Potential of catalytic oxidation of Kraft black liquor for the production of biosourced compounds

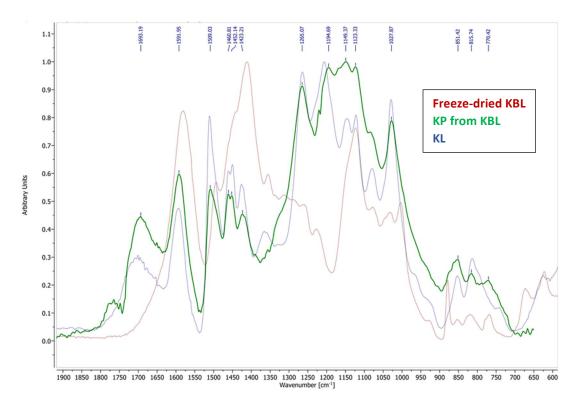
Léa Vilcocq,*^a Nicolas Chaussard, ^{a,b} Antonio Hernández Mañas, ^{a,b} Olivier Boyron, ^a Manel Taam, ^a Frédérique Bertaud,^c Pascal Fongarland, ^a and Laurent Djakovitch ^{*b}

Electronic Supplementary Information

1.	Catalyst preparation and characterization	2
2.	FTIR spectra of Kraft black liquor (KBL), Kraft lignin (KL) and Klason phases (KP)	3
3.	HPLC analysis of KBL before reaction	5
4.	NMR HSQC and ¹ H of Kraft black liquor (KBL), Kraft lignin (KL) and Klason phases (KP)	6
5.	Carbon balance during catalytic oxidation of KBL	10
6.	Repeatability test on catalytic oxidation of KBL (batch mode)	11
7.	Deactivation of the catalyst CuO/TiO $_2$ (continuous mode)	12
8.	Productivity of various compounds	13

1. Catalyst preparation and characterization

Catalyst preparation. 5%CuO/TiO₂ was synthetized in our group by incipient wetness impregnation employing a copper nitrate as precursor (Cu(NO₃)₂.2.5H₂O) in aqueous solution. The catalyst was kept under stirring 4 hours after the impregnation, and then dried at 110°C for one night and calcined at 550°C for 5 hours. Such method showed a good repeatability in the metal charge from one catalyst batch to another (4.9-5%wt).


Chemical analysis (ICP-OES) was carried out by using ICP-OES ACTIVA Jobin Yvon device. Before analysis, mineralization was carried out by a dilution with H₂SO₄, HNO₃ and HF, a subsequent evaporation and then heating process of the residue with HNO₃.

Physisorption N_2 . The porosimetry and BET analysis were carried out on an ASAP 2020 of Micromeritics, equipped with two pressure sensors. The analysis were done using nitrogen as physisorption gas at a temperature of -196°C. Desorption pre-treatment was carried out for 3 h at 300°C under vacuum.

X-ray diffraction analysis was carried out in a Bruker D8-Advance with automatic sampler, using a radiation Cu-K α (0.154184nm).

Analysis	Parameter	Result		
ICP	Cu charge	4.9-5 wt.% Homogeneous loading		
N ₂ Physisorption - BET	Specific surface	32 ± 1 m ² .g ⁻¹		
N_2 Physisorption - BJH	Porosity	Mesopores (2-50 nm) Av. Size: 25 nm		
XRD	Phases distribution	TiO₂ Anatase and Rutile CuO Tenorite (minor)		

The catalyst specific surface area was rather low (32 m².g⁻¹). The pores presented an average diameter of 25 nm. The crystalline phases observed by XRD corresponded to the ones of the commercial TiO₂ support, with minor signal corresponding to CuO crystallites.

2. FTIR spectra of Kraft black liquor (KBL), Kraft lignin (KL) and Klason phases (KP)

Figure S1. FTIR spectra of starting materials. KBL after freeze-drying (red), KP extracted from KBL (green) and KL.

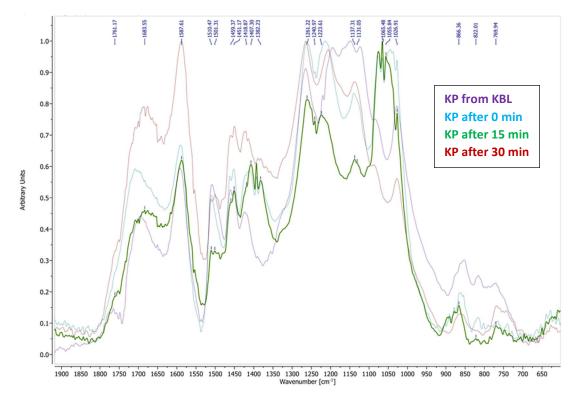
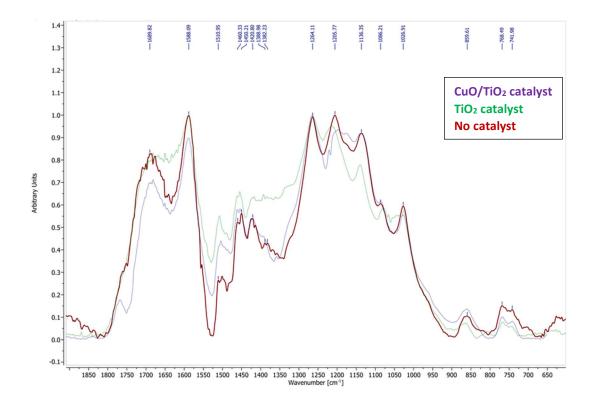
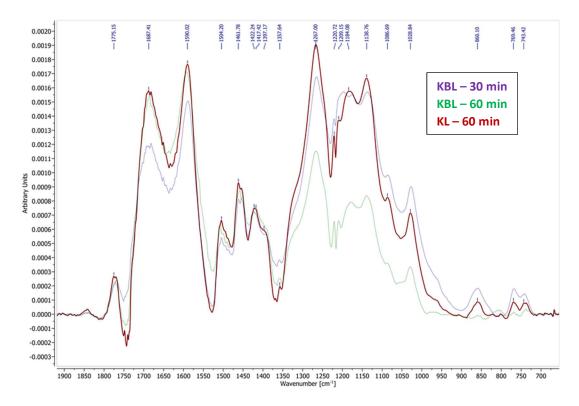
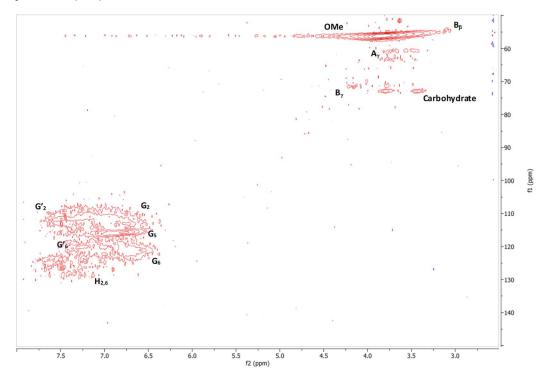
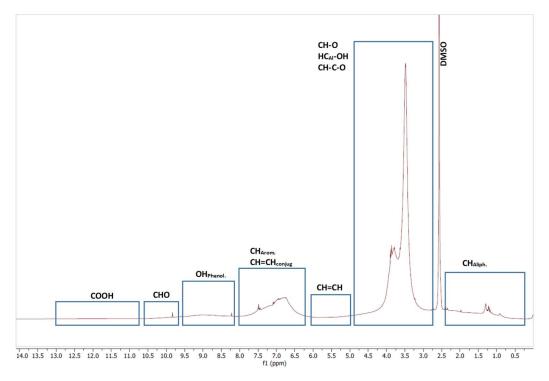




Figure S2. FTIR spectra of Klason phases after non-catalytic oxidation reactions, in batch mode, 150°C, 20 bar.

Figure S3. FTIR spectra of Klason phases after non-catalytic / catalytic oxidation reactions, in batch mode, 150°C, 20 bar, 30 min.


Figure S4. FTIR spectra of Klason phases after catalytic oxidation reactions, in batch mode, 150°C, 20 bar, catalyst CuO/TiO₂, starting material KBL or KL.

3. HPLC analysis of KBL before reaction


Table S2. Concentration of aliphatic and phenolic compounds measured in HPLC in raw KBL (in gC.L⁻¹). *n.d.: not detected.*

Compound	Raw KBL, not diluted (26 % dry matter)					
Oxalic acid	0.095					
Tartronic acid	1.943					
Glyceric acid	0.118					
Glycolic acid	1.308					
Formic acid	2.547					
Malic acid	n.d.					
Malonic acid	n.d.					
3-hydroxypropionic acid	1.047					
Lactic acid	1.833					
Maleic acid	n.d.					
Acetic acid	2.705					
Fumaric acid	n.d.					
Succinic acid	0.189					
2-hydroxybutyric acid	0.614					
Gallic acid	traces					
HMF	traces					
Furfural	traces					
Catechol	n.d.					
p-Benzoquinone	0.110					
Protocatechuic acid	0.022					
4-Hydroxybenzoic acid	n.d.					
Phthalic acid	0.788					
Vanillic acid	n.d.					
Homovanillic acid	0.364					
m-Anisic acid	n.d.					
Syringic acid	n.d.					
Phenol	0.214					
4-Hydroxyacetophenone	n.d.					
Vanillin	0.129					
Syringaldehyde	n.d.					
Acetovanillone	n.d.					
Acetosyringone	n.d.					
Ferulic acid	n.d.					
Guaiacol	0.247					
Benzoic acid	0.146					
4-Hydroxybenzaldehyde	0.114					

4. NMR HSQC and ¹H of Kraft black liquor (KBL), Kraft lignin (KL) and Klason phases (KP)

Figure S5. HSQC spectra of the initial KBL, freeze-dried. Please note the absence of correlations corresponding to inter-unit bonds.

Figure S6. ¹*H NMR spectra of KBL as obtained from freeze-dried black liquor.*

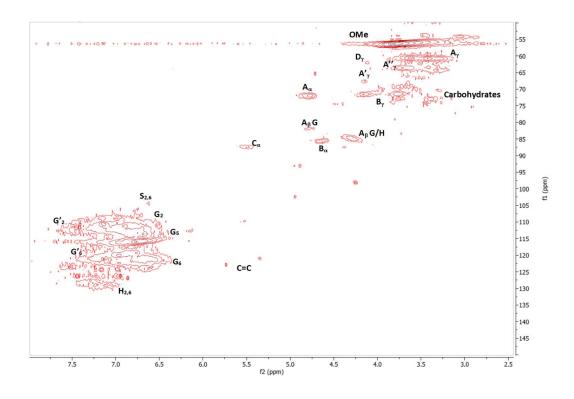
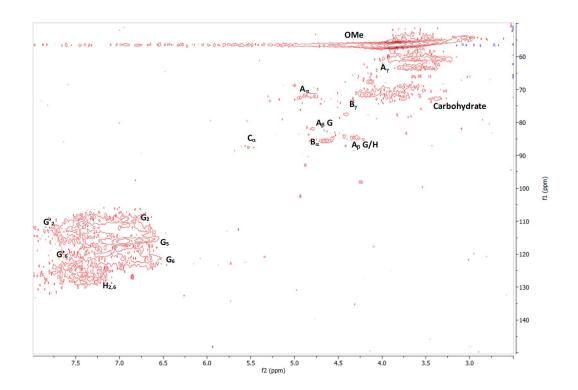
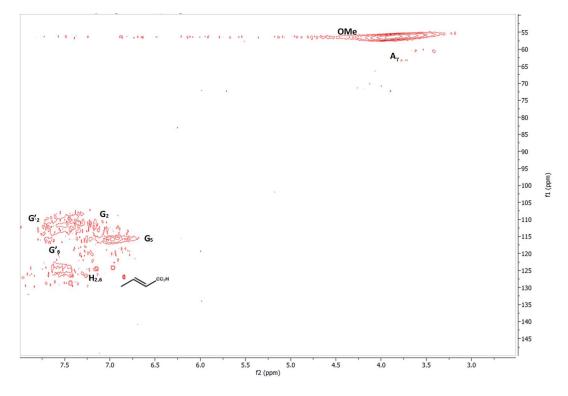
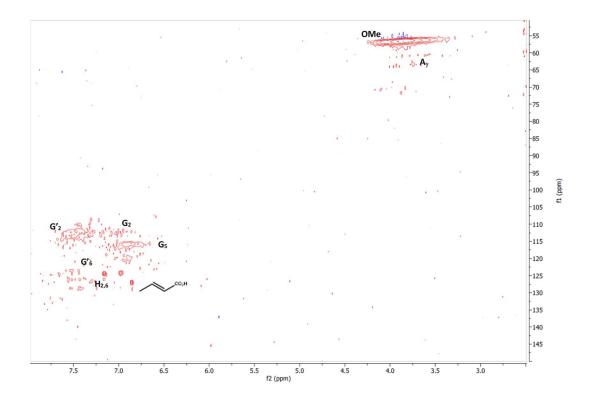
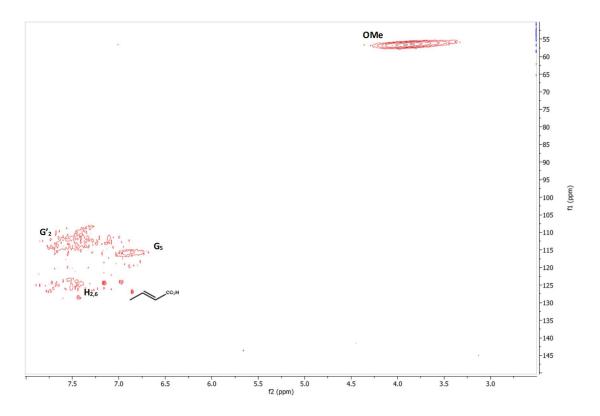



Figure S7. HSQC spectra of the initial KL.

Figure S8. HSQC spectra of KP after <u>0 min</u> of <u>non catalytic</u> oxidation of KBL in batch mode, 150°C, 20 bar.

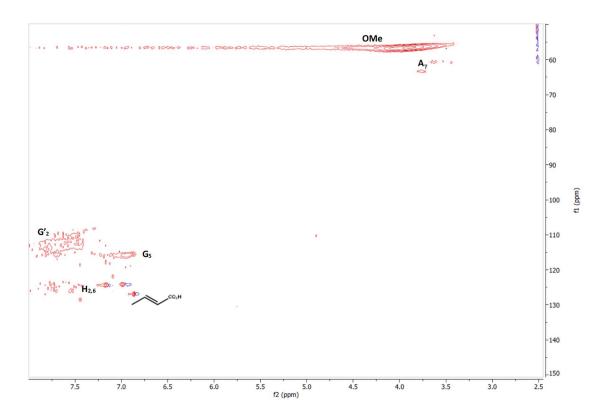

Figure S9. HSQC spectra of KP after <u>15 min</u> of <u>non catalytic</u> oxidation of KBL in batch mode, 150°C, 20 bar.

Figure S10. HSQC spectra of KP after <u>30 min</u> of <u>non catalytic</u> oxidation of KBL in batch mode, 150°C, 20 bar.

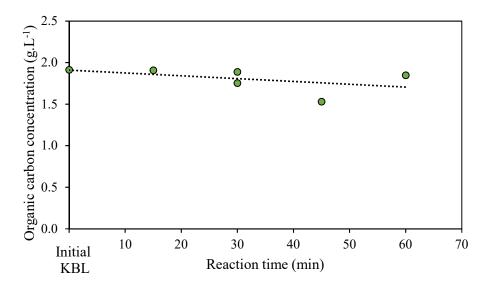
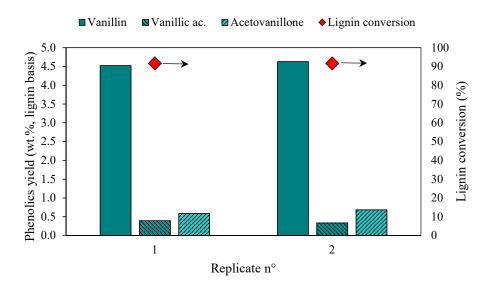

Figure S11. HSQC spectra of KP after <u>30 min</u> of <u>catalytic</u> oxidation of KBL in batch mode, 150°C, 20 bar, catalyst CuO/TiO₂.

Figure S12. HSQC spectra of KP after <u>30 min</u> of <u>catalytic</u> oxidation of <u>KL</u> in batch mode, 150°C, 20 bar, catalyst CuO/TiO_2 .


5. Carbon balance during catalytic oxidation of KBL

Total organic carbon was measured after KBL oxidation with a copper catalyst. Results are presented in Figure S133.

Figure S13. Carbon concentration in liquid phase during KBL oxidation (150°C, 20 bar, batch mode).

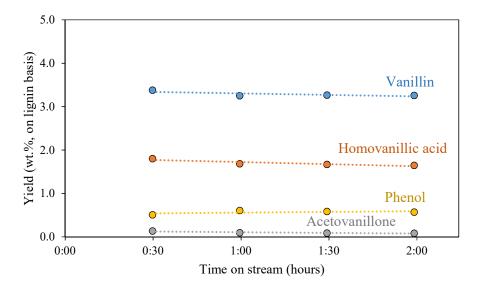

6. Repeatability test on catalytic oxidation of KBL (batch mode)

Figure S14. Repeatability of the catalytic oxidation of KBL in batch mode. *Operating conditions: 150°C, 20 bar air, stirring 1800 rpm, 30 min, dry matter concentration 5 g.L⁻¹, copper/lignin mass ratio 5 %.*

7. Deactivation of the catalyst CuO/TiO₂ (continuous mode)

Figure S15 shows the performances of CuO/TiO_2 catalyst during KBL oxidation in continuous reactor, at 200°C. An absence of deactivation was observed during 2 h on stream.

Figure S15. Yields of phenolic compounds during the catalytic oxidation of KBL. *Operating conditions: 200°C, 80 bar, contact time 3.9 min, dry matter concentration 5 g.L*⁻¹, catalyst CuO/TiO₂.

8. Productivity of various compounds

Starting material	Catalyst	Reaction time (min)	Reactor type	Klason phase (lignin)	Vanillin	Phenol	Phenolic mix	Formic acid	Acetic acid	Tartronic acid	Succinic acid	Aliphatic acids mix without volatiles
KL	CuO/TiO ₂	30	Batch	0.293	0.0884	0.055	0.22	1.048	0.191	0.000	0.593	1.30
KBL	CuO/TiO ₂	15	Batch	0.681	0.1981	0.035	0.37	1.74	0.42	1.37	1.20	3.89
KBL	CuO/TiO ₂	30	Batch	0.189	0.1051	0.025	0.19	1.01	0.24	0.63	0.71	2.12
KBL	CuO/TiO ₂	60	Batch	0.011	0.0456	0.023	0.10					
KBL	no	15	Batch	0.757	0.1633	0.020	0.33	1.24	0.50	1.22	1.20	3.61
KBL	no	30	Batch	0.143	0.0825	0.018	0.16	0.94	0.33	0.49	0.77	2.05
KBL	CuO/TiO ₂	Contact time 8 min	Fixed bed	0.828	0.33	0.03	0.60	3.37	1.47	2.21	3.27	10.05
KBL	CuO/TiO ₂	Contact time 6 min	Fixed bed	1.89	0.46	0.09	0.80	4.20	1.48	11.62	3.77	17.74
KBL	CuO/TiO ₂	Contact time 4 min	Fixed bed	4.61	0.73	0.12	1.27	3.91	1.55	11.35	3.75	17.66

Table S3. Values calculated for the productivity of various compounds in various operating conditions (in kg.h⁻¹.m⁻³).