.98060300	-2.12071800
Н	2.57920400	0.60842900	-3.91651900
Н	3.17324100	1.77977000	-2.73675600
Н	3.99870300	0.22524500	-2.91569800

DIPEA^{+.}

Zero-point correction= 0.263161 (Hartree/Particle) Thermal correction to Energy= 0.275402 Thermal correction to Enthalpy= 0.276346 Thermal correction to Gibbs Free Energy= 0.225574 Sum of electronic and thermal Free Energies= -370.706413 N 2.20191000 0.22885000 -0.50072600

С	2.33535200	1.56535000	0.09111600
С	3.70286200	1.71620700	0.77803000
С	1.16147000	1.83578400	1.04856800
Н	2.27544400	2.26662000	-0.74312400
Н	4.52055800	1.50655100	0.08598100
Н	3.79098500	2.75100400	1.11656400
Н	3.79482100	1.06536100	1.65014000
Н	1.25120200	2.86649100	1.39908900
Н	0.20249700	1.72503400	0.53865300
Н	1.18679900	1.17661400	1.91891200
С	2.23031900	-0.96948800	0.34417300
С	3.37645200	-1.90060300	-0.08272100
С	0.85965900	-1.67079800	0.30732200
Η	2.41690800	-0.62146400	1.35988400
Н	4.34046600	-1.39070500	-0.03597500
Η	3.39603000	-2.74289000	0.61245300
Η	3.22567600	-2.29588300	-1.08966000
Η	0.05701100	-0.98818900	0.59153600
Η	0.64365900	-2.08739800	-0.67861000
Η	0.89041600	-2.49210900	1.02681800
С	2.03743500	0.11742900	-1.94092100
С	3.33258600	0.48319400	-2.69137000
Н	1.23490500	0.80676800	-2.22637900
Η	1.72801300	-0.89793300	-2.18161200
Η	3.13345200	0.38678800	-3.76062600
Н	3.64036300	1.51086500	-2.48981000
Н	4.14413700	-0.19400900	-2.42129700

Br-

Zero-point correction= 0.000000 (Hartree/Particle) Thermal correction to Energy= 0.001416Thermal correction to Enthalpy= 0.002360Thermal correction to Gibbs Free Energy= -0.016176Sum of electronic and thermal Free Energies= -2571.886830Br 1.57176200 0.50007600 -1.51282400

Zero-point corr	ection=		0.265444 (Hartree/Particle)
Thermal corre	ction to Energy=		0.279022
Thermal correction to Enthalpy=		0.279967	
Thermal correction to Gibbs Free Energy=		0.225675	
Sum of electron	nic and thermal Free Ene	ergies=	-2942.602919
Ν	-2.21586500	-3.51252000	-2.53501400
С	-2.19435800	-4.96103200	-2.87018600
С	-3.05582000	-5.29865700	-4.10141800
С	-2.53364200	-5.85082800	-1.67771400
Н	-1.15111300	-5.14998600	-3.13569600
Н	-4.11199100	-5.07219500	-3.94407900
Н	-2.71263700	-4.77374800	-4.99429300
Н	-2.96336900	-6.37108900	-4.29347500
Н	-3.58247900	-5.77816700	-1.37955900
Н	-2.34394700	-6.88852300	-1.96346600
Н	-1.89144700	-5.60314200	-0.83033000
С	-3.15305500	-2.99624600	-1.51270200
С	-4.62564600	-3.09045800	-1.96063300
С	-2.79464800	-1.58156300	-1.05941000
Н	-3.02492100	-3.65616200	-0.65405000
Н	-4.92506600	-4.11711500	-2.17428200
Н	-5.25189400	-2.72432200	-1.14240800
Н	-4.82512600	-2.47896800	-2.84184200
Н	-1.75177600	-1.54562200	-0.73995400
Н	-2.96498500	-0.83322200	-1.83696500
Н	-3.43145500	-1.32436800	-0.20923400
С	-1.67064200	-2.60307400	-3.55400700
С	-2.69678700	-1.95764100	-4.49628800
Н	-0.94501100	-3.18327200	-4.12622300
Н	-1.11320800	-1.82454900	-3.03411500
Н	-2.14470900	-1.40625900	-5.26293700
Н	-3.32990100	-2.69211600	-4.99534800
Н	-3.33898700	-1.24562400	-3.97560600
Br	0.09781400	-3.59000900	-1.00637000

Zero-point correct	ction=		0.375600 (Hartree/Particle)
Thermal correct	ion to Energy=		0.400705
Thermal correct	ion to Enthalpy=		0.401649
Thermal correct	ion to Gibbs Free Ene	ergy=	0.317320
Sum of electronic	c and thermal Free End	ergies=	-3525.273347
С	2.03620300	2.01661700	-0.90303600
С	1.67011900	0.68061800	-1.06196800
С	1.51701700	-0.13989500	0.06584300
С	1.71532300	0.39781500	1.34637400
С	2.09870400	1.72768400	1.49826800
С	2.26275600	2.54007300	0.37209700
Н	2.14038100	2.65150500	-1.77719300
Н	1.44405600	0.28527700	-2.04504900
Н	1.57619600	-0.24375200	2.20953400
Н	2.26543400	2.13309100	2.49107300
Н	2.55637600	3.57835700	0.48946500
С	1.12625900	-1.57382400	-0.02263400
С	1.51829700	-2.32772700	-1.16593900
F	2.44193400	-1.95448900	-2.02835300
0	0.47796400	-2.14952900	0.88015000
Ν	-2.14290300	0.87327300	-0.04771200
С	-2.44175300	-0.54162100	-0.24404000
С	-3.66035100	-0.71671600	-1.17881500
С	-2.56833900	-1.35313100	1.03804700
Н	-1.58771100	-0.92351700	-0.83988800
Н	-4.56887900	-0.30675200	-0.73096800
Н	-3.48393500	-0.25574600	-2.15024300
Н	-3.79485400	-1.78800500	-1.34196000
Н	-3.43281400	-1.06680700	1.64186900
Н	-2.69840600	-2.39832300	0.74881700
Н	-1.65581200	-1.29772200	1.63355000
С	-2.31625600	1.52406900	1.25852900

A

С	-3.81699800	1.82602800	1.48124000
С	-1.45540500	2.77103700	1.43870300
Η	-2.01040600	0.78400300	2.00029300
Η	-4.43434400	0.93283900	1.37810000
Η	-3.93579800	2.21097100	2.49689900
Η	-4.17124800	2.58085500	0.77720700
Η	-1.57873600	3.11250400	2.46914800
Η	-0.39823700	2.55469800	1.28063500
Η	-1.75961200	3.58831900	0.78110800
С	-1.71032100	1.63178400	-1.21609200
С	-2.78767300	2.57219200	-1.78455100
Η	-1.39647400	0.90589100	-1.97097800
Η	-0.83456200	2.21424100	-0.92116400
Η	-2.38195600	3.03019900	-2.68993600
Η	-3.69531100	2.02757400	-2.04850100
Η	-3.04666800	3.37045400	-1.08729600
Br	-0.61551400	-1.35818300	-3.08783400
F	1.22795900	-3.60443200	-1.26889700

Е

Zero-point correct	tion=		0.376817 (Hartree	/Particle)
Thermal correcti	on to Energy=		0.401632	
Thermal correcti	on to Enthalpy=		0.402576	
Thermal correction to Gibbs Free Energy=		0.319510		
Sum of electronic and thermal Free Energies=		-3525.276444		
С	2.35034600	-1.40756900	-3.27681600	
С	2.15179200	-1.86674400	-1.97581800	
С	1.57537200	-1.02033500	-1.01636900	
С	1.20346900	0.28246100	-1.37998000	
С	1.41298300	0.73965600	-2.67771600	
С	1.98583500	-0.10675800	-3.63100400	
Н	2.78063000	-2.07206700	-4.01930600	
Н	2.38105700	-2.89376200	-1.72676700	
Н	0.73848600	0.91760200	-0.63446200	
Н	1.12612200	1.75080300	-2.94828900	
----	-------------	-------------	-------------	
Н	2.14206300	0.24428300	-4.64617500	
С	1.21700500	-1.46412400	0.35919000	
С	1.91646700	-2.54386800	0.96636500	
F	3.01761000	-3.10020600	0.50752800	
0	0.28529800	-0.93160800	1.00369800	
Ν	-2.03795700	-3.32331600	-1.86996700	
С	-1.89437400	-4.12670500	-3.11082200	
С	-2.61870500	-3.47926000	-4.30581300	
С	-2.29250700	-5.58790700	-2.92823700	
Н	-0.82070000	-4.09604600	-3.31426400	
Н	-3.69485200	-3.39775800	-4.14009400	
Н	-2.22063900	-2.48969900	-4.53463100	
Н	-2.45559000	-4.11270700	-5.18175500	
Н	-3.36649200	-5.71786400	-2.77362900	
Н	-2.02314100	-6.12770800	-3.83949900	
Н	-1.74320100	-6.02743800	-2.09362900	
С	-3.04691800	-3.67264900	-0.84884900	
С	-4.48226000	-3.39953100	-1.34292900	
С	-2.77015600	-2.99189500	0.49080700	
Н	-2.94258800	-4.74802300	-0.70203900	
Н	-4.71659200	-3.95732300	-2.25050300	
Н	-5.17570400	-3.72333800	-0.56209600	
Н	-4.65155000	-2.33837900	-1.53179800	
Н	-1.74370100	-3.18961700	0.80438600	
Н	-2.93753700	-1.91286600	0.45721300	
Н	-3.45431300	-3.41075000	1.23309000	
С	-1.45547900	-1.97774900	-1.89153500	
С	-2.42507800	-0.83250100	-2.21914500	
Н	-0.63937100	-2.00117200	-2.61333200	
Н	-1.01811500	-1.79255200	-0.91400600	
Н	-1.82850000	0.08055000	-2.29903400	
Н	-2.95417100	-0.98000900	-3.16119300	
Н	-3.16068800	-0.68162400	-1.42742700	
Br	0.17747400	-4.57012200	-0.62107400	
F	1.59906900	-2.98030700	2.16172500	

Zero-point correct	ion=		0.110378 (Hartree/Pa	article)
Thermal correcti	on to Energy=		0.119533	
Thermal correcti	on to Enthalpy=		0.120477	
Thermal correcti	on to Gibbs Free Ene	ergy=	0.074279	
Sum of electronic	and thermal Free End	ergies=	-582.672312	
С	-0.79599500	-1.33859600	-3.89124700	
С	-0.20344600	-0.87194100	-2.71913600	
С	-0.91046200	-0.92033300	-1.50698200	
С	-2.21679400	-1.43518100	-1.49467000	
С	-2.80006600	-1.90836400	-2.66515800	
С	-2.08988400	-1.86155500	-3.86794700	
Н	-0.24535700	-1.28983800	-4.82501200	
Н	0.79600100	-0.45926000	-2.76059400	
Н	-2.75728200	-1.45618000	-0.55535100	
Н	-3.80702600	-2.31237500	-2.64212400	
Н	-2.54436700	-2.22812100	-4.78287800	
С	-0.38259700	-0.41643000	-0.20811800	
С	1.02372300	-0.25295600	-0.00478100	
F	1.97797700	-0.57787200	-0.85043400	
0	-1.12806500	-0.14542700	0.75643400	
F	1.49858200	0.20584900	1.12726900	

Е-С

Zero-point co	prrection=		0.272509 (Hartree/Particle)
Thermal cor	rection to Energy=		0.291811
Thermal cor	rection to Enthalpy=		0.292755
Thermal cor	rection to Gibbs Free Ener	rgy=	0.221949
Sum of electr	onic and thermal Free Ene	ergies=	-1068.305751
С	-1.38362600	-0.88214200	3.30289900
С	-0.65375500	-0.49637300	2.18191800
С	0.68439600	-0.08365400	2.32408300
С	1.27067500	-0.07179700	3.60413800
С	0.54077500	-0.47043100	4.71567600
С	-0.79002800	-0.87451800	4.56646200
Η	-2.41644900	-1.19311900	3.18866100
Н	-1.12432200	-0.51931200	1.20910400
Η	2.29913900	0.25556400	3.70125400
Н	1.00142800	-0.46357900	5.69775900
Н	-1.36323800	-1.18159300	5.43535100
С	1.51771100	0.39416100	1.20373000
С	0.98405700	0.39652500	-0.24956700
F	0.26258700	-0.75427600	-0.47924200
0	2.63537800	0.87411900	1.37459600
F	2.06864100	0.31789000	-1.09110200
С	-3.48458400	2.38639600	-3.97002700
С	-2.27114400	1.84222700	-3.58606400
С	-1.77120500	2.00864000	-2.25977600
С	-2.57628900	2.75720900	-1.34926200
С	-3.78932000	3.30160000	-1.75009500
С	-4.25509500	3.12398500	-3.05800000
Н	-3.83988300	2.24298800	-4.98588500
Н	-1.67734600	1.27641800	-4.29785400
Н	-2.25024300	2.89766400	-0.32396500
Н	-4.38155700	3.86650100	-1.03683300
Н	-5.20408300	3.55170800	-3.36359700
С	-0.51921600	1.45354300	-1.91212500
С	0.16541000	1.63519300	-0.59165200

Η	0.03150600	0.91864200	-2.67945600
Η	-0.57760100	1.75815800	0.20726600
В	1.03556800	3.00871800	-0.62581000
0	0.45450700	4.15447700	-1.08875600
Н	-0.44171100	4.02465700	-1.42567500
0	2.32549500	3.12356900	-0.22152500
Н	2.70161100	2.30954700	0.15659700

Z-C

Zero-point correction	1=		0.272755 (Hartree/Particle	e)
Thermal correction	to Energy=		0.291960	
Thermal correction	to Enthalpy=		0.292904	
Thermal correction	to Gibbs Free Ener	rgy=	0.222693	
Sum of electronic and	d thermal Free Ene	ergies=	-1068.303680	
С	4.88586500	2.52381500	0.80182900	
С	3.49849900	2.62840700	0.74998000	
С	2.74922700	2.61969900	1.94122400	
С	3.41742800	2.50970000	3.17571100	
С	4.80207500	2.42018600	3.22048800	
С	5.53905300	2.42487100	2.03160200	
Н	5.45791300	2.52375100	-0.11974300	
Н	3.00833600	2.71461300	-0.20939200	
Н	2.82887600	2.49614800	4.08551100	
Н	5.30958900	2.34222200	4.17607300	
Н	6.62123100	2.34995200	2.06508000	
С	1.27465100	2.67187400	1.98249900	
С	0.43522800	2.85324900	0.69482200	
F	1.06500100	3.73110500	-0.15667200	
0	0.64329900	2.50281500	3.02322100	
F	-0.73277100	3.47960100	1.06189300	
С	-2.97556100	2.56612300	-3.85255300	
С	-1.73967900	2.21608500	-3.33425400	

С	-1.52934900	2.10717600	-1.92770000
С	-2.64062800	2.38297000	-1.07837400
С	-3.87361700	2.72952300	-1.60973500
С	-4.05539700	2.82335100	-2.99588700
Н	-3.10720900	2.63998400	-4.92769500
Н	-0.90703400	2.01344300	-4.00163500
Н	-2.51863700	2.34504600	-0.00316600
Н	-4.70416100	2.93439000	-0.94117600
Н	-5.02354900	3.09607900	-3.40287300
С	-0.25404000	1.71802400	-1.45182900
С	0.13293800	1.52180100	-0.00897900
Н	0.52354400	1.57025300	-2.19477900
Η	1.08351000	0.97072700	-0.00935000
В	-0.90240300	0.57287800	0.79437400
0	-1.42763700	-0.51907600	0.16245000
Η	-1.17249200	-0.55768000	-0.76811800
0	-1.29184400	0.75510900	2.08207400
Н	-0.86446200	1.51150100	2.52200700

D

Zero-point correcti	on=		0.274796 (Hartre	e/Particle)
Thermal correction	on to Energy=		0.294010	
Thermal correction	on to Enthalpy=		0.294954	
Thermal correction	on to Gibbs Free Ene	rgy=	0.226874	
Sum of electronic a	and thermal Free Ene	ergies=	-1068.125901	
С	-1.13128800	-1.20952800	-3.95117800	
С	-0.16029800	-1.10260100	-2.95765200	
С	-0.53884900	-1.16559600	-1.60293800	
С	-1.88710800	-1.36032100	-1.25830700	
С	-2.85278000	-1.41865000	-2.25484800	
С	-2.47587800	-1.33621300	-3.60234200	
Н	-0.83895800	-1.17227500	-4.99454100	

Η	0.88131000	-0.98294800	-3.22671900
Н	-2.16474000	-1.41486100	-0.21181600
Н	-3.89836100	-1.52786600	-1.98929200
Н	-3.23384800	-1.38075800	-4.37683900
С	0.41670800	-0.94493000	-0.48528000
С	1.29254400	0.33871200	-0.59419800
F	2.10622000	0.28302600	-1.69549400
0	0.42166600	-1.57471300	0.55009100
F	2.10642300	0.40271400	0.49965400
С	-3.51368900	2.34467000	-3.69379200
С	-2.18824500	2.03965400	-3.45018200
С	-1.70769400	1.93263500	-2.10846900
С	-2.62222800	2.11129900	-1.02560700
С	-3.94138600	2.41518900	-1.28466600
С	-4.38487800	2.53546600	-2.61399600
Η	-3.87797200	2.43162600	-4.71019600
Н	-1.49550500	1.88788900	-4.26987300
Н	-2.28610100	1.99995000	-0.00235400
Н	-4.63972100	2.55313000	-0.46802900
Н	-5.42634700	2.77172300	-2.80506500
С	-0.35967100	1.61325400	-1.92372300
С	0.39091500	1.58145200	-0.66399700
Н	0.23201100	1.47702500	-2.82414100
Η	-0.26601800	1.55803200	0.21211500
В	1.22840600	3.00552600	-0.53611300
0	0.66367000	4.17746900	-0.90810800
Н	-0.23170600	4.13750900	-1.26268400
0	2.47525100	3.05023800	-0.02544800
Н	2.81534600	2.20158400	0.28604300

TS1

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= 0.269987 (Hartree/Particle) 0.289824 0.290768

Thermal con	rrection to Gibbs Free Ene	rgy=	0.219732	
Sum of electr	ronic and thermal Free Ene	ergies=	-1068.268745	
С	-0.77730700	-1.40186500	-3.87614200	
С	-0.16091000	-1.01533200	-2.68773100	
С	-0.88492700	-1.02925200	-1.48381900	
С	-2.22644800	-1.44694300	-1.49569100	
С	-2.83570300	-1.83223900	-2.68200800	
С	-2.11230300	-1.80653300	-3.87832800	
Н	-0.21337100	-1.38059100	-4.80295400	
Н	0.86999200	-0.69249300	-2.70952700	
Н	-2.77721000	-1.43527200	-0.56316900	
Н	-3.87590300	-2.14091100	-2.68101500	
Н	-2.58975300	-2.09850700	-4.80838300	
С	-0.35070300	-0.55565400	-0.18336900	
С	0.97198000	0.08558400	-0.11904600	
F	1.98900000	-0.34346300	-0.87939300	
0	-1.03466900	-0.53031900	0.84737600	
F	1.42318000	0.35521200	1.11246900	
С	-3.82214200	1.68601200	-3.20663000	
С	-2.44348300	1.85644400	-3.16826600	
С	-1.76552100	2.01978000	-1.94235100	
С	-2.52608500	2.02063800	-0.75322600	
С	-3.90410600	1.85131000	-0.79510700	
С	-4.55903200	1.68097400	-2.01953300	
Н	-4.32345800	1.54996800	-4.15956700	
Н	-1.86847700	1.84197100	-4.08910300	
Н	-2.03334200	2.13344800	0.20542100	
Н	-4.47318800	1.84745500	0.12919700	
Н	-5.63534500	1.54385200	-2.04647200	
С	-0.32159800	2.13870400	-1.95356000	
С	0.52351400	2.19321100	-0.86362400	
Н	0.11799400	2.09900200	-2.94975100	
Н	0.06171500	2.34056900	0.11168500	
В	2.04911000	2.55660800	-1.00391000	
0	2.64989000	2.84852600	-2.19821300	
Н	2.03524500	2.88051200	-2.93969800	
0	2.88379900	2.59797300	0.07904000	
Н	2.45106300	2.30051800	0.88799800	

complex-1

Zero-point correct	ion=		0.376748 (Hartree/Particle)
Thermal correction	on to Energy=		0.401006
Thermal correction	on to Enthalpy=		0.401950
Thermal correction	on to Gibbs Free Ene	rgy=	0.321194
Sum of electronic	and thermal Free End	ergies=	-3525.310502
С	2.04678500	1.84152600	-0.64597200
С	1.75413100	0.55998300	-1.10223500
С	1.48856600	-0.46710400	-0.18056900
С	1.52405000	-0.18829800	1.19689500
С	1.82031400	1.09192000	1.64642800
С	2.08066400	2.11019500	0.72398100
Н	2.24390500	2.63280400	-1.36101000
Н	1.71587700	0.37281100	-2.16645900
Н	1.31758800	-0.99072500	1.89500800
Н	1.84712700	1.30016600	2.71060900
Н	2.30934300	3.11192900	1.07324800
С	1.14466700	-1.84901200	-0.57101900
С	1.21243000	-2.26126900	-2.06761700
F	2.35432600	-1.85215900	-2.65512300
0	0.80755400	-2.71713000	0.21337400
Ν	-1.92049100	1.11547800	0.13940400
С	-2.12712100	-0.33428300	0.07442100
С	-3.34643500	-0.81408400	-0.73926800
С	-2.10380800	-0.99278200	1.45548400
Н	-1.25511500	-0.72371000	-0.46141000
Н	-4.29037300	-0.46196100	-0.31374200
Н	-3.28728900	-0.46766400	-1.77428900
Н	-3.37071900	-1.90956800	-0.76369500
Н	-3.00489800	-0.77577000	2.03811200
Н	-2.04128000	-2.07776600	1.33391300
Н	-1.23222100	-0.66556300	2.02868600
С	-2.50699100	1.88964900	1.23291400

С	-4.04385300	2.03903200	1.21629300
С	-1.82947800	3.26003000	1.36041700
Н	-2.26334900	1.34967500	2.15455000
Н	-4.53415300	1.06234100	1.22100600
Η	-4.37907000	2.58281300	2.10736100
Η	-4.39105900	2.58653700	0.33667200
Η	-2.15980300	3.74964200	2.28135400
Н	-0.74194800	3.14956700	1.39818100
Η	-2.07875600	3.92525700	0.52808500
С	-1.64823000	1.76931100	-1.13367000
С	-2.82254400	2.38835700	-1.91487400
Η	-1.16562100	1.02217500	-1.77014600
Н	-0.89488600	2.55236000	-0.98198700
Η	-2.47230800	2.72603200	-2.89749400
Η	-3.63409600	1.67338200	-2.07083000
Н	-3.23771600	3.25902400	-1.40017100
Br	-0.32191700	-1.46228200	-3.04118600
F	1.13190400	-3.58906600	-2.18972800

complex-2

Zero-point correc	tion=		0.377617 (Hartree	Particle)
Thermal correct	ion to Energy=		0.401428	
Thermal correct	ion to Enthalpy=		0.402372	
Thermal correct	ion to Gibbs Free Ener	·gy=	0.324107	
Sum of electronic	and thermal Free Ene	rgies=	-3525.308495	
С	3.92573000	0.61989600	-1.39854800	
С	3.05184900	-0.30126300	-0.82739100	
С	2.93298800	-0.37999200	0.57047500	
С	3.70559900	0.47081000	1.37994100	
С	4.56724200	1.39558000	0.80365500	
С	4.67921600	1.47123500	-0.58850000	

Η	4.01538200	0.67498000	-2.47809100
Н	2.47875600	-0.95424200	-1.47080700
Н	3.61032900	0.39514100	2.45616800
Н	5.15251400	2.05630200	1.43429700
Н	5.35366500	2.19177300	-1.03970400
С	2.04748600	-1.33786800	1.26137000
С	1.06696800	-2.21194200	0.43421900
F	0.42313200	-1.53294400	-0.53717200
0	2.05681900	-1.54097200	2.46219600
Ν	-0.01460300	1.17696800	1.55324300
С	-0.19291100	1.66833100	0.17463500
С	0.94528900	2.59231700	-0.26986100
С	-1.55545600	2.31833500	-0.14518700
Н	-0.12777800	0.77342200	-0.45696600
Н	0.88832200	3.57705900	0.20368100
Н	1.92179600	2.15989300	-0.05363900
Н	0.87610800	2.74566600	-1.35079300
Н	-1.73689700	3.21014800	0.46061400
Н	-1.58275500	2.61485500	-1.19982200
Н	-2.38052500	1.62109100	0.01865500
С	0.57231500	2.07690700	2.55534400
С	0.93728900	1.32223400	3.83978000
С	-0.24072100	3.34379500	2.89830300
Н	1.52147100	2.42023500	2.12861200
Н	1.50635800	0.41795400	3.61907900
Н	1.54686800	1.97039500	4.47667100
Н	0.05256800	1.03780200	4.41744400
Н	0.31639200	3.95673600	3.61631700
Н	-0.42421900	3.95846100	2.01449400
Н	-1.20708000	3.09795400	3.34500600
С	-0.99690900	0.18870200	1.99160500
С	-2.27773500	0.66455000	2.70214000
Н	-0.49878100	-0.53245700	2.65010300
Н	-1.28412300	-0.37737900	1.09974200
Н	-2.94661400	-0.19070500	2.85321600
Н	-2.06111500	1.08583200	3.68692300
Н	-2.81752800	1.41953000	2.12690800
F	0.14751800	-2.76539900	1.23020000
Br	2.10556800	-3.67432400	-0.41848300

complex-3

Zero-point correct	ion=		0.377686 (Hartree/Particle)
Thermal correction	on to Energy=		0.401543
Thermal correction	on to Enthalpy=		0.402487
Thermal correction	on to Gibbs Free Ene	ergy=	0.321895
Sum of electronic	and thermal Free End	ergies=	-3525.315572
С	2.07081400	0.60391200	-1.85918800
С	2.00898500	-0.67868400	-1.32156400
С	2.04756500	-0.85694400	0.07261400
С	2.15027600	0.26729800	0.90958200
С	2.21523900	1.54508100	0.36716200
С	2.17463500	1.71517600	-1.01988300
Н	2.03672100	0.73595800	-2.93540800
Н	1.91930100	-1.52728500	-1.98520800
Н	2.17668300	0.11457200	1.98234900
Н	2.29594000	2.40777500	1.02007100
Н	2.22273600	2.71245000	-1.44541200
С	1.97277800	-2.18127900	0.73396700
С	1.92514100	-3.45464500	-0.13404100
F	2.90166400	-3.45612900	-1.07732300
0	1.92624900	-2.32704400	1.94380800
Ν	-2.16654400	-3.51532000	-2.49164400
С	-2.19378200	-4.94353800	-2.87755100
С	-3.08217200	-5.30776200	-4.08150400
С	-2.49869100	-5.85270600	-1.68324800
Н	-1.16017800	-5.16502500	-3.17885300
Н	-4.13675800	-5.08808200	-3.89908600
Н	-2.77214600	-4.77505600	-4.98314900
Н	-2.99183300	-6.37967400	-4.28796100
Н	-3.54132300	-5.78170200	-1.36029700
Н	-2.31340900	-6.89171600	-1.96940100

Н	-1.85171400	-5.61192200	-0.83613600
С	-3.16584200	-3.01260900	-1.52856200
С	-4.63608400	-3.06630100	-1.98604500
С	-2.80249500	-1.60526200	-1.03826700
Н	-3.08587600	-3.66594700	-0.65350100
Н	-4.95221400	-4.08797700	-2.20626600
Н	-5.28097400	-2.68806500	-1.18525300
Н	-4.81148700	-2.45740900	-2.87550100
Н	-1.76912400	-1.57514600	-0.68762200
Н	-2.93017400	-0.84630500	-1.81506200
Н	-3.45719400	-1.33611600	-0.20472700
С	-1.67613800	-2.60461500	-3.53042600
С	-2.68302800	-1.96483700	-4.49919500
Н	-0.93821600	-3.17220800	-4.10748700
Н	-1.11287400	-1.79901800	-3.04531600
Н	-2.13513100	-1.41565400	-5.27292700
Н	-3.31628400	-2.70416500	-4.99317200
Н	-3.33476000	-1.24941500	-3.99201400
Br	0.14977300	-3.54692600	-1.03743200
F	2.09214300	-4.54823600	0.63008000

TS2

Zero-point correction= 0.271776 (Hartree/Particle)

Thermal correction to Energy= 0.293627

Thermal correction to Enthalpy= 0.294571

Thermal correction to Gibbs Free Energy= 0.217335

|--|

С	-0.91450200	-1.78092000	-4.05921600
С	-0.07506100	-1.35004500	-3.03446500
С	-0.49769100	-1.44285300	-1.69636900
С	-1.76138600	-1.98664300	-1.40660800
С	-2.60072500	-2.39828400	-2.43520100
С	-2.17912400	-2.29315200	-3.76388000
Н	-0.57996400	-1.71472000	-5.08887400

Н	0.90612100	-0.96254400	-3.27250000
Н	-2.07375300	-2.05985000	-0.37113800
Н	-3.58249800	-2.79824900	-2.20498900
Н	-2.83465300	-2.61341400	-4.56716100
С	0.30933900	-0.98580100	-0.53411800
С	1.17464700	0.29886900	-0.67047600
F	1.98219200	0.24957100	-1.77992000
0	0.19707300	-1.47036500	0.57734200
F	2.01466100	0.34788300	0.41238000
С	-3.62290300	2.73230400	-3.54895000
С	-2.36431200	2.19174700	-3.34836200
С	-1.76181900	2.23632800	-2.06531800
С	-2.45876700	2.84403600	-0.99038400
С	-3.71159900	3.39484400	-1.20491500
С	-4.29365500	3.33670000	-2.47818100
Н	-4.08546400	2.69221400	-4.52841200
Н	-1.82582400	1.72571000	-4.16674000
Н	-2.00632600	2.89167700	-0.00820100
Н	-4.24515300	3.86436400	-0.38643500
Н	-5.27861700	3.76382400	-2.63567000
С	-0.48823100	1.63089000	-1.91124800
С	0.28130800	1.53467400	-0.70291600
Н	-0.06684600	1.18632000	-2.80238100
Н	-0.31990100	1.55759600	0.20848600
В	1.12651800	3.06962800	-0.58067300
0	0.28917800	4.13486200	-0.27632100
Н	-0.19247000	4.44923600	-1.05000700
0	2.31601500	3.02828100	0.10145500
Н	2.72569200	2.15664900	0.13421500
Br	1.52193600	3.43175200	-2.91511300

TS3

Zero-point correction= 0.537010 (Hartree/Particle)

Thermal correction to	Energy= 0.571	004	
Thermal correction to	Enthalpy= 0.57	'1948	
Thermal correction to	Gibbs Free Ene	ergy= 0.469377	
Sum of electronic and	thermal Free E	nergies= -4010.8	95555
С	-0.08497100	-3.24335900	-2.30751000
С	-0.02002600	-2.35687700	-1.23677300
С	-1.13342200	-2.19789500	-0.38776600
С	-2.30090000	-2.94866900	-0.63403100
С	-2.35107000	-3.84256700	-1.69388400
С	-1.24266300	-3.98948300	-2.53479200
Н	0.77229700	-3.35441300	-2.96234600
Н	0.88787600	-1.79528200	-1.07275800
Н	-3.15417600	-2.81320800	0.01974000
Н	-3.25068400	-4.42165400	-1.87188400
Н	-1.28356500	-4.68403600	-3.36756000
С	-1.19033100	-1.23856300	0.72778900
С	0.05016900	-0.43211400	1.21123800
F	1.19992200	-1.14962200	0.96820700
0	-2.23619200	-0.99319400	1.32578600
F	-0.04771900	-0.34631600	2.56916300
С	0.38397500	3.12000800	-3.84016800
С	-0.03906700	2.12752100	-2.97326300
С	0.41469900	2.11183500	-1.62674100
С	1.30738800	3.12377700	-1.18150800
С	1.71911400	4.11327600	-2.05356500
С	1.25969600	4.11160900	-3.37953600
Н	0.04004100	3.13238700	-4.86775600
Н	-0.72056500	1.35385200	-3.31110500
Н	1.67412900	3.10971500	-0.16493700
Н	2.40114700	4.88545300	-1.71671400
Н	1.59215200	4.88884900	-4.05973900
С	-0.04842800	1.08697200	-0.77558600
С	0.19608000	0.96803000	0.62168200
Н	-0.72999100	0.37608200	-1.23919200
Н	1.13819300	1.39925900	0.97170100
В	-0.94721100	2.13195500	1.32121800
0	-2.08081700	1.65273100	1.85288200
Н	-2.17052800	0.67969200	1.91372500
0	-0.83039900	3.42638400	0.90471400
Н	-0.09492200	3.83722000	1.39215200
Ν	4.05499700	1.24915400	0.61602600
С	4.50294600	2.57393000	0.16161900
С	6.01460000	2.71853100	-0.10546900
С	4.05196500	3.67813200	1.13188200

Н	3.98654200	2.73704400	-0.79107100
Н	6.58765900	2.60116700	0.81983700
Н	6.37842700	1.98506600	-0.82684900
Н	6.22963400	3.71830100	-0.49832400
Н	4.68098500	3.69615800	2.02881500
Н	4.14119200	4.66123900	0.65733400
Н	3.02391900	3.52909900	1.47081200
С	4.69900100	0.70997400	1.82659400
С	5.87190400	-0.25565800	1.57321100
С	3.66711200	0.06205800	2.75979600
Н	5.10387200	1.57822600	2.35617700
Н	6.63900800	0.19230300	0.93781800
Н	6.33779000	-0.53380900	2.52451000
Н	5.52749400	-1.17894500	1.09597700
Н	2.87599600	0.77224400	3.01160700
Н	3.20375800	-0.81266500	2.29572400
Н	4.15128000	-0.27137000	3.68473200
С	3.68366100	0.29829400	-0.42744700
С	4.68946500	0.00226400	-1.55324100
Н	2.76142600	0.65408500	-0.90604200
Н	3.41451000	-0.63819000	0.06508900
Н	4.26185800	-0.74746000	-2.22870600
Н	4.89952700	0.89527600	-2.14875800
Н	5.63723700	-0.38517800	-1.17307300
Br	0.90617500	2.78987900	3.32599100

3ab

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=

0.237348 (Hartree/Particle) 0.253421 0.254365 0.190714

Sum of electro	onic and thermal Free Ene	ergies=	-891.714113
С	4.14867500	-3.31081600	0.20831200
С	3.33097000	-2.19520400	0.04596800
С	2.18921300	-2.04000300	0.85103500
С	1.88596200	-3.01724400	1.81501800
С	2.70406500	-4.12933600	1.97137100
С	3.83818100	-4.27755900	1.16673100
Η	5.02998900	-3.42567800	-0.41393000
Н	3.58358100	-1.45146100	-0.69684600
Н	1.00253300	-2.88297300	2.42870400
Н	2.46241200	-4.88040400	2.71620500
Н	4.47857000	-5.14557600	1.28750100
С	1.26705800	-0.88261100	0.74473000
С	1.51270500	0.18462900	-0.35586200
F	2.77479200	0.71591600	-0.12738100
0	0.31228800	-0.72665900	1.49060100
F	1.57986300	-0.45755700	-1.57020200
С	-2.90593600	3.73980600	-2.96133400
С	-1.94420600	2.74647900	-2.78496400
С	-1.25114900	2.61829600	-1.56936300
С	-1.55153300	3.51748000	-0.52977900
С	-2.51127100	4.50884100	-0.70570700
С	-3.19273800	4.62492300	-1.92171600
Н	-3.42979300	3.82183100	-3.90842700
Н	-1.72209500	2.05825800	-3.59557900
Н	-1.03385000	3.44228700	0.42071500
Н	-2.73069000	5.19424300	0.10693100
Н	-3.94103400	5.39978900	-2.05471800
С	-0.24941100	1.55455600	-1.44435900
С	0.50982400	1.28713800	-0.37521100
Н	-0.12705700	0.92732000	-2.32353000
Н	0.44505800	1.84716000	0.55063300

Characterization data of compounds

(E)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-4-phenylbut-3-en-1-one (3aa)

54 mg, 86% yield, colorless oil, E/Z = 5.3/1, $R_f = 0.3$ (hexane = 5%);

¹**H** NMR (400 MHz, CDCl₃): δ 8.07 (d, J = 8.2 Hz, 2H), 7.85 (d, J = 8.2 Hz, 0.38H), 7.51 (d, J = 8.4 Hz, 2H), 7.43 (t, J = 9.3 Hz, 3H), 7.35 (d, J = 6.7 Hz, 2.57H), 7.25 (s, 0.37H), 7.09 (d, J = **16.4 Hz**, 1H), 6.94 (d, J = 12.8 Hz, 0.22H), 6.48 (dt, J = **16.4**, 11.2 Hz, 1H), 6.05 (dd, J = 26.8, 14.0 Hz, 0.19H), 1.34-1.32 (m, 10.7 H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): δ 188.5 (t, J = 30.6 Hz), 158.4, 158.1, 138.8 (t, J = 8 Hz), 136.9 (t, J = 9.5 Hz), 134.4, 130.2, 130.2, 130.0, 129.6, 129.5, 129.2, 128.8, 128.6, 128.0, 127.4, 126.0, 125.8, 125.4, 122.4 (t, J = 26.2 Hz), 120.0 (t, J = 24.5 Hz), 116.3 (t, J = 248.9 Hz), 35.3, 31.0 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -90.9 (d, J = 16.3 Hz), -97.3 (d, J = 15.0 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₀H₂₁F₂O⁺) requires *m/z* 315.1555, found *m/z* 315.1553.

(E)-2,2-difluoro-1,4-diphenylbut-3-en-1-one (3ab)

42 mg, 81% yield, colorless oil, E/Z = 4.3/1, $R_f = 0.3$ (hexane);

¹**H** NMR (400 MHz, CDCl₃): δ 8.12 (d, J = 7.9 Hz, 2H), 7.87 (d, J = 7.9 Hz, 0.47H), 7.63 (t, J = 7.4 Hz, 1H), 7.51 (dd, J = 14.9, 7.3 Hz, 2H), 7.47–7.42 (m, 1.78H), 7.37 (dd, J = 12.8, 4.0 Hz, 3H), 7.25 (t, J = 5.0 Hz, 1.36H), 7.10 (dd, J = 16.3, 2.3 Hz, 1H), 6.95 (d, J = 12.6 Hz, 0.22H), 6.48 (dt, J = 16.3, 11.3 Hz, 1H), 6.08 (dd, J = 26.7, 13.4 Hz, 0.23H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 189.0 (t, J = 31.4 Hz), 139.0 (t, J = 8.1 Hz), 137.1 (t, J = 9.5 Hz), 134.3, 134.0, 132.2, 130.2, 130.2, 129.9, 129.6, 129.1, 128.8, 128.7, 128.7, 128.4, 128.1, 127.4, 122.4 (t, J = 26.6 Hz), 119.8 (t, J = 23.9 Hz), 116.3 (t, J = 249 Hz) ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -90.4 (d, J = 13.6 Hz), -97.3 (d, J = 11.6 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ ($C_{16}H_{13}F_2O^+$) requires *m/z* 259.0929, found *m/z* 259.0933.

(*E*)-2,2-difluoro-4-phenyl-1-(p-tolyl)but-3-en-1-one (3ac)

46 mg, 84% yield, yellow solid, E/Z = 2.7/1, $R_f = 0.3$ (hexane);

¹**H NMR** (400 MHz, CDCl₃): δ 8.02 (d, J = 7.9 Hz, 2H), 7.80 (d, J = 7.9 Hz, 0.74H), 7.48–7.41 (m, 2H), 7.35 (d, J = 6.2 Hz, 3H), 7.29 (d, J = 8.2 Hz, 2H), 7.20 (d, J = 8.1 Hz, 0.74H), 7.08 (d, J = **16.3 Hz**, 1H), 6.93 (d, J = 12.7 Hz, 0.35H), 6.48 (dt, J = **16.3**, 11.3 Hz, 1H), 6.06 (dd, J = 27.0, 13.8 Hz, 0.37H), 2.43 (s, 3H), 2.39 (s, 1.15H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 188.5 (t, *J* = 30.5 Hz), 187.6 (t, *J* = 29.8 Hz), 145.6, 145.2, 138.9 (t, *J* = 8.0 Hz), 136.9 (t, J = 9.5 Hz), 134.3, 130.4 (t, J = 2.9 Hz), 130.1 (t, J = 2.5 Hz), 129.6, 129.5, 129.2, 129.2, 128.8, 128.7, 128.1, 127.4, 122.5 (t, J = 26.2 Hz), 120.0 (t, J = 24.7 Hz), 116.4 (t, J = 249.0 Hz), 21.8, 21.8 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -90.6 (d, J = 16.4 Hz), -95.4--100.4 (m) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₇H₁₅F₂O⁺) requires *m/z* 273.1085, found *m/z* 273.1085.

(E)-2,2-difluoro-1-(4-methoxyphenyl)-4-phenylbut-3-en-1-one (3ad)

51 mg, 89% yield, white solid, 6.2/1, $R_f = 0.2$ (ethyl acetate /hexane = 5%);

¹**H NMR** (400 MHz, CDCl₃): δ 8.12 (d, J = 8.8 Hz, 2H), 7.90 (d, J = 8.8 Hz, 0.3H), 7.48–7.39 (m, 2H), 7.39–7.31 (m, 3H), 7.08 (dt, J = 16.3, 2.4 Hz, 1H), 6.96 (d, J = 8.9 Hz, 2H), 6.87 (d, J = 8.8 Hz, 0.28H), 6.48 (dt, J = 16.3, 11.2 Hz, 1H), 6.05 (dd, J = 27.0, 13.9 Hz, 0.16H), 3.88 (s, 3H), 3.86 (s, 0.52H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 187.3 (t, J = 30.6 Hz), 164.5, 164.3, 138.7 (t, J = 8.1 Hz), 136.7 (t, J = 9.5 Hz), 134.4, 132.8 (t, J = 3.3 Hz), 132.5 (t, J = 2.6 Hz), 129.56, 129.2 (t, J = 2.9 Hz), 128.8, 128.6, 128.0, 127.4, 125.0, 122.5 (t, J = 26.6 Hz), 120.1 (t, J = 24.8 Hz), 116.4 (t, J = 248.6 Hz), 114.1, 113.7, 55.6, 55.5 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -90.5 (d, J = 16.3 Hz), -96.9 (dd, J = 11.6, 2.7 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ ($C_{17}H_{15}F_2O_2^+$) requires *m/z* 289.1035, found *m/z* 289.1031.

(E)-2,2-difluoro-1-(4-(methylthio)phenyl)-4-phenylbut-3-en-1-one (3ae)

50 mg, 82% yield, colorless oil, E/Z = 5/1, $R_f = 0.3$ (ethyl acetate /hexane = 5%);

¹**H** NMR (400 MHz, CDCl₃): δ 8.02 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.2 Hz, 0.45H), 7.47–7.41 (m, 2H), 7.35 (td, J = 4.7, 2.5 Hz, 3H), 7.29 (s, 1H), 7.25 (s, 0.17H), 7.18 (d, J = 8.6 Hz, 0.43H), 7.08 (dd, J = 16.3, 2.5 Hz, 1H), 6.94 (d, J = 12.7 Hz, 0.19H), 6.47 (dt, J = 16.3, 11.3 Hz, 1H), 6.13–5.98 (m, 0.19H), 2.51 (s, 3H), 2.49 (s, 0.6H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 187.8 (t, *J* = 30.9 Hz), 186.9 (t, *J* = 30.3 Hz), 148.2, 147.7, 138.9 (t, J = 8.0 Hz), 136.9 (t, J = 9.9 Hz), 134.3, 130.6, 130.6, 130.5, 130.3, 129.9, 129.6, 129.2, 128.8, 128.7, 128.1, 128.1, 127.5, 125.0, 124.8, 124.6, 122.4 (t, J = 26.6 Hz), 119.9 (t, J = 24.4 Hz), 116.4 (t, J = 248.7 Hz), 115.4 (t, J = 247.4 Hz), 14.6 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -90.5 (d, J = 16.3 Hz), -97.1 (dd, J = 11.9, 3.1 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ ($C_{17}H_{15}F_2OS^+$) requires *m/z* 305.0806, found *m/z* 305.0810.

(E)-1-(4-(dimethylamino)phenyl)-2,2-difluoro-4-phenylbut-3-en-1-one (3af)

44 mg, 74% yield, colorless oil, E/Z > 20/1, $R_f = 0.3$ (ethyl acetate /hexane = 10%);

¹**H** NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 6.8 Hz, 2H), 7.31–7.23 (m, 3H), 6.99 (d, J = 16.3 Hz, 1H), 6.58 (d, J = 8.7 Hz, 2H), 6.42 (dt, J = 16.3, 11.1 Hz, 1H), 3.01 (d, J = 0.7 Hz, 6H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 186.4 (t, J = 29.7 Hz), 154.0, 136.1, 134.6, 132.7 (t, J = 3.1 Hz), 129.3, 128.7, 127.4, 120.94 (t, J = 25.1 Hz), 119.6, 116.7 (t, J = 249.8 Hz), 110.7, 40.0 ppm; S55 ¹⁹**F NMR** (376 MHz, CDCl₃): δ -96.54 (dd, J = 11.6Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₈H₁₈F₂NO⁺) requires *m/z* 302.1351, found *m/z* 302.1353.

(E)-1-(4-cyclopropylphenyl)-2,2-difluoro-4-phenylbut-3-en-1-one (3ag)

46 mg, 78% yield, white solid, E/Z = 6.2/1, $R_f = 0.3$ (hexane);

¹**H** NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 8.2 Hz, 2H), 7.79 (d, J = 8.2 Hz, 0.31H), 7.51–7.40 (m, 2H), 7.38–7.30 (m, 3H), 7.13 (d, J = 8.2 Hz, 2H), 7.07 (d, J = 16.4 Hz, 1H), 6.92 (d, J = 12.7 Hz, 0.17H), 6.47 (dt, J = 16.4, 11.3 Hz, 1H), 6.04 (dd, J = 27.0, 13.8 Hz, 0.16H), 1.94 (ddd, J = 13.1, 8.5, 5.0 Hz, 1H), 1.12–1.03 (m, 2.27H), 0.84–0.74 (m, 2.28H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): δ 188.3 (t, J = 30.6 Hz), 152.2, 151.9, 138.8 (t, J = 8.0 Hz), 136.9 (t, J = 9.5 Hz), 134.3, 130.5 (t, J =2.9 Hz), 130.2 (t, J = 2.5 Hz), 129.6, 129.3, 129.2 (t, J = 3.1 Hz), 128.8, 128.7, 128.1, 127.4, 125.6, 125.3, 122.4 (t, J = 26.6 Hz), 120.0 (t, J = 24.8 Hz), 116.4 (t, J = 248.9 Hz), 16.0, 15.9, 10.8, 10.7 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -90.7 (d, J = 13.6 Hz), -97.2 (d, J = 11.6 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₉H₁₇F₂O⁺) requires *m/z* 299.1242, found *m/z* 299.1245.

(*E*)-1-([1,1'-biphenyl]-4-yl)-2,2-difluoro-4-phenylbut-3-en-1-one (3ah)

58 mg, 87% yield, white solid, E/Z = 2.4/1, $R_f = 0.2$ (hexane);

¹**H** NMR (400 MHz, CDCl₃): δ 8.10 (dd, J = 18.5, 8.5 Hz, 2H), 7.88 (d, J = 8.4 Hz, 1H), 7.70–7.61 (m, 2H), 7.60–7.51 (m, 4H), 7.44–7.33 (m, 6H), 7.31–7.26 (m, 2H), 7.20 (d, J = 2.3 Hz,

1H), 7.05 (dt, *J* = 16.3, 2.6 Hz, 1H), 6.90 (dt, *J* = 12.6, 1.9 Hz, 0.41H), 6.44 (dt, *J* = 16.3, 11.4 Hz, 1H), 6.04 (dt, *J* = 26.7, 13.3 Hz, 0.42H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): δ 188.5 (t, J = 31.2 Hz), 147.1, 139.5, 137.1 (t, J = 9.5 Hz), 134.3, 130.9 (t, J = 3.1 Hz), 130.8, 130.6, 130.3, 129.7, 129.2–129.0 (m), 128.9, 128.7, 128.6, 128.6, 128.1, 127.6, 127.5, 127.4, 127.3, 127.3, 127.0, 119.8 (t, J = 24.8 Hz), 116.4 (t, J = 250.3 Hz) ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -90.48 (d, J = 14.3 Hz), -97.25 (dd, J = 11.2, 2.4 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₂H₁₇F₂O⁺) requires *m/z* 335.1242, found *m/z* 335.1250.

(E)-2,2-difluoro-1-(4-fluorophenyl)-4-phenylbut-3-en-1-one (3ai)

46 mg, 83% yield, light yellow oil, E/Z = 2.7/1, $R_f = 0.3$ (hexane);

¹**H** NMR (400 MHz, CDCl₃): δ 8.17 (dd, J = 8.3, 5.5 Hz, 2H), 7.89 (dd, J = 8.4, 5.6 Hz, 0.61H), 7.45 (d, J = 5.6 Hz, 2H), 7.39–7.33 (m, 3H), 7.28–7.24 (m, 1H), 7.17 (t, J = 8.6 Hz, 2H), 7.09 (dd, J = 16.4, 2.2 Hz, 1H), 7.04 (d, J = 8.7 Hz, 0.46H), 6.96 (d, J = 12.6 Hz, 0.3H), 6.47 (dt, J = 16.4, 11.4 Hz, 1H), 6.07 (q, J = 13.4 Hz, 0.3H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): δ 187.4 (t, J = 31.7 Hz), 186.4 (t, J = 30.1 Hz), 167.7, 167.4, 165.2, 164.9, 139.2 (t, J = 8.0 Hz), 137.1 (t, J = 9.4 Hz), 134.2, 133.1 (dt, J = 9.5, 3.3 Hz), 132.7 (dt, J = 9.5, 2.8 Hz), 129.7, 129.1 (t, J = 2.9 Hz), 128.9, 128.8, 128.5, 128.1, 127.5, 122.3 (t, J = 27.0 Hz), 119.4 (t, J = 24.6 Hz), 116.2 (t, J = 248.9 Hz), 116.1 (d, J = 22.0 Hz), 115.7 (d, J = 22.0 Hz), 115.2 (t, J = 247.1 Hz) ppm;

¹⁹**F NMR** (376 MHz, CDCl₃): δ -90.1 (d, J = 15.7 Hz), -96.5–-97.4 (m), -102.1 (ddd, J = 14.3, 8.5, 5.8 Hz), -102.5 –-102.9 (m) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ ($C_{16}H_{12}F_3O^+$) requires *m/z* 277.0835, found *m/z* 277.0841.

(E)-1-(4-chlorophenyl)-2,2-difluoro-4-phenylbut-3-en-1-one (3aj)

48 mg, 82% yield, yellow oil, E/Z = 1.7/1, $R_f = 0.2$ (hexane);

¹**H** NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.6 Hz, 1.13H), 7.52–7.42 (m, 4H), 7.41–7.32 (m, 4H), 7.29–7.23 (m, 1.77H), 7.21 (d, J = 7.0 Hz, 1H), 7.09 (dt, J = 16.4, 2.5 Hz, 1H), 6.97 (d, J = 12.6 Hz, 0.59H), 6.46 (dt, J = 16.4, 11.4 Hz, 1H), 6.06 (q, J = 13.4 Hz, 0.60H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): δ 187.9 (t, J = 31.7 Hz), 186.9 (t, J = 30.2 Hz), 141.1, 140.7, 139.3 (t, J = 8.4 Hz), 137.3 (t, J = 9.5 Hz), 134.1, 131.6 (t, J = 3.3 Hz), 131.2 (t, J = 2.9 Hz), 130.4, 129.8, 129.2 129.1, 129.1, 129.1, 128.9, 128.8, 128.8, 128.1, 127.5, 122.2 (t, J = 26.9 Hz), 119.3 (t, J = 24.0 Hz), 116.2 (t, J = 248.9 Hz), 115.2 (t, J = 247.1 Hz) ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -90.1 (d, *J* = 13.6 Hz), -97.2 (d, *J* = 10.9 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₆H₁₂ClF₂O⁺) requires *m/z* 293.0539, found *m/z* 293.0539.

(E)-1-(benzo[d][1,3]dioxol-5-yl)-2,2-difluoro-4-phenylbut-3-en-1-one (3ak)

45 mg, 75% yield, light yellow oil, E/Z = 14/1, $R_f = 0.3$ (ethyl acetate /hexane = 5%);

¹**H** NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 8.3 Hz, 1H), 7.61 (d, J = 8.2 Hz, 0.09H), 7.46 (s, 1H), 7.39 (s, 0.07H), 7.35 (d, J = 6.4 Hz, 2H), 7.26 (d, J = 6.6 Hz, 3H), 7.18-7.16 (m, 0.5H), 6.98 (d, J = 16.4 Hz, 1H), 6.79 (d, J = 8.3 Hz, 1H), 6.69 (d, J = 8.3 Hz, 0.08H), 6.37 (dt, J = 16.4, 11.2 Hz, 1H), 5.96 (s, 2H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 186.9 (t, J = 31.0 Hz), 152.9, 148.2, 136.8 (t, J = 9.5 Hz), 134.3, 129.6, 128.8, 128.1, 127.4, 127.4, 127.3, 126.5, 122.5 (t, J = 26.8 Hz), 120.0 (t, J = 24.8 Hz), 116.4 (t, J = 250.3 Hz), 109.7, 108.3, 102.2 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -90.0 (d, J = 13.6 Hz), -96.3--96.7 (m) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₇H₁₃F₂O₃⁺) requires *m/z* 303.0827, found *m/z* 303.0834.

(E)-2,2-difluoro-4-phenyl-1-(thiophen-2-yl)but-3-en-1-one (3al)

38 mg, 73% yield, yellow oil, E/Z = 3.3/1, $R_f = 0.2$ (hexane);

¹**H** NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 14.5 Hz, 1H), 7.84 (s, 0.27H), 7.76 (dd, J = 17.9, 4.8 Hz, 1H), 7.71 (d, J = 4.9 Hz, 0.29H), 7.47–7.38 (m, 2H), 7.35 – 7.28 (m, 4H), 7.21 – 7.07 (m, 2.34H), 7.00 (d, J = 12.6 Hz, 0.27H), 6.41 (ddd, J = 18.5, 13.8, 9.2 Hz, 1H), 6.00 (dt, J = 18.1, 9.1 Hz, 0.29H);

¹³**C NMR** (100 MHz, CDCl₃): δ 182.2 (t, J = 32.8 Hz), 139.4 (t, J = 7.6 Hz), 138.3, 138.2, 137.2 (t, J = 9.5 Hz), 136.5, 136.1, 135.9 (t, J = 4.7 Hz), 135.6 (t, J = 4.0 Hz), 134.3, 134.2, 129.7, 129.1 (t, J = 2.9 Hz), 128.9, 128.8, 128.7, 128.5, 128.1, 127.5, 121.7 (t, J = 26.2 Hz), 119.3 (t, J = 24.8 Hz), 116.0 (t, J = 249.3 Hz), 115.2 (t, J = 248.2 Hz);

¹⁹**F NMR** (376 MHz, CDCl₃): δ -91.9 (d, J = 14.3 Hz), -98.9 (d, J = 11.6 Hz);

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₄H₁₁F₂OS⁺) requires *m*/*z* 265.0493, found *m*/*z* 265.0492.

(E)-2,2-difluoro-1-(1-methyl-1H-indol-3-yl)-4-phenylbut-3-en-1-one (3am)

39 mg, 63% yield, yellow solid, E/Z = 3/1, $R_f = 0.3$ (ethyl acetate /hexane = 5%);

¹**H NMR** (400 MHz, CDCl₃): δ 8.46 (dd, J = 6.2, 3.0 Hz, 0.87H), 8.43–8.37 (m, 0.58H), 8.00 (d, J = 5.6 Hz, 1H), 7.76 (s, 0.38H), 7.43 (t, J = 6.8 Hz, 2.74H), 7.37 (d, J = 2.3 Hz, 2.76H), 7.33 (d, J = 8.2 Hz, 2.77H), 7.30 (d, J = 7.1 Hz, 0.86H), 7.11 (dd, J = 16.4, 2.3 Hz, 1H), 6.95 (d, J = 12.7 Hz, 0.33H), 6.51 (dt, J = 16.4, 11.4 Hz, 1H), 6.04 (dd, J = 15.2, 2.4 Hz, 0.31H), 3.88 (s, 3H), 3.80 (s, 0.82H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 183.8 (t, J = 30.9 Hz), 138.2 (t, J = 8.7 Hz), 137.9 (t, J = 7.0 Hz), 137.1 (t, J = 11.4 Hz), 136.1 (t, J = 9.4 Hz), 134.6, 129.4, 129.2 (t, J = 3.1 Hz), 128.8, 128.3, S59

128.0, 127.5, 127.4, 124.3, 124.1, 124.0, 123.6, 123.5, 123.4, 122.8, 122.7, 122.6, 122.4, 120.7 (t, *J* = 25.2 Hz), 116.5 (t, *J* = 247.8 Hz), 112.2 (t, *J* = 252.6 Hz), 110.7, 109.8 (t, *J* = 9.1 Hz), 33.9, 33.7, 29.7, 29.4 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -92.5 (d, J = 15.7 Hz), -97.7--99.1 (m) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₉H₁₆F₂NO⁺) requires *m/z* 312.1194, found *m/z* 312.1198.

(E)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-4-(p-tolyl)but-3-en-1-one (3ba)

56 mg, 86% yield, white solid, E/Z = 2.1/1, $R_f = 0.2$ (hexane);

¹**H** NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 8.3 Hz, 2H), 7.87 (d, J = 8.2 Hz, 0.85H), 7.51 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 0.94H), 7.33 (d, J = 7.9 Hz, 2H), 7.20 (d, J = 7.9 Hz, 0.93H), 7.16 (d, J = 7.8 Hz, 1.92H), 7.08 (d, J = 7.5 Hz, 1H), 7.03 (s, 0.47H), 6.88 (d, J = 12.7 Hz, 0.45H), 6.42 (dt, J = 16.4, 11.4 Hz, 1H), 5.98 (dd, J = 27.3, 14.2 Hz, 0.47H), 2.35 (s, 3H), 2.33 (s, 1.29H), 1.34 (s, 9H), 1.32 (s, 4H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): δ 188.6 (t, J = 31 Hz), 187.6 (t, J = 30.3 Hz), 158.3, 158.0, 139.8, 138.9 (t, J = 7.6 Hz), 138.8, 136.8 (t, J = 9.5 Hz), 131.6, 131.4, 130.3 (t, J = 2.9 Hz), 130.0 (t, J = 2.6 Hz), 129.5, (129.3 (t, J = 2.9 Hz), 128.8, 127.4, 126.0, 125.8, 125.4, 121.4 (t, J = 26.6 Hz), 118.9 (t, J = 24.8 Hz), 116.5 (t, J = 248.6 Hz), 115.6 (t, J = 247.4 Hz), 35.3, 35.2, 31.2, 31.0, 21.4, 21.3 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -91.0 (d, J = 16.4 Hz), -97.11 (d, J = 15.0 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₁H₂₃F₂O⁺) requires *m/z* 329.1711, found *m/z* 329.1710.

(E)-1,4-bis(4-(tert-butyl)phenyl)-2,2-difluorobut-3-en-1-one (3ca)

57 mg, 77% yield, white solid, E/Z = 2.2/1, $R_f = 0.3$ (hexane);

¹**H** NMR (400 MHz, CDCl₃): δ 8.05 (d, J = 8.3 Hz, 2H), 7.83 (d, J = 8.4 Hz, 0.93H), 7.50 (d, J = 8.4 Hz, 2H), 7.41 (s, 0.68H), 7.38 (s, 4H), 7.26 (d, J = 4.0 Hz, 0.92H), 7.21 (d, J = 8.3 Hz, 0.89H), 7.06 (dt, J = 16.4, 2.4 Hz, 1H), 6.88 (d, J = 12.7 Hz, 0.46H), 6.44 (dt, J = 16.4, 11.2 Hz, 1H), 6.00 (dd, J = 27.0, 14.1 Hz, 0.46H), 1.34 (s, 9H), 1.32 (s, 4.7H), 1.31 (s, 9H), 1.30 (s, 4.2H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): δ 188.6 (t, J = 30.6 Hz), 187.6 (t, J = 29.9 Hz), 158.3, 157.9, 153.0, 151.9, 138.7 (t, J = 8.0 Hz), 136.7 (t, J = 9.5 Hz), 131.6, 131.4, 130.3 (t, J = 2.9 Hz), 129.9 (t, J = 2.2 Hz), 129.5, 129.3, 129.1 (t, J = 2.9 Hz), 127.2, 125.8, 125.7, 125.4, 125.0, 121.6 (t, J = 27.0 Hz), 119.2 (t, J = 24.8 Hz), 116.4 (t, J = 248.3 Hz), 115.4 (t, J = 247.2 Hz), 35.3, 35.2, 34.9, 34.7, 31.2, 31.2, 31.0 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -90.9 (d, J = 16.3 Hz), -97.2 (d, J = 11.9, 3.1 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₄H₂₉F₂O⁺) requires *m/z* 371.2181, found *m/z* 371.2181.

(Z)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-4-(4-methoxyphenyl)but-3-en-1-one (3da)

54 mg, 79% yield, white solid; E/Z = 1/1.5, $R_f = 0.3$ (ethyl acetate /hexane = 5%);

¹**H** NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 8.2 Hz, 1.27H), 7.80 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.2 Hz, 0.27H), 7.48–7.41 (m, 1.21H), 7.38–7.33 (m, 2H), 7.31 (d, J = 8.2 Hz, 1.6H), 7.19 (dd, J = 10.5, 4.8 Hz, 2.68H), 6.95 (d, J = 16.4 Hz, 0.64H), 6.84–6.76 (m, 2H), 6.75–6.69 (m, 2.63H), 6.26 (dt, J = 16.4, 11.2 Hz, 0.67H), 5.85 (dd, J = 28.0, 13.7 Hz, 1H), 3.78–3.62 (m, 5.43H), 1.29–1.26 (m, 5.99H), 1.25 (d, J = 1.2 Hz, 9H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): δ 188.7 (t, J = 30.8 Hz), 187.6 (t, J = 29.8 Hz), 160.7, 160.0, 158.3, 158.0, 138.5 (t, J = 8.0 Hz), 136.4 (t, J = 9.5 Hz), 131.1 (t, J = 3.3 Hz), 130.3 (t, J = 3.0 Hz), 130.0 (J = 2.4 Hz), 129.6, 129.4, 129.3, 128.9, 127.3, 127.1, 126.7, 125.7, 125.5, 125.4, 120.2 (t, J = 26.6 Hz), 117.5 (t, J = 24.8 Hz), 115.6 (t, J = 247.3 Hz), 114.3, 114.2, 113.5, 55.4, 55.3, 35.3, 35.2, 31.1, 31.0 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -91.0 (t, J = 14.0 Hz), -96.8 (d, J = 12.9 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₁H₂₃F₂O₂⁺) requires *m*/*z* 345.1661, found *m*/*z* 345.1663.

(*E*)-4-(2-(benzyloxy)phenyl)-1-(4-(tert-butyl)phenyl)-2,2-difluorobut-3-en-1-one (3ea)

62 mg, 74% yield, white solid, E/Z = 2.7/1, $R_f = 0.4$ (ethyl acetate /hexane = 5%);

¹**H** NMR (400 MHz, CDCl₃): δ 8.02 (d, J = 7.5 Hz, 2H), 7.77 (d, J = 7.5 Hz, 0.77H), 7.53–7.41 (m, 4H), 7.41–7.20 (m, 9.78H), 7.13 (d, J = 11.6 Hz, 0.43H), 6.94 (dd, J = 13.0, 5.2 Hz, 2.33H), 6.70 (d, J = 7.8 Hz, 0.36H), 6.61 (dtd, J = 13.9, 11.6, 2.3 Hz, 1H), 6.13 (tt, J = 12.3, 6.4 Hz, 0.40H), 5.10 (t, J = 5.1 Hz, 2H), 4.78 (t, J = 4.8 Hz, 0.76H), 1.32 (t, J = 5.0 Hz, 9H), 1.24 (t, J = 5.0 Hz, 3.9H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 188.6 (t, J = 30.6 Hz), 158.2, 157.7, 156.9, 156.0, 136.8, 136.6, 135.3 (t, J = 8.8 Hz), 132.4 (t, J = 10.2 Hz), 130.7, 130.4, 130.3, 130.3, 129.8, 129.6, 128.7, 128.5, 128.0, 127.8, 127.2, 126.9, 125.7, 125.2, 123.9, 123.7, 123.2 (t, J = 26.7 Hz), 121.1, 121.1, 120.9, 120.7, 120.4, 116.6 (t, J = 248.5 Hz), 112.7, 111.3, 70.4, 69.8, 35.3, 35.1, 31.0, 30.9 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -90.2 (d, J = 13.6 Hz), -94.8--100.0 (m) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₇H₂₇F₂O₂⁺) requires *m*/*z* 421.1974, found *m*/*z* 421.1977.

methyl (*E*)-4-(4-(4-(tert-butyl)phenyl)-3,3-difluoro-4-oxobut-1-en-1-yl)benzoate (3fa)

50 mg, 67% yield, white solid, E/Z = 3/1, $R_f = 0.3$ (ethyl acetate /hexane = 5%);

¹**H** NMR (400 MHz, CDCl₃): δ 8.05 (dd, J = 16.3, 8.3 Hz, 4H), 7.95 (d, J = 8.2 Hz, 0.64H), 7.87 (d, J = 8.2 Hz, 0.58H), 7.52 (dd, J = 8.3, 4.0 Hz, 4H), 7.44 (d, J = 8.6 Hz, 0.69H), 7.34 (d, J = 8.2 Hz, 0.63H), 7.13 (d, J = 16.4 Hz, 1H), 6.97 (d, J = 12.8 Hz, 0.3H), 6.59 (dt, J = 16.4, 11.3 Hz, 1H), 6.14 (dd, J = 27.1, 13.9 Hz, 0.33H), 3.92-3.91 (m, 4H), 1.35-1.33 (m, 12H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 188.2 (t, J = 30.6 Hz), 166.7, 166.5, 158.6, 158.4, 139.0, 138.6,
137.7 (t, J = 7.5 Hz), 135.6 (t, J = 9.5 Hz), 130.8, 130.3, 130.1, 129.3, 129.0, 127.4, 125.8, 125.6,
124.0 (t, J = 26.5 Hz), 122.4 (t, J = 24.8 Hz), 116.0 (t, J = 249.6 Hz), 52.3, 52.3, 35.3, 31.0 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -91.1 (d, J = 13.6 Hz), -97.6 (d, J = 10.9 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ ($C_{22}H_{23}F_2O_3^+$) requires *m/z* 373.1610, found *m/z* 373.1611.

(E)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-4-(4-(trifluoromethyl)phenyl)but-3-en-1-one (3ga)

53 mg, 69% yield, white solid, E/Z = 5.8/1, $R_f = 0.3$ (hexane);

¹**H** NMR (400 MHz, CDCl₃): δ 8.07 (d, J = 8.3 Hz, 2H), 7.87 (d, J = 8.3 Hz, 0.33H), 7.62 (d, J = 8.3 Hz, 2H), 7.58–7.51 (m, 4H), 7.44 (d, J = 8.4 Hz, 0.32H), 7.38 (d, J = 8.2 Hz, 0.31H), 7.13 (d, J = 16.4 Hz, 1H), 6.97 (d, J = 12.7 Hz, 0.16H), 6.59 (dt, J = 16.4, 11.3 Hz, 1H), 6.16 (dd, J = 27.0, 13.9 Hz, 0.17H), 1.35 (s, 9H), 1.33 (s, 1.8H) ppm;

¹³**C** NMR (100 MHz, CDCl₃): δ 188.2 (t, J = 31.4 Hz), 158.7, 137.8, 135.2 (t, J = 9.4 Hz), 131.3 (q, J = 32.5 Hz), 130.3, 130.3, 130.1, 129.3, 127.7, 125.9, 125.8, 125.6, 122.6 (t, J = 24.4 Hz), 115.9 (t, J = 249.6 Hz), 35.3, 31.0 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -62.8 (d, J = 6.1 Hz), -91.2 (s), -97.7 (s) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ ($C_{21}H_{20}F_5O^+$) requires *m/z* 383.1429, found *m/z* 383.1426.

(*E*)-4-([1,1'-biphenyl]-4-yl)-1-(4-(tert-butyl)phenyl)-2,2-difluorobut-3-en-1-one (3ha)

62 mg, 80% yield, white solid, E/Z = 1.6/1, $R_f = 0.3$ (hexane);

¹**H NMR** (400 MHz, CDCl₃): δ 8.08 (d, J = 8.3 Hz, 2H), 7.88 (d, J = 8.3 Hz, 1.21H), 7.62–7.56 (m, 5.5H), 7.54 – 7.49 (m, 5.28H), 7.43 (dd, J = 11.8, 5.1 Hz, 4.5H), 7.36 (dd, J = 9.5, 5.1 Hz, 2.6H), 7.13 (d, J = 16.4 Hz, 1H), 6.95 (d, J = 12.7 Hz, 0.63H), 6.52 (dt, J = 16.4, 11.2 Hz, 1H), 6.06 (dd, J = 27.1, 14.2 Hz, 0.61H), 1.35 (s, 9H), 1.32 (s, 5H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 188.5 (t, J = 30.4 Hz), 158.4, 158.1, 142.4, 141.4, 140.4, 140.2, 138.4, 136.5, 136.4, 136.3, 133.3, 130.3, 130.0, 129.8, 128.9, 128.8, 127.9, 127.8, 127.6, 127.5, 127.0, 126.7, 125.8, 125.5, 122.2 (t, J = 26.2 Hz), 119.9 (t, J = 24.8 Hz), 116.4 (t, J = 248.8 Hz), 35.3, 31.0 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -90.90 (d, J = 14.3 Hz), -97.21 (d, J = 10.2 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₆H₂₅F₂O⁺) requires *m/z* 391.1868, found *m/z* 391.1870.

(E)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-4-(4-fluorophenyl)but-3-en-1-one (3ia)

53 mg, 80% yield, white solid, E/Z = 2.5/1, $R_f = 0.3$ (hexane);

¹**H NMR** (400 MHz, CDCl₃): δ 8.06 (d, J = 8.2 Hz, 2H), 7.87 (d, J = 8.3 Hz, 0.83H), 7.52 (d, J = 8.4 Hz, 2H), 7.47–7.38 (m, 2.8H), 7.28 (dd, J = 9.0, 6.7 Hz, 1H), 7.04 (dd, J = 10.6, 6.2 Hz, 2.89H), 6.96 (t, J = 8.6 Hz, 0.8H), 6.88 (d, J = 12.6 Hz, 0.41H), 6.41 (dt, J = 16.4, 11.2 Hz, 1H), 6.04 (dd, J = 27.1, 13.9 Hz, 0.42H), 1.35 (s, 9H), 1.33 (s, 3.6H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): δ 188.4 (t, J = 31.0 Hz), 187.4 (t, J = 30.0 Hz), 164.7, 164.1, 162.2, 161.6, 158.5, 158.3, 137.7 (t, J = 7.6 Hz), 135.6 (t, J = 9.8 Hz), 131.2 (dt, J = 8.1, 3.0 Hz), 130.6, 130.2 (t, J = 2.9 Hz), 130.0 (t, J = 2.4 Hz), 129.4, 129.3, 129.2, 129.1, 125.8, 125.5, 122.3 (t, J = 26.7 Hz), 119.7 (td, J = 24.8, 2.2 Hz), 116.2 (t, J = 249.0 Hz), 116.0, 115.8, 115.2, 115.0, 35.3, 35.3, 31.0 ppm;

¹⁹**F NMR** (376 MHz, CDCl₃): δ -91.1 (dd, J = 25.5, 15.3 Hz), -97.3 (dd, J = 25.5, 12.6 Hz), -110.99 (s), -112.24 (s) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₀H₂₀F₃O⁺) requires *m/z* 333.1461, found *m/z* 333.1460.

(*E*)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-4-(3-fluorophenyl)but-3-en-1-one (3ja)

49 mg, 74% yield, colorless oil, E/Z = 4.2/1, $R_f = 0.3$ (hexane);

¹**H NMR** (400 MHz, CDCl₃): δ 7.99 (d, *J* = 8.8 Hz, 2H), 7.95 (d, *J* = 8.8 Hz, 1H), 7.80 (d, *J* = 8.8 Hz, 0.48H), 7.46 (t, *J* = 8.1 Hz, 3H), 7.37 (d, *J* = 8.8 Hz, 0.5H), 7.26 (td, *J* = 7.9, 5.9 Hz, 1H), 7.15 (d, *J* = 7.8 Hz, 1H), 7.10–7.06 (m, 1H), 7.02–6.80 (m, 3H), 6.42 (dt, *J* = 16.4, 11.3 Hz, 1H), 6.03 (dd, *J* = 26.7, 14.0 Hz, 0.24H), 1.28 (s, 9H), 1.26 (s, 2.2H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 188.3 (t, J = 30.6 Hz), 164.2, 161.8, 159.0, 158.6, 158.3, 136.6, 135.6 (t, J = 9.4 Hz), 130.4, 130.3, 130.3, 130.2, 130.2, 130.0, 129.7, 129.3, 126.0, 125.8, 125.5, 123.4, 121.4 (t, J = 24.4 Hz), 116.5, 116.3, 116.0 (t, J = 249.4 Hz), 114.0, 113.9, 111.3 (t, J = 249.8 Hz), 35.3, 31.0 ppm;

¹⁹**F NMR** (376 MHz, CDCl₃): δ -91.1 (d, J = 16.3 Hz), -97.6 (d, J = 14.3 Hz), -112.2--112.9 (m), -113.2--113.2 (m) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₀H₂₀F₃O⁺) requires *m/z* 333.1461, found *m/z* 333.1459.

(E)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-4-(2-fluorophenyl)but-3-en-1-one (3ka)

51 mg, 77% yield, colorless oil, E/Z = 4.5/1, $R_f = 0.3$ (hexane);

¹**H** NMR (400 MHz, CDCl₃): δ 8.07 (d, J = 8.2 Hz, 2H), 7.86 (d, J = 8.2 Hz, 0.39H), 7.58–7.41 (m, 3.68H), 7.39–7.27 (m, 1.52H), 7.23-7.22 (m, 0.53H), 7.13 (t, J = 7.6 Hz, 1H), 7.074 (t, J = 8.8 Hz), 7.02 – 6.86 (m, 0.39H), 6.61 (dt, J = 16.4, 11.4 Hz, 1H), 6.17 (dd, J = 26.7, 13.4 Hz, 0.22H), 1.35 (s, 9H), 1.33 (s, 1.96H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): δ 188.4 (t, J = 30.9 Hz), 162.2, 159.7, 158.5, 158.2, 131.1, 131.0, 130.6, 130.5, 130.3 (t, J = 3.0 Hz), 129.9 (t, J = 2.7 Hz), 129.7 (d, J = 3.2 Hz), 129.6 (d, J = 3.3 Hz), 129.5 (d, J = 3.1 Hz), 129.4 (t, J = 1.9 Hz), 128.6 (d, J = 2.8 Hz), 125.8, 125.5, 124.4 (d, J = 3.3 Hz), 123.7 (d, J = 3.7 Hz), 122.8 (d, J = 6.5 Hz), 122.5 (d, J = 6.5 Hz), 122.3, 116.1 (t, J = 249.4 Hz), 116.2, 116.0, 115.1, 114.9, 35.3, 35.3, 31.2, 31.0 ppm;

¹⁹**F NMR** (376 MHz, CDCl₃): δ -92.24 (d, J = 14.3 Hz), -97.92 (d, J = 14.3 Hz), -113.95 (dd, J = 17.7, 7.5 Hz), -115.18–-116.34 (m) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₀H₂₀F₃O⁺) requires *m/z* 333.1461, found *m/z* 333.1463.

(E)-1-(4-(tert-butyl)phenyl)-4-(4-chlorophenyl)-2,2-difluorobut-3-en-1-one (3la)

52 mg, 75% yield, white solid, E/Z = 4/1, $R_f = 0.3$ (hexane);

¹**H** NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 8.3 Hz, 2H), 7.88 (d, J = 8.3 Hz, 0.42H), 7.52 (d, J = 8.7 Hz, 2H), 7.44 (d, J = 8.6 Hz, 0.48H), 7.36 (dd, J = 21.1, 8.5 Hz, 4H), 7.24 (d, J = 1.8 Hz, 0.65H), 7.05 (d, J = 16.4 Hz, 1H), 6.87 (d, J = 12.7 Hz, 0.22H), 6.46 (dt, J = 16.4, 11.3 Hz, 1H), 6.06 (dd, J = 27.0, 14.2 Hz, 0.23H), 1.35 (s, 9H), 1.33 (s, 2.6H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): δ 188.3 (t, J = 31.0 Hz), 158.5, 158.3, 137.5 (t, J = 7.6 Hz), 135.6-135.4 (m), 132.8, 132.7, 130.5 (t, J = 3.3 Hz), 130.2 (t, J = 2.9 Hz), 130.1 (t, J = 2.4 Hz), 129.4, 129.1, 128.7, 128.3, 125.8, 125.6, 122.9 (t, J = 26.2 Hz), 120.6 (t, J = 24.4 Hz), 116.1 (t, J = 249.2 Hz), 35.3, 31.0 ppm;

¹⁹**F NMR** (376 MHz, CDCl₃): δ -91.1 (d, J = 14.3 Hz), 97.4 (d, J = 10.9 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₀H₂₀ClF₂O⁺) requires *m*/*z* 349.1165, found *m*/*z* 349.1169.

(E)-1-(4-(tert-butyl)phenyl)-4-(3-chlorophenyl)-2,2-difluorobut-3-en-1-one (3ma)

55 mg, 79% yield, white solid, E/Z = 5.9/1, $R_f = 0.3$ (hexane);

¹**H NMR** (400 MHz, CDCl₃): δ 7.99 (d, J = 8.1 Hz, 2H), 7.77 (d, J = 7.9 Hz, 0.32H), 7.45 (dd, J = 5.2, 3.4 Hz, 2H), 7.37 (s, 1.17H), 7.26–7.21 (m, 2.53H), 7.19-7.10 (m, 1.75H), 6.97 (dd, J = 16.4, 2.4 Hz, 1H), 6.80 (d, J = 13.4 Hz, 0.18H), 6.50–6.36 (m, 1H), 6.04 (dd, J = 26.5, 13.7 Hz, 0.17H), 1.28 (s, 9H), 1.19 (s, 1.78H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 188.2 (t, J = 30.6 Hz), 158.6, 136.2, 135.4 (t, J = 9.8 Hz), 134.9, 130.2 (t, J = 2.9 Hz), 130.1, 129.9, 129.5, 129.3, 128.9, 128.6, 127.3, 125.8, 125.7, 125.5, 121.5 (t, J = 24.4 Hz), 116.0 (t, J = 249.3 Hz), 35.3, 31.0 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -90.99 (d, J = 13.6 Hz), -97.59 (d, J = 10.9 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₀H₂₀ClF₂O⁺) requires *m/z* 349.1165, found *m/z* 349.1164.

(E)-4-(4-bromophenyl)-1-(4-(tert-butyl)phenyl)-2,2-difluorobut-3-en-1-one (3na)

64 mg, 81% yield, white solid, E/Z = 5.9/1, $R_f = 0.3$ (hexane);

¹**H** NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 8.4 Hz, 2H), 7.80 (d, J = 8.6 Hz, 0.3H), 7.43 (dd, J = 11.9, 8.6 Hz, 4H), 7.35 (dd, J = 16.0, 8.5 Hz, 0.71H), 7.24 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.4 Hz, 0.28H), 6.96 (dt, J = 16.4, 2.4 Hz, 1H), 6.78 (d, J = 12.6 Hz, 0.16H), 6.41 (dt, J = 16.4, 11.3 Hz, 1H), 6.00 (dd, J = 27.0, 14.2 Hz, 0.17H), 1.28 (s, 9H), 1.26 (s, 1.55H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): δ 188.3 (t, J = 31.0 Hz), 158.5,135.6 (t, J = 9.5 Hz), 133.3, 132.0, 131.3, 130.7, 130.2 (t, J = 2.9 Hz),130.1, 129.4, 128.9, 126.0, 125.8, 125.6, 123.7, 120.7 (t, J = 24.5 Hz), 116.1 (t, J = 249.3 Hz), 35.3, 31.0 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -91.1 (d, *J* = 16.3 Hz), -97.4 (d, *J* = 14.3 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₀H₂₀BrF₂O⁺) requires *m/z* 393.0660, found *m/z* 393.0663.

(E)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-4-(thiophen-3-yl)but-3-en-1-one (30a)

51 mg, 80% yield, white solid, E/Z = 13/1, $R_f = 0.3$ (hexane);

¹**H** NMR (400 MHz, CDCl₃): δ 8.05 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.6 Hz, 2H), 7.36 (s, 1H), 7.33–7.29 (m, 1H), 7.26 (s, 1H), 7.08 (dt, J = 16.1, 2.5 Hz, 1H), 6.39–6.17 (m, 1H), 1.35 (s, 9H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 188.5 (t, J = 31.0 Hz), 158.4, 137.2, 130.7 (t, J = 9.9 Hz), 130.3 (t, J = 2.9 Hz), 129.5, 126.8, 126.3, 125.8, 124.9, 119.6 (t, J = 24.8 Hz), 116.3 (t, J = 250.2 Hz), 35.3, 31.0 ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -92.45 (d, J = 15.0 Hz), -97.26 (d, J = 10.9 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₈H₁₉F₂OS⁺) requires *m*/*z* 321.1119, found *m*/*z* 321.1121.

1-(4-(tert-butyl)phenyl)-2,2-difluoro-2-(1H-inden-2-yl)ethan-1-one (4a)

48 mg, 74% yield, colorless oil, $R_f = 0.4$ (hexane);

¹**H NMR** (400 MHz, CDCl₃): δ 8.05 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 8.6 Hz, 3H), 7.43 (d, *J* = 6.4 Hz, 1H), 7.30 (t, *J* = 5.7 Hz, 2H), 7.19 (s, 1H), 3.66 (s, 2H), 1.33 (s, 9H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): δ 188.4 (t, J = 30.4 Hz), 158.4, 143.5, 142.5, 139.0 (t, J = 26.4 Hz), 134.5 (t, J = 7.7 Hz), 130.3 (t, J = 2.9 Hz), 129.6, 126.9, 126.6, 125.7, 124.1, 122.6, 116.3 (t, J = 274.3 Hz), 37.5, 35.3, 31.0 ppm;

¹⁹**F NMR** (376 MHz, CDCl₃): *δ* -96.28 (s) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₁H₂₁F₂O⁺) requires *m/z* 327.1555, found *m/z* 327.1560.

1-(4-(tert-butyl)phenyl)-2,2-difluoropent-4-yn-1-one (4b)

33 mg, 66% yield, colorless oil, $R_f = 0.4$ (hexane);

¹**H NMR** (400 MHz, CDCl₃): δ 8.01 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.6 Hz, 2H), 3.10 (td, J = 15.6, 2.6 Hz, 2H), 2.07 (t, J = 2.6 Hz, 1H), 1.28 (s, 9H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): δ 187.4 (t, *J* = 30.5 Hz), 130.31 (t, *J* = 3.3 Hz), 128.82 (t, *J* = 3.0 Hz), 126.00, 125.80, 117.09 (t, *J* = 257.3 Hz), 74.55, 72.45, 35.35, 30.97, 25.48 (t, *J* = 26.8 Hz) ppm;

¹⁹**F** NMR (376 MHz, CDCl₃): δ -98.63 (t, J = 15.7 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₅H₁₇F₂O⁺) requires *m/z* 251.1242, found *m/z* 251.1243.

1-(4-(tert-butyl)phenyl)-2,2-difluoro-4-methylpent-3-en-1-one (4c)

37 mg, 70% yield, colorless oil, $R_f = 0.4$ (hexane);

¹**H NMR** (400 MHz, CDCl₃): δ 8.00 (d, *J* = 8.6 Hz, 2H), 7.50 (d, *J* = 8.7 Hz, 2H), 5.73–5.54 (m, 1H), 2.06–1.76 (m, 6H), 1.35 (s, 9H) ppm;

¹³**C NMR** (100 MHz, CDCl₃): δ 188.4 (t, J = 31.4 Hz), 158.07, 147.0 (t, J = 7.3 Hz), 130.2 (t, J = 2.8 Hz) 129.3, 126.0, 125.6, 117.86 (t, J = 26.2 Hz), 116.03 (t, J = 247.8 Hz), 35.26, 30.99, 26.72, 19.38 ppm;

¹⁹**F NMR** (376 MHz, CDCl₃): δ -92.93 (d, J = 12.9 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₆H₂₁F₂O⁺) requires *m/z* 267.1555, found *m/z* 267.1552.

(E)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-5,5-dimethylhex-3-en-1-one (4d)

39 mg, 67% yield, colorless oil, E/Z > 20/1, $R_f = 0.4$ (hexane);

¹**H NMR** (400 MHz, CDCl₃): δ 7.93 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 6.21 (dt, J =

16.1, 2.6 Hz, 1H), 5.67 (dt, *J* = **16.1**, 10.9 Hz, 1H), 1.28 (s, 9H), 0.98 (s, 9H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 189.0, 158.1, 150.0 (t, J = 8.7 Hz), 130.2 (t, J = 2.9 Hz), 125.6,

125.5, 117.6 (t, *J* = 24.8 Hz), 116.3 (t, *J* = 247.8 Hz), 35.3, 33.5, 31.0, 28.7 ppm;

¹⁹**F NMR** (376 MHz, CDCl₃): δ -97.05 (d, J = 14.3 Hz), -101.70 (d, J = 44.3 Hz) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₈H₂₅F₂O⁺) requires *m/z* 295.1868, found *m/z* 295.1865.

(*E*)-1-(4-(tert-butyl)phenyl)-2,2-difluorohept-3-en-1-one (4e)

The amount of 4e (3 mg, < 20% yield) is very small, and its spectrum is shown below, with some peaks of the carbon spectrum not appearing. These spectral data cannot be used, but only as a reference.

¹H NMR (400 MHz, CDCl₃):

 $<^{-97033}_{-97062}$

-20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 fl (ppm) -110 -120 -130 -140 -150 -160

¹³C NMR (100 MHz, CDCl₃):

The amount of 4f (5 mg, < 20% yield) is very small, and its spectrum is shown below, with some peaks of the carbon spectrum not appearing. These spectral data cannot be used, but only as a reference.

¹H NMR (400 MHz, CDCl₃):
7-73946 6-6224 6-6226 6-62666 6-62666 6-62666 6-62666 6-62666 6-626666 6-62666 6-62666 6-62666 6-62666 6-626666 6-626666

¹⁹**F NMR** (376 MHz, CDCl₃)

2-(4-(tert-butyl)phenyl)-N,N-diethyl-2-oxoacetamide (9a)

45 mg, 86% yield, colorless oil, Rf = 0.3 (25% EtOAc/hexane);

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 7.4 Hz, 2H), 3.58 (q, *J* = 8.0 Hz, 2H), 3.26 (q, *J* = 8.0 Hz, 2H), 1.36 (s, 9H), 1.31 (t, *J* = 8.0 Hz, 3H), 1.18 (t, *J* = 8.0 Hz, 3H) ppm;

¹³**C NMR** (100 MHz, CDCl₃) δ 191.4, 167.0, 158.6, 130.8, 129.6, 126.0, 42.1, 38.7, 35.4, 31.0, 14.1, 12.9 ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₆H₂₄NO₂⁺) requires *m*/*z* 262.1802, found *m*/*z* 262.1806. This compound is known.^{S16}

N,N-dimethyl-2-oxo-2-phenylacetamide (9b)

26 mg, 74% yield, colorless oil, Rf = 0.3 (25% EtOAc/hexane);

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.2 Hz, 2H), 7.65 (t, *J* = 9.2 Hz, 1H), 7.52 (t, *J* = 8.0 Hz, 2H), 3.13 (s, 3H), 2.97 (s, 3H) ppm;

¹³**CNMR** (100 MHz, CDCl₃) δ 191.8, 167.1, 134.7, 133.1, 130.0, 129.7, 129.0, 128.5, 37.1, 34.0 ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ ($C_{10}H_{12}NO_2^+$) requires m/z 178.0863, found m/z 178.0867. This compound is known.^{S16}

N,*N*-dimethyl-2-oxo-2-phenylacetamide (9c)

The spectral data is the same as above.

23 mg, 64% yield, colorless oil, Rf = 0.3 (25% EtOAc/hexane);

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.5 Hz, 2H), 7.65 (t, *J* = 9.0 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 3.13 (s, 3H), 2.97 (s, 3H) ppm;

¹³**CNMR** (100 MHz, CDCl₃) δ 191.8, 167.1, 134.7, 133.1, 130.0, 129.7, 129.0, 128.5, 37.1, 34.0 ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₀H₁₂NO₂⁺) requires *m*/*z* 178.0863, found *m*/*z* 178.0869. This compound is known.^{S16}

1- morpholino-2-phenylethane-1,2-dione (9d)

31 mg, 71% yield, colorless oil, Rf = 0.3 (25% EtOAc/hexane);

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.0 Hz, 2H), 7.60 (t, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 3.73 (s, 4H), 3.71–3.61 (m, 2H), 3.46–3.31 (m, 2H). ppm;

¹³**CNMR** (100 MHz, CDCl3) δ 191.2, 165.5, 135.0, 133.0, 129.7, 129.1, 66.8, 66.7, 46.3, 41.6 ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₂H₁₄NO₃⁺) requires *m/z* 220.0968, found *m/z* 220.0977. This compound is known.^{S16}

2- oxo-2-phenyl-N,N-dipropylacetamide (9e)

27 mg, 59% yield, colorless oil, Rf = 0.3 (25% EtOAc/hexane);

¹**H** NMR (400 MHz, CDCl₃) δ 7.87 (dd, *J* = 5.1, 3.3 Hz, 2H), 7.62 – 7.52 (m, 1H), 7.43 (dd, *J* = 10.6, 4.7 Hz, 2H), 3.45 – 3.35 (m, 2H), 3.16 – 2.99 (m, 2H), 1.72 – 1.60 (m, 2H), 1.57 – 1.47 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H), 0.72 (t, *J* = 7.5 Hz, 3H); ppm;

¹³**CNMR** (100 MHz, CDCl₃) δ 191.6, 167.2, 134.5, 133.4, 129.6, 128.9, 49.3, 45.9, 21.8, 20.6, 11.4, 11.0 ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₄H₂₀NO₂⁺) requires *m/z* 234.1489, found *m/z* 234.1494. This compound is known.^{S16}

2,2-difluoro-1-phenyl-2-(2-(pyrrolidin-1-yl)phenyl)ethan-1-one (9f)

34 mg, 57% yield, colorless oil, Rf = 0.3 (25% EtOAc/hexane);

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 7.8, 1.1 Hz, 1H), 7.64 (d, J = 7.7 Hz, 2H), 7.38 (dd, J = 16.9, 7.9 Hz, 2H), 7.27 (t, J = 7.5 Hz, 1H), 7.22 (t, J = 7.8 Hz, 2H), 7.09 (d, J = 7.9 Hz, 1H), 2.51 (t, J = 6.1 Hz, 4H), 1.76 – 1.38 (m, 4H); ppm;

¹³**CNMR** (100 MHz, CDCl₃) δ 183.0 (t, *J* = 27.4 Hz), 148.3, 133.2, 132.4, 132.0, 128.1, 128.1, 126.1 (t, *J* = 5.3 Hz), 125.6, 122.7, 114.5 (t, *J* = 245.1 Hz), 53.1, 24.1 ppm;

¹⁹**F NMR** (376 MHz, CDCl₃): δ -93.0 (s) ppm;

HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₈H₁₈F₂NO⁺) requires *m/z* 302.1351, found *m/z* 302.1350.

References

- S1. T. Nihei; N. Iwai; T. Matsuda and T. Kitazume, J. Org. Chem., 2005, 70, 5912.
- S2. S.-J. Yao, Z.-H. Ren, Y.-Y. Wang, Z.-H. Guan, J. Org. Chem. 2016, 81, 4226.
- S3. L. Candish, M. Teders, F. Glorius, J. Am. Chem. Soc. 2017, 139, 7440.
- S4. C.-H. Qu, R. Huang, Y. Liu, T. Liu, G.-T. Song, Org. Chem. Front. 2022, 9, 4135.

S5. (a) D. L. Lipilin, A. E. Frumkin, A. Y. Tyurin, V. V. Levin, A. D. Dilman, *Molecules* 2021, 26, 3323; (b) Z. Zhang, F. Liu, J. Chen, K. Zhou, Z. Bao, B. Su, Q. Yang, Q. Ren, Y. Yang, *Tetrahedron Lett.* 2019, 60, 151191; (c) J. K. Laha, M. K. Hunjan, *Chem. Commun.* 2021, 57, 8437-8440; (d) M. Rueping, C. Vila, A. Szadkowska, R. M. Koenigs, J. Fronert, *ACS Catal.* 2012, 2, 2810-2815; (e) S. Firoozi, M. Hosseini-Sarvari, *J. Org. Chem.* 2021, 86, 2117-2134; (f) X. Zhuang, L. Ling, Y. Wang, B. Li, B. Sun, W. Su, C. Jin. *Org. Lett.* 2022, 24, 1668-1672; (g) T. Constantin, M. Zanini, A. Regni, N. S. Sheikh, F. Julia, D. Leonori, *Science* 2020, 367, 1021-1026.

S6. J.-K. Su, X.-X. Ma, Z.-L. Ou, Q.-L. Song, ACS Cent. Sci. 2020, 6, 1819-1826.

S7. (a) J. F. Franz, W. B. Kraus, K. Zeitler, *Chem. Commun.* 2015, *51*, 8280-8283; (b) R. Talukdar, *Org. Biomol. Chem.* 2020, *18*, 8294-8345.

S8. (a) R. W. Pipal, K. T. Stout, P. Z. Musacchio, S. Ren, T. J. A. Graham, S. Verhoog, L. Gantert, T. G. Lohith, A. Schmitz, H. S. Lee, D. Hesk, E. D. Hostetler, Ian W. Davies, D. W. C. MacMillan, *Nature*, 2021, 589, 542-547; (b) T. M. Faraggi, C. Rouget-Virbel, J. A. RincÓn, M. Barberis, C. Matros, S. Garc h-Cerrada, J. Agejas, O. de, Frutos, D. W. C. MacMillan, *Org. Process Res. Dev.* 2021, 25, 1966-1973; (c) H. Huang, P. Bellotti, J. E. Erchinger, T. O. Paulisch, F. Glorius, *J. Am. Chem. Soc.* 2022, 144, 1899-1909; (d) A. EIMarrouni, C. B. Ritts, J. Balsells, *Chem. Sci.* 2018, 9, 6639-6646; (e) S. Jung, S. Shin, S. Park, S. Hong, *J. Am. Chem. Soc.* 2020, 142, 11370-11375; (f) T. Kerackian, A. Reina, D. Bouyssi, N. Monteiro, A. Amgoune, *Org. Lett.* 2020, 22, 2240-2245; (g) J. Dong, X. Lyu, Z. Wang, X. Wang, H. Song, Y. Liu, Q. Wang, *Chem. Sci.* 2019, 10, 976-982; (h) Q. Zhou, S. J. S. DÜsel, L. Lu, B. KÖnig, W. Xiao, *Chem. Commun.* 2019, 55, 107-110; (i) M. S. Santos, M, Cybularczyk-Cecotka, B. KÖnig, M. Giedyl, *Chem. Eur. J.* 2020, 26, 15323-15329.
S9. (a) Z. Zhang, X. Hu, *ACS Catal.* 2020, 10, 777-782; (b) Z. Wang, Q. Liu, X. Ji, G. Deng, H.

S10. (a) C. Liu, H. Liu, X. Zheng, S. Chen, Q. Lai, C. Zheng, M. Huang, K. Cai, Z. Cai, S. Cai, ACS Catal. 2022, 12, 1375-1381; (b) S. K. Kariofillis, S. Jiang, A. M. Zurański, S. S. Gandhi, J. I. M. Alvarado, A. G. Doyle, J. Am. Chem. Soc. 2022, 144, 1045-1055; (c) X. Shu, L. Huan, Q. Huang, H. Huo, J. Am. Chem. Soc. 2020, 142, 19058-19064; (d) Z. Wang, X. Ji, T. Han, G. Deng, H. Huang, Adv. Synth. Catal. 2019, 361, 5643-5647; (e) P. Jia, Q. Li, W. Poh, H. Jiang, H. Liu, H. Deng, J. Wu, Chem. 2020, 6, 1766-1776; (f) J. M. Tanko, M. Sadeghipour, Angew. Chem. Int. Ed. 1999, 38, 159-161; (g) Z. Li, W. Wang, J. Yang, Y. Wu, W. Zhang, Org. Lett. 2013, 3820-3823; (h) T. Kawasaki, N. Ishida, M. Murakami, Angew. Chem. Int. Ed. 2020, 59, 18267-18271; (i) X. Ji, Q. Liu, Z. Wang, P. Wang, G. Deng, H. Huang, Green Chem. 2020, 22, 8233-8237; (j) H. Wang, H. Liu, M. Wang, M. Huang, X. Shi, T. Wang, X. Cong, J. Yan, J. Wu, iScience, 2021, 24, 102693; (k) T. Kippo, Y. Kimura, M. Ueda, T. Fukuyama, I. Ryu, Synlett, 2017, 28, 1733-1737.

Huang, ACS Catal. 2020, 10, 154-159.

S11. P. Xu, C. G. Daniliuc, K. Bergander, C. Stein, A. Studer, ACS Catal. 2022, 12, 11934-11941.

S12. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 2016; Gaussian, 2016.

S13. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104-154119.

S14. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.

S15. J. Tomasi, B. Mennucci, E. Cances, J. Mol. Struct.: THEOCHEM. 1999, 464, 211-226.

S16. X.-B. Zhang, W.-C. Yang, L. Wang, Org. Biomol. Chem. 2013, 11, 3649-3654.

Copies ¹H NMR, ¹³C NMR, ¹⁹F NMR

(*E*)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-4-phenylbut-3-en-1-one (3aa) ¹H NMR (400 MHz, CDCl₃):

YX-11H

<1345 <1324

¹⁹F NMR (376 MHz, CDCl₃):

(*E*)-2,2-difluoro-4-phenyl-1-(p-tolyl)but-3-en-1-one (3ac) ¹H NMR (400 MHz, CDCl₃):

YX-11C

2.427 2.333

¹³C NMR (100 MHz, CDCl₃):

S83

(*E*)-2,2-difluoro-1-(4-methoxyphenyl)-4-phenylbut-3-en-1-one (3ad) ¹H NMR (400 MHz, CDCl₃):

YX-11D

¹⁹F NMR (376 MHz, CDCl₃):

SMe

¹³C NMR (100 MHz, CDCl₃):

¹⁹F NMR (376 MHz, CDCl₃):

¹³C NMR (100 MHz, CDCl₃):

(*E*)-1-(4-cyclopropylphenyl)-2,2-difluoro-4-phenylbut-3-en-1-one (3ag) ¹H NMR (400 MHz, CDCl₃):

¹⁹F NMR (376 MHz, CDCl₃):

YX-11F

YX-11F

¹³C NMR (100 MHz, CDCl₃):

¹⁹F NMR (376 MHz, CDCl₃):

(E)-2,2-difluoro-1-(4-fluorophenyl)-4-phenylbut-3-en-1-one (3ai) ¹H NMR (400 MHz, CDCl₃):

87.761 87.761 87.761 87.744 87.761 86.365 86.365 86.365 86.365 86.365 86.365 86.365 87.443 86.365 87.443 86.365 86.365 86.365 86.373 86.331 86.365 86.333 86.333 86.333 86.333 86.333 87.335 87.335 87.335 87.335 87.335 87.335 87.335 87.335 87.335 87.335 87.335 87.335 87.335 87.335 87.348

(E)-1-(4-chlorophenyl)-2,2-difluoro-4-phenylbut-3-en-1-one (3aj) ¹H NMR (400 MHz, CDCl₃):

¹⁹F NMR (376 MHz, CDCl₃):

 $(E) \hbox{-} 1-(benzo[d][1,3]dioxol-5-yl) \hbox{-} 2,2-difluoro-4-phenylbut-3-en-1-one} (3ak)$ ¹H NMR (400 MHz, CDCl₃):

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

--90.113 --90.149 --97.191

7,7,700 7,1,673 7,1,667 7,1,567 7,1,257 7,1,258 7,1,278 7,279 7,278 7,278 7,278 7,278 7,278 7,278 7,278 7,278 7,278 7,278 7,27

¹³C NMR (100 MHz, CDCl₃):

YX-11E

(*E*)-2,2-difluoro-4-phenyl-1-(thiophen-2-yl)but-3-en-1-one (3al) ¹H NMR (400 MHz, CDCl₃):

98026 - 7.788 - 7.788 - 7.788 - 7.788 - 7.788 - 7.788 - 7.358 - 7.588 - 7.5

¹⁹F NMR (376 MHz, CDCl₃):

(*E*)-2,2-difluoro-1-(1-methyl-1H-indol-3-yl)-4-phenylbut-3-en-1-one (3am) ¹H NMR (400 MHz, CDCl₃):

8.8.47 8.8.47 8.8.46 8.8.46 8.8.46 8.8.46 8.8.46 8.8.46 8.8.46 7.7.7.7 7.7.7.7 7.7.

¹³C NMR (100 MHz, CDCl₃):

(*E*)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-4-(p-tolyl)but-3-en-1-one (3ba) ¹H NMR (400 MHz, CDCl₃):

¹⁹F NMR (376 MHz, CDCl₃):

(E)-1,4-bis(4-(tert-butyl)phenyl)-2,2-difluorobut-3-en-1-one (3ca) ¹H NMR (400 MHz, CDCl₃):

S101

¹⁹F NMR (376 MHz, CDCl₃):

¹³C NMR (100 MHz, CDCl₃):

QCHYX-22A

QCHYX-22A

-90.838 -90.882 -97200 -97209 -97209 -97232

¹⁹F NMR (376 MHz, CDCl₃):

-90.949 -90.990 -91.023 -96.798

¹³C NMR (100 MHz, CDCl₃):

(*E*)-4-(2-(benzyloxy)phenyl)-1-(4-(tert-butyl)phenyl)-2,2-difluorobut-3-en-1-one (3ea)

¹H NMR (400 MHz, CDCl₃):

4.7338 6.9328 6.9328 6.9328 6.9334 6.9334 6.9334 6.9334 6.9334 6.9334 6.9335 6.9307 6.9335 6.9307 6.9335 6.9307 6.9335 6.9307 6.9335 6.9307 6.9335 6.93556 7.935567 7.935567 7.935567756 7.935567756775677576775777777777777

1335 1310 1328 1328 1328 1328 1252 1252

¹⁹F NMR (376 MHz, CDCl₃):

YX-38A-200814 YX-38A-200814

-90.227 -90.263 -97.585 -97.618

¹³C NMR (100 MHz, CDCl₃):

(**3fa**)

¹H NMR (400 MHz, CDCl₃):

¹⁹F NMR (376 MHz, CDCl₃):

(*E*)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-4-(4-(trifluoromethyl)phenyl)but-3-en-1 -one (3ga) ¹H NMR (400 MHz, CDCl₃):

C-91.099
C-91.036
C-97.647

YX-38BRE

¹³C NMR (100 MHz, CDCl₃):

YX-21C

-90.885
<-90.923
<-97.93
<-97.93</pre>

 $(E) \hbox{-} 1-(4-(tert-butyl)phenyl) \hbox{-} 2, 2-difluoro \hbox{-} 4-(4-fluorophenyl)but-3-en-1-one (3ia)$

¹H NMR (400 MHz, CDCl₃):

(*E*)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-4-(3-fluorophenyl)but-3-en-1-one (3ja) ¹H NMR (400 MHz, CDCl₃):

¹⁹F NMR (376 MHz, CDCl₃):

(*E*)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-4-(2-fluorophenyl)but-3-en-1-one (3ka) ¹H NMR (400 MHz, CDCl₃):

(*E*)-1-(4-(tert-butyl)phenyl)-4-(4-chlorophenyl)-2,2-difluorobut-3-en-1-one (3la) ¹H NMR (400 MHz, CDCl₃):

¹⁹F NMR (376 MHz, CDCl₃):

(E)-1-(4-(tert-butyl)phenyl)-4-(3-chlorophenyl)-2,2-difluorobut-3-en-1-one (3ma) ¹H NMR (400 MHz, CDCl₃):

YX-35ARE

-91.115 -91.153 -97.359 -97.388 2017-2019

1288
 1273
 1.85

¹⁹F NMR (376 MHz, CDCl₃):

YX-26C

C-90.974 C-91.010 C-97.580 C-97.580

(*E*)-4-(4-bromophenyl)-1-(4-(tert-butyl)phenyl)-2,2-difluorobut-3-en-1-one (3na) ¹H NMR (400 MHz, CDCl₃):

¹⁹F NMR (376 MHz, CDCl₃):

(E)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-4-(thiophen-3-yl)but-3-en-1-one (30a) ¹H NMR (400 MHz, CDCl₃):

-1347

¹⁹F NMR (376 MHz, CDCl₃):

1-(4-(tert-butyl)phenyl)-2,2-difluoropent-4-yn-1-one (4b) ¹H NMR (400 MHz, CDCl₃):

¹⁹F NMR (376 MHz, CDCl₃):

 $<^{-92.91}_{-92.951}$

(E)-1-(4-(tert-butyl)phenyl)-2,2-difluoro-5,5-dimethylhex-3-en-1-one (4d) ¹H NMR (400 MHz, CDCl₃):

S125

₹^{87,977}

2-(4-(tert-butyl)phenyl)-N,N-diethyl-2-oxoacetamide (9a) ¹H NMR (400 MHz, CDCl₃):

¹³C NMR (100 MHz, CDCl₃):

HMBC:

N,N-dimethyl-2-oxo-2-phenylacetamide (9b) ¹H NMR (400 MHz, CDCl₃):

QCH-2-20A QCH-2-20A

¹³C NMR (100 MHz, CDCl₃):+

¹⁹F NMR (376 MHz, CDCl₃):

DEPT

¹⁹F NMR (376 MHz, CDCl₃):

(2-bromoethene-1,1-diyl)dibenzene (10) ¹H NMR (400 MHz, CDCl₃):

S137

7.420 7.403 7.403 7.385 7.385 7.363 7.356 7.356 7.356 7.356 7.356 7.356 7.3157

S138

