Supporting Information

Speeding up sustainable solution-phase peptide synthesis using T3P[®] as green coupling reagent: methods and challenges

Alexia Mattellone, ^a Dario Corbisiero, ^a Lucia Ferrazzano, ^a Paolo Cantelmi, ^a Giulia Martelli, ^a Chiara Palladino, ^a Alessandra Tolomelli* and Walter Cabri*^a

^aDepartment of Chemistry "Giacomo Ciamician", Alma Mater Studiorum University of Bologna, Via Selmi 2, 40126, Bologna (Italy).

Table of contents

1. Conditions screening for model dipeptide synthesis	S4
2. Bases screening for coupling step	S5
3. Solvents screening and degree of racemization evaluation	S8
4. Comparison between EtOAc and DMF using Oxyma Pure®/DIC	S14
5. Synthesis of Z-Phe-Leu-O ^t Bu in gram scale	S16
6. Dipeptides synthesis employing Aib	S18
7. Conditions screening for Z removal	S20
7.a Calculation of Relative Response Factor (RRF)	S20
7.b Z removal by Method A	S25
7.c Cbz removal by Method B	S26
8. Synthesis of fully protected Leu-Enkephalin in solution-phase by Method Acont	S27
9. Synthesis of fully protected Leu-Enkephalin and Pentapeptide-18 (Leuphasyl [®]) in solution-phase Method A _{cont_plus}	S29
10. Synthesis of fully protected Leu-Enkephalin in solution-phase by Method B _{cont}	
11. Complete deprotection of fully protected peptides	S31
12. PMI calculation for the synthesis of Leu-Enkephalin	\$34
12.a Calculation of total mass of reagents employed for the synthesis of Leu-enkephalin using Method A _{cont} , Method A _{cont_plus} and Method B	\$35
13. Annex	\$36
References	S40

General methods

Unless otherwise stated, all materials, solvents and reagents were obtained from commercial suppliers and used without further purification. High-performance liquid chromatography (HPLC) reagent grade solvents were used. Specifically, Benzyloxycarbonyl (Z), tert-butyloxycarbonyl (Boc) amino acids, diisopropylethylenamine (DIPEA), pyridine (Py), triethylamine (TEA), 1,1,3,3-tetramethylguanidine (TMG), 2,6-lutidine, 1,5-diazabiciclo(5.4.0)undec-7-ene (DBU), tert-buthylamine $(^{t}BuNH_{2}),$ morpholine, diethylaminopropylamine (DEAPA), Oxyma Pure[®] and N,N'-diisopropylcarbodiimide (DIC) were supplied by Iris Biotech, Merck or Fluorochem. Ethyl Acetate, N-buthyl pyrrolidone (NBP), dimethyl carbonate (DMC), Noctyl pyrrolidone (NOP), γ-valerolactone, acetonitrile (ACN), detrahydrofuran (THF), 1-methyl tetrahydrofuran, dicloromethane (DCM), isopropyl alcohol ([']PrOH), isopropyl acetate ([']PrOAc) and HPLCquality ACN were purchased from Merck. Trifluoroacetic acid (TFA), triisopropyl silane (TIPS) and diisopropyl ether (DIPE) were supplied by Iris Biotech and Merck. The solvents, bases and coupling reagents were individually injected in HPLC using the same analytical methods employed for the evaluation of reactions progress, to establish their retention time. T3P[®] (50 wt. % in EtOAc) were supplied by Curia Global. ¹H-NMR and ¹³C-NMR spectra were recorded with an INOVA 400 MHz instrument with a 5 mm probe. All chemical shifts were quoted relative to deuterated solvent signals. Distillations were performed with an Edwards RV3 vacuum pump. Z group removal was performed using a continuous-flow reactor (H-Cube® mini plus commercialized by ThalesNano Inc). $Pd/C_{(10\%)}$ filled cartridges (30 mm long) were supplied by ThalesNano Inc.

Analytical methods

HPLC-MS analyses were performed on Agilent 1260 Infinity II system coupled to ESI mass spectrometer (positive-ion mode, m/z = 100-3000 amu, fragmentor 30 V), with the following parameters:

- column Phenomenex Luna C18 5 μm, 250 x 4.6 mm
- temperature: 35°C
- injection volume: 10 μL
- UV: 220 nm or 210 nm
- mobile phases: H₂O+0.08%TFA (mobile phase A) and ACN+0.08%TFA (mobile phase B)
- flow: 0.5 mL/min or 1.0 mL/min

The gradient of analytical methods reported across the paper are defined as follow:

Method 1		
Flow: 1 ml/min		
Time (min)	Mobile phase A (%)	Mobile phase B (%)
0	80	20
5	60	40
25	60	40
30	80	20

Method 2		
Flow: 1 ml/min		
Time (min)	Mobile phase A (%)	Mobile phase B (%)
0	80	20
15	60	40
20	60	40
35	80	20

Method 3		
Flow: 1 ml/min		
Time (min)	Mobile phase A (%)	Mobile phase B (%)
0	80	20
15	20	80
22	20	80
30	80	20

Method 4		
Flow: 0.5 ml/min		
Time (min)	Mobile phase A (%)	Mobile phase B (%)
0	80	20
10	60	40
20	60	40
25	70	30
30	80	20

ChemStation software was used for data processing. Percentage areas of integrated peaks are reported in mAu.

1. Conditions screening for model dipeptide synthesis

General procedure

Figure S1. Optimization of conditions for the synthesis of model peptide (3).

In an oven-dried Schlenk purged under N_2 atmosphere, Z-Phg-OH (1) (29 mg, 0.1 mmol, 1.0 eq.) and H-Pro-NH₂ (2) (11 mg, 0.1 mmol, 1.0 eq.) were dissolved in DMF (0.125M). DIPEA and T3P[®] (50 wt.% in EtOAc) were added sequentially as reported in Table S1, stirring the reaction at 0 °C or room temperature for 5 minutes. The conversion was monitored by HPLC-MS analysis using Method 1 (see Analytical methods section reported above).

HPLC chromatograms

Peak at 3.2 min is related to DMF.

Table S1. Conditions screening.

Entry ^a	T3P [®] (equiv)	Base (equiv)	Conversion (%)
1	1	DIPEA (1)	81
2	1	DIPEA (2)	88
3	1.5	DIPEA (3)	>99
4 ^b	1.5	DIPEA (3)	93

^aReactions were performed by dissolving Z-Phg in DMF (0.1 M conc) under nitrogen atmosphere and adding reagents in the following order: $Pro-NH_2$, DIPEA and finally T3P[®]. ^bReaction was performed at 0°C.

Figure S2. Chromatogram of Z-Phg-Pro-NH₂ (3) in DMF at 220 nm (entry 3, Table S1).

Z-Phg-OH (1)	286.1 [M+H] ⁺	18.184	7.2281
Z-Prig-Pro-INH2	381.7 [IVI+H]	11.970	92.7719

Figure S3. Chromatogram of Z-Phg-Pro-NH₂ (3) in DMF at 220 nm (entry 4, Table S1).

2. Bases screening for coupling step

General procedure

Figure S4. Synthesis of model peptide testing several bases.

In an oven-dried Schlenk purged under N₂ atmosphere, Z-Phg-OH (1) (29 mg, 0.1 mmol, 1.0 eq.) and H-Pro-NH₂ (2) (11 mg, 0.1 mmol, 1.0 eq.) were dissolved in DMF (0.125M). Subsequently, the desired base (0.3 mmol, 3.0 eq.) and T3P[®] (50 wt. % in EtOAc, 89 μ L, 0.15 mmol, 1.5 eq.) were added at room temperature following this order as reported in Table S2. The solution was stirred at room temperature for 5 minutes and the conversion was monitored by HPLS-MS analysis (Analysis Method 1 in Analytical methods).

HPLC chromatograms

Peak at 3.2 min is related to DMF.

Table S2. Bases screening.

	TOD®		Base	Conversion
Entry ^a			greenness	- conversion (%)
	(equiv)		score	(70)
1	1.5	2,6-lutidine	8.3	56
2	1.5	Pyridine	7.5	42
3	1.5	TEA	6.9	94
4	1.5	NMM	6.9	90
5	1.5	^t BuNH ₂	6.5	93

^aThe reactions were performed under the conditions used in entry 3, Table S1, and conversion evaluated after 5 minutes.

Figure S5. Chromatogram of Z-Phg-Pro-NH₂ (3) at 220 nm (entry 1, Table S2).

Figure S6. Chromatogram of Z-Phg-Pro-NH₂ (3) at 220 nm (entry 2, Table S2).

Z-Phg-Pro-NH ₂	382.0 [M+H] ⁺	13.969	93.8632
Z-Phg-OH (1)	286.0 [M+H] ⁺	23.436	6.1368

Figure S7. Chromatogram of Z-Phg-Pro-NH₂ (3) at 220 nm (entry 3, Table S2).

Figure S8. Chromatogram of Z-Phg-Pro-NH₂ (3) at 220 nm (entry 4, Table S2).

Figure S9. Chromatogram of Z-Phg-Pro-NH₂ (3) at 220 nm (entry 5, Table S2).

3. Solvents screening and degree of racemization evaluation

General procedure

Figure S10. Synthesis of model peptide testing several green solvents.

In an oven-dried Schlenk purged under N₂ atmosphere, Z-Phg-OH (**1**) or Z-D-Phg-OH (29 mg, 0.1 mmol, 1 eq.) and H-Pro-NH₂ (**2**)(11 mg, 0.1 mmol, 1 eq.) were dissolved in the desired solvent (0.125M). Subsequently, DIPEA (52 μ L, 0.3 mmol, 3 eq.) and T3P[®] (50 wt. % in EtOAc, 89 μ L, 0.15 mmol, 1.5 eq.) were added at room temperature or 0°C following this order. The solution was stirred at room temperature for 5 minutes and the conversion was monitored by HPLC-MS analysis (Analysis Method 2 in Analytical methods section).

Entry ^a	Solvent	Temperature	3 ^d (%)	(D)/(L+D) (%)
1	NBP	r.t.	56	0.6
2	NOP	r.t.	56	n.d. ^b
3	DMC	r.t.	93	0.2
4	GVL	r.t.	89	0.8
5	ACN	r.t.	96	0.2
6	THF	r.t.	93	0.1
7	2-MeTHF	r.t.	80	0.2
8	DCM	r.t.	98	0.2
9	ⁱ PrOAc	r.t.	69	1.1
10	EtOAc	r.t.	94	0.5
11	EtOAc	0°C to r.t.	96	0.3
12	DMF	r.t.	>99	0.5
13	DMF	0°C to r.t.	93	0.4
14 ^c	DMF	rt	80	5.3

Table S3. Solvent screening

^aThe reactions were performed under the conditions used in entry 3, Table S1, and conversion evaluated after 5 minutes. ^bn.d. = not detected. ^cPre-activation of the acid was performed by adding T3P[®] and DIPEA before Pro-NH₂. ^d Conversion obtained considering both 3 and D-3.

HPLC chromatograms

Peaks at 11.6 min, 5.4 min, 13.8, 8.8 min and 3.0 min are related to NBP, GVL, ⁱPrOAc, EtOAc and DMF, respectively.

Z-Phg-OH 285.9 [M+H] ⁺ 28.343	

Figure S11. Chromatogram of Z-Phg-OH (1) at 210 nm (reference).

Z-D-Phg-Pro-NH₂

20.911

53.266

	Figure S12. Chromatogram	of the mixture Z-Ph	g-Pro-NH ₂ (3) ar	nd Z-D-Phg-Pro-NH ₂ (D-3) at 210 nm ((reference)
--	--------------------------	---------------------	------------------------------	----------------------------------	--------------------------	-------------

382.0 [M+H]⁺

Figure S13. Chromatogram of Z-Phg-Pro-NH₂ (**3**) in NBP at 210 nm (entry 1, Table S3).

Product	m/z observed	Rt (min)	Area (%)
Z-Phg-Pro-NH ₂	382.0 [M+H] ⁺	20.023	56.3748
Z-Phg-OH (1)	285.9 [M+H] ⁺	28.383	43.6252

Figure S14. Chromatogram of Z-Phg-Pro-NH₂ (**3**) in NOP at 210 nm (entry 2, Table S3).

Product	m/z observed	Rt (min)	Area (%)
Z-Phg-Pro-NH ₂	382.0 [M+H] ⁺	20.027	92.4101
Z-D-Phg-Pro-NH ₂	403.9 [M+Na] ⁺	20.881	0.1601
Z-Phg-OH (1)	286.0 [M+H] ⁺	28.418	7.4298

Figure S15. Chromatogram of Z-Phg-Pro-NH₂ (3) in DMC at 210 nm (entry 3, Table S3).

Figure S16. Chromatogram of Z-Phg-Pro-NH₂ (3) in GVL at 210 nm (entry 4, Table S3).

Product	m/z observed	Rt (min)	Area (%)
Z-Phg-Pro-NH ₂	382.0 [M+H] ⁺	20.030	96.2462
$Z-D-Phg-Pro-NH_2$	382.0 [M+H] ⁺	20.922	0.1597
Z-Phg-OH (1)	286.0 [M+H] ⁺	28.418	3.5941

Product	m/z observed	Rt (min)	Area (%)
Z-Phg-Pro-NH ₂	382.0 [M+H] ⁺	20.028	92.9681
Z-D-Phg-Pro-NH ₂	381.9 [M+H] ⁺	20.901	0.0943
Z-Phg-OH (1)	285.9 [M+H] ⁺	28.391	6.9377

Figure S18. Chromatogram of Z-Phg-Pro-NH₂ (3) in THF at 210 nm (entry 6, Table S3).

Figure S19. Chromatogram of Z-Phg-Pro-NH₂ (**3**) in 2-MeTHF at 210 nm (entry 7, Table S3).

Product	m/z observed	Rt (min)	Area (%)
Z-Phg-Pro-NH ₂	382.0 [M+H] ⁺	20.029	97.5774
Z-D-Phg-Pro-NH ₂	382.0 [M+H] ⁺	20.921	0.2422
Z-Phg-OH (1)	286.0 [M+H] ⁺	28.374	2.1804

Figure S20. Chromatogram of Z-Phg-Pro-NH₂ (**3**) in DCM at 210 nm (entry 8, Table S3).

Product	m/z observed	Rt (min)	Area (%)
Z-Phg-Pro-NH ₂	382.1 [M+H]⁺	20.054	68.3147
Z-D-Phg-Pro-NH ₂	382.1 [M+H] ⁺	20.950	0.7465
Z-Phg-OH (1)	286.1 [M+H] ⁺	27.739	30.9387

Figure S21. Chromatogram of Z-Phg-Pro-NH₂ (3) in ^{*i*}PrOAc at 210 nm (entry 9, Table S3).

Figure S22. Chromatogram of Z-Phg-Pro-NH₂ (3) in EtOAc at rt at 210 nm (entry 10, Table S3).

Figure S23. Chromatogram of Z-Phg-Pro-NH₂ (3) in EtOAc from 0°C to rt at 210 nm (entry 11, Table S3).

Product	m/z observed	Rt (min)	Area (%)
Z-Phg-Pro-NH ₂	382.0 [M+H] ⁺	20.025	99.4600
Z-D-Phg-Pro-NH ₂	381.9 [M+H] ⁺	20.912	0.5400

Figure S24. Chromatogram of Z-Phg-Pro-NH₂ (3) in DMF at rt at 210 nm (entry 12, Table S3).

Figure S25. Chromatogram of Z-Phg-Pro-NH₂ (3) in DMF from 0°C to rt at 210 nm (entry 13, Table S3).

Fibuuct	111/2 00361 Ved	ite (inini)	Alea (70)
Z-Phg-Pro-NH ₂	382.1 [M+H] ⁺	20.077	75.6027
$Z-D-Phg-Pro-NH_2$	382.1 [M+H] ⁺	20.970	4.2708
Z-Phg-OH (1)	286.0 [M+H] ⁺	28.254	20.1265

Figure S26. Chromatogram of Z-Phg-Pro-NH₂(3) at 210 nm in DMF (Entry 14, Table S3).

4. Comparison between EtOAc and DMF using Oxyma Pure[®]/DIC.

General procedure

Figure S27. Synthesis of model peptide comparing DMF and EtOAc employing Oxyma Pure®/DIC.

Z-Phg-OH (1) (29 mg, 0.1 mmol, 1 eq.) was dissolved in a glass vial in DMF or EtOAc (0.125M). Subsequently, Oxyma Pure[®] (14 mg, 0.1 mmol, 1.0 eq.) and DIC (13 mg, 0.1 mmol, 1.0 eq.) were added at room temperature or 0°C following this order. After 3 minutes, H-Pro-NH₂ (2) (11 mg, 0.1 mmol, 1.0 eq.) was added and the solution was stirred at room temperature for 5 minutes. The conversion was monitored by HPLC-MS analysis (Analysis Method 2 in Analytical methods section).

Table S4. Oxyma Pure®/DIC coupling in EtOAc and DMF

Entry ^a	Solvent	Temperature	3° (%)	(D)/(L+D) (%)
1	DMF	r.t.	74 ^b	1.0
2	DMF	0°C to r.t.	69 ^b	1.0
3	EtOAc	r.t.	97	1.0
4	EtOAc	0°C to r.t.	86	0.9

^aThe reactions were performed under the conditions used in entry 3, Table S1, and conversion evaluated after 5 minutes. ^bConversion was 90-93% after 1h. ^c Conversion obtained considering both 3 and D-3.

HPLC chromatograms

Peaks at 3.3, 7.9, 8.8 min and 12.4 min are related to DMF, DIC, EtOAc, and Oxyma Pure[®], respectively.

Product	m/z observed	Rt (min)	Area (%)
Z-Phg-Pro-NH ₂	382.0 [M+H] ⁺	20.069	73.3257
$Z-D-Phg-Pro-NH_2$	382.8 [M+H] ⁺	20.966	0.7235
Z-Phg-OH (1)	285.9 [M+H] ⁺	28.566	25.9505

Figure S28. Chromatogram of Z-Phg-Pro-NH₂ (3) in DMF at rt at 210 nm (Entry 1, Table S4).

Product	m/z observed	Rt (min)	Area (%)
Z-Phg-Pro-NH ₂	382.0 [M+H] ⁺	20.071	68.7144
Z-D-Phg-Pro-NH ₂	382.0 [M+H] ⁺	20.961	0.7218
Z-Phg-OH (1)	286.0 [M+H] ⁺	28.601	30.5638

Figure S29. Chromatogram of Z-Phg-Pro-NH₂ (3) in DMF at 210 nm (Entry 2, Table S4).

Figure S30. Chromatogram of Z-Phg-Pro-NH₂ (**3**) in EtOAc at 210 nm (Entry 3, Table S4).

Product	m/z observed	Rt (min)	Area (%)
Z-Phg-Pro-NH ₂	382.1 [M+H] ⁺	20.076	84.9116
Z-D-Phg-Pro-NH ₂	382.1 [M+H] ⁺	20.976	0.7371
Z-Phg-OH (1)	286.1 [M+H] ⁺	27.887	14.3514

Figure S31. Chromatogram of Z-Phg-Pro-NH₂ (3) in EtOAc at 210 nm (Entry 4, Table S4).

5. Synthesis of Z-Phe-Leu-O^tBu in gram scale

General method

Figure S32. Synthesis of model peptide in gram scale.

An oven-dried, double-neck, 250 ml round-bottomed flask equipped with stirring bar Z-Phe-OH (**6**) (6.91 g, 23.1 mmol, 1.05 eq.), H₂N-Leu-O^tBu hydrochloride (**7**) (4.92 g, 22 mmol, 1.0 eq.) and EtOAc (0.2M) were charged under N₂ atmosphere. Subsequently, DIPEA (15.3 mL, 88 mmol, 4.0 eq.) and T3P[®] (50 wt.% in EtOAc, 19.7 mL, 33 mmol, 1.5 eq.) were added following this order. The solution was stirred at room temperature for 5 minutes and the conversion was monitored by HPLC-MS analysis (Analysis method 3 in Analytical methods section). The solution was washed with H₂O (100 mL) and NaHCO_{3(sat)} (100 mL). The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. A white solid was obtained (Yield = 97%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.38 – 7.17 (m, 10H), 6.18 (d, J = 8.2 Hz, 1H), 5.28 (s, 1H), 5.09 (s, 2H), 4.45 – 4.40 (m, 2H), 3.14 – 3.04 (m, 2H), 1.60 – 1.51 (m, 2H), 1.44 (s, 9H), 0.89 (td, J = 9.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 171.68, 170.41, 136.35, 129.52, 128.75, 128.65, 128.30, 128.14, 127.14, 82.06, 67.15, 56.14, 51.58, 41.95, 38.50, 28.09, 24.91, 22.80, 22.24.

HPLC chromatograms and NMR spectra

Figure S34. ¹H-NMR and ¹³C-NMR of purified peptide Z-Phe-Leu-O^tBu (4).

6. Dipeptides synthesis employing Aib

Figure S35. Aib coupling test.

Following the procedure previously reported for a standard coupling reaction using EtOAc as solvent (see Par. 1, Supp. Info page S4), both Z-Aib-OH and H₂N-Aib-OMe hydrochloride were tested in the synthesis of different dipeptides to verify the effect of hinderance of Aib residues. The conversion was monitored by HPLC-MS analysis (Analysis Method 3 in Analytical methods section)

HPLC chromatograms

Funtur ua	•	D	Compound	DIPEA	T3P®	С	Conditions
Entry	А	В		(eq)	(eq)	(%)	Conditions
1	Aib	ProNH ₂	8	4.0	2.0	92	
2	Aib	Phe	9	3.0	1.5	88	
3	Aib	Phe	9	4.0	2.0	95	
4	Aib	Phe	9	2.0+2.0	1.0+1.0	96	5 min (C = 71%), then add of the second portion of coupling reagents
5	Phe	Aib	10	4.0	2.0	78	
6	Aib	Aib	11	4.0	2.0	4	
7	Aib	Aib	11	4.0	2.0	4	EtOAc:DMSO 9:1
8 ^b	Aib	Aib	11	4.0	2.0	3	After 5 min, HCl·H-L-O ^t Bu was added affording 92% of Z-Aib-L-O ^t Bu

Table S5. Aib coupling tests.

^a1.0 eq of DIPEA is added to desalt HCl·H₂N-Phe-OMe or HCl·H₂N-Aib-OMe. ^b2.0 eq of DIPEA are added to desalt HCl·H₂N-Aib-OMe and HCl·H₂N-Leu-O^tBu

Product	m/z observed	Rt (min)	Area (%)
H ₂ N-Phe-OMe	180.1 [M+H] ⁺	5.438	4.5562
Z-Aib-OH	238.1 [M+H] ⁺	10.900	5.7105
Z-Aib-Phe-OMe	399.1 [M+H]⁺	15.529	89.7333

Figure S36. Chromatogram at 210 nm of Z-Aib-Phe-OMe (9) (entry 4, Table S5).

Figure S37. Chromatogram at 210 nm of Z-Phe-Aib-OMe (10) (entry 5, Table S5).

Product	m/z observed	Rt (min)	Area (%)
Z-Aib-OH	237.9 [M+H] ⁺	10.858	97.0251
Z-Aib-Aib-OMe	337.0 [M+H] ⁺	12.442	2.9749

Figure S38. Chromatogram at 210 nm of Z-Aib-Aib-OMe (11) (entry 6, Table S5).

Product	m/z observed	Rt (min)	Area (%)
Z-Aib-OH	238.1 [M+H] ⁺	10.792	4.7543
Z-Aib-Aib-OMe	337.1 [M+H] ⁺	12.397	3.3474
Z-Aib-Leu-O ^t Bu	407.2 [M+H] ⁺	18.387	91.8982

Figure S39. Chromatogram at 210 nm of Z-Aib-Aib-OMe (11) (entry 8, Table S5).

7. Conditions screening for Z removal

7.a Calculation of Relative Response Factor (RRF)

The RRF was calculated using the following formula^{1,2}:

$$RRF = \frac{HPLC Area_B}{HPLC Area_A} \cdot \frac{I_A}{I_B}$$

Where I is the integration obtained by quantitative ¹H-NMR (qNMR):

- relaxion delay = 60 s;
- acquisition time = 4 s;
- number of scans for 400 MHz = 12.

The molar ratio was calculated by qNMR through the integration of the peaks corresponding to the hydrogens in β -position for phenylalanine in both H-Phe-Leu-O^tBu **A** (dd at 2.72 ppm) and Z-Phe-Leu-O^tBu **B** (multiplet at 3.08 ppm).

For HPLC separation, analytical method 3 was employed (fully elucidated in analytical methods section).

Sample	Molar ratio I _A /I _B	RRF at 210 nm
1	1.000/1.425	1.403
2	1.000/0.7303	1.772
3	1.000/0.3993	1.857
Avera	ge Value	1.677

Table S6. RRF calculation. The experiments were repeated three times.

NMR spectra and HPLC chromatograms for RRF calculations

Sample 1: Molar ratio: I_A/I_B = 1.000/1.425

Sample 2: Molar ratio: I_A/I_B = 1.000/0.7303

Sample 3: Molar ratio: I_A/I_B = 1.000/0.3993

S24

7.b Z removal by Method A

General procedure

Figure S40. Removal of Z group by Method A.

In an oven-dried flask purged under N₂ atmosphere, Z-Phe-Leu-O^tBu (**4**) (200 mg, 0.427 mmol, 1.0 eq.) and dry Pd/C_(10%) (10% w/w, 4.4 mol%) were added in EtOAc (0.1M). Subsequently, DIPEA, T3P[®] (50 wt. % in EtOAc)-H₂O (1.0 eq.-1.0 eq.), DIPEA-HCl (1.0 eq.-1.0 eq.) or none were added. The atmosphere was switched from nitrogen to H₂ gas (balloon), the reaction was stirred at 30°C and the conversion was monitored by HPLC-MS analysis (Analysis method 3 in Analytical methods section).

HPLC chromatograms

Chromatogram related to Z-Phe-Leu-O^tBu (**4**, rt 20.5 min) is reported in the Par. 5 (Supp. Info page S16) (ESI) as reference.

Entry	Contaminant	Method	Time	5 (%)
	(equiv)		(min)	
1	/	A ^a	300	>99
2	/	А	180	>99
3	DIPEA (0.1)	А	60	>99
4	DIPEA (3)	А	30	>99
5	T3P®:H ₂ O (1,5)	А	240	>99
6	DIPEA:T3P [®] (1.5/3)	А	120	>99
7	DIPEA:HCl (3)	А	240	>99

Table S7. Screening of conditions for Z-F-L-O^tBu 4 deprotection.

^a Reaction performed with $Pd/C_{(10\%)}$ 10% w/w not previously dried under vacuum

Figure S41. Chromatogram at 210 nm of H-Phe-Leu-O^tBu (5) (entry 3, Table S7).

7.c Cbz removal by Method B

General procedure

Figure S42. Removal of Z group by Method B.

Z-Phe-Leu-O^tBu (**4**) (200 mg, 0.427 mmol, 1.0 eq) was dissolved in EtOAc (0.1M) and DIPEA, T3P[®] (50 wt. % in EtOAc), T3P[®] (50 wt. % in EtOAc)-H₂O (1.0 eq.-1.0 eq.) or none were added. The solution was flowed at 1 mL/min through the catalyst-packed cartridge (CatCart[®] - filled with Pd/C_(10%))* at 1 bar pressure, at 60°C and collecting 16 or 18 mL. The conversion was monitored by HPLC-MS analysis (Analysis method 3 in Analytical methods section). Finally, H-CUBE[®] was washed by ⁱPrOH for 10 minutes to clean the system.

* Cartridge dimensions: 0.4 cm (internal diameter) X 3 cm (length) = 0.377 mL total volume

Cartridge content: 40 mg of Pd/C10% corresponding to 4 mg of Pd (M.W. 106) = 0.0377 mmol of Pd Pd/substrate ratio = 0.0377/0.427 = 8.8% mol

Calculation of local catalyst/substate concentration

We considered that the cartridge could be filled during reaction ½ by the catalyst and ½ by the substrate (rough evaluation considering the density of Pd/C catalyst)

Content of substrate 0.1 M solution in $\frac{1}{2}$ cell volume = 0.0188 mmol (8.8 mg of dipeptide F.W. 469) Catalyst/substrate ratio in the cartridge (mol/mol) = 0.0377 mmol Pd/0.0188 mmol substrate = 2/1 Catalyst/substrate ratio in the cartridge (w/w) = 4 mg/ 8.8 mg = 45% w/w

HPLC chromatograms

Chromatogram related to Z-Phe-Leu-O^tBu (**4**, rt 20.5 min) is reported in the Par. 5 (Supp. Info page S16) (ESI) as reference. Peaks at 7.7 min and 16.4 min are related to EtOAc and Toluene, respectively.

Entry	Contaminant	Method	Time	5 (%)
	(equiv)		(min)	
1	/	B ^a	18	>99
2	DIPEA (0.1)	В	16	>99
3	DIPEA (1)	В	18	>99
4	DIPEA:T3P [®] (1.5/3)	В	18	>99

Table S8. Screening of conditions for Z-F-L-O^tBu 4 deprotection.

^aH-Cube setup generated 6 mL of death volume solvent and complete recovery of **5** was obtained by collecting solution in the following 18 minutes.

Figure S43. Chromatogram at 210 nm of H-Phe-Leu-O^tBu (5) (Entry 2, Table S8).

8. Synthesis of fully protected Leu-Enkephalin in solution-phase by Method Acont

General procedure

Figure S44. Synthesis of fully protected Leu-Enkephalin (12) in a continuous process by methodAcont.

In a round-bottom flask equipped with frit filter, to a solution of an equimolar amount of Z-Phe-OH (**6**) (150 mg, 0.5 mmol, 1.0 eq.) and H-Leu-O^tBu hydrochloride (**7**) (112 mg, 0.5 mmol, 1.0 eq.) in EtOAc (0.1 M), DIPEA (348 μ L, 2.0 mmol, 4.0 eq.) and T3P[®] (50 wt. % in EtOAc, 447 μ L, 0.75 mmol, 1.5 eq.) were added following this order. The mixture was stirred at 30° for 5 min, then DIPEA (9 μ L, 0.05 mmol, 0.1 eq) and dried Pd/C_(10%) (10% w_{Pd}/w_{peptide}, 4.4 mol%) were added and the atmosphere was switched from N₂ to H₂. The reaction mixture was stirred at 30°C for 1 h, then the solution was filtered through the frit filter via nitrogen flow in a double-necked round-bottom flask. The flask was washed with further EtOAc (2 mL) and before iterating the synthetic process with the subsequent coupling, the reaction volume was reduced under nitrogen flow to reach a standard concentration of 47 g/L employed in the next deprotection steps. The same procedure described above was used in subsequent steps for sequence elongation, inserting: Z-Gly-OH (105 mg, 0.5 mmol, 1.0 eq.), and lastly Boc-Tyr(O^tBu)-OH (169 mg, 0.5 mmol, 1.0 eq.), and then Boc-Tyr(O^tBu)-OH (169 mg, 0.5 mmol, 1.0 eq.).

After completion of full sequences, the solution was filtered through a filter paper to remove Pd/C catalyst. The organic layer was washed with 0.1M $HCl_{(aq)}$ (5 mL) and 0.1M $NaHCO_{3(aq)}$ (5 mL), respectively. The organic

layer was dried over anhydrous Na₂SO₄ and concentrated under vacuum. A white solid was obtained (Yield = 76%). Each step was monitored by HPLC-MS (Analysis Method 3 in Analytical methods section).

HPLC chromatograms

Boc-Tyr(^t Bu)-Gly-Gly-Gly- Phe-Leu-O ^t Bu	826.4 [M+H] ⁺	18.559	7.9360
Boc-Tyr(^t Bu)-Gly-Gly-Phe- Leu-O ^t Bu (12)	768.4 [M+H] ⁺	20.201	92.0640

Figure S45. Chromatogram at 210 nm of fully protected Leu-Enkephalin (12) when Z-Gly-OH was employed.

Product	m/z observed	Rt (min)	Area (%)
Boc-Tyr(^t Bu)-Gly-Gly-Gly-	826.4 [M+H] ⁺	17.492	3.0533
Gly-Phe-Leu-O'Bu			
Boc-Tyr('Bu)-Gly-Gly-Phe-	768.4 [M+H] ⁺	20.068	94.2852
Boc-Tyr(^t Bu)-Gly-Phe-Leu-	744 4 [84,11]+	22.474	2 6646
O ^t Bu	/11.4 [M+H] [*]	22.471	2.6616

Figure S46. Chromatogram at 210 nm of fully protected Leu-Enkephalin (12) when Z-Gly-Gly-OH was employed.

The synthesis of Leu-Enkephalin using Z-Gly-Gly-OH resulted in 94% purity of the target peptide. However, Glycine (1%) is present in the commercial batch of H-Gly-Gly-OH employed for the synthesis of the starting material Z-Gly-Gly-OH. Therefore, the reported purity is affected also by reagent purity.

9. Synthesis of fully protected Leu-Enkephalin and Pentapeptide-18 (Leuphasyl[®]) in solution-phase Method A_{cont_plus}

General procedure

Figure S47. Synthesis of fully protected Leu-Enkephalin (**12**) and Pentapeptide-18 (Leuphasyl[®]) (**13**) in a continuous process by Method A_{cont_plus}.

An oven-dried, double-neck, round-bottomed flask equipped with stirring bar was charged with Z-Phe-OH (**6**) (150 mg, 0.5 mmol, 1.0 eq.), H-Leu-O^fBu hydrochloride (**7**) (112 mg, 0.5 mmol, 1.0 eq.) in EtOAc (0.1M) under N₂ atmosphere. Subsequently, DIPEA (435 μ L, 2.5 mmol, 5.0 eq.) and T3P[®] (50 wt. % in EtOAc, 596 μ L, 1.0 mmol, 2.0 eq.) were added following this order. The solution was stirred for 5 minutes. Then, DIPEA (9 μ L, 0.05 mmol, 0.1 eq) and dried Pd/C_(10%) (10% w_{Pd}/w_{peptide}, 4.4 mol%) were added and the atmosphere was switched from N₂ to H₂. The mixture was stirred at 30°C for 1h, the nitrogen atmosphere was restored, and the coupling step was carried out without removing Pd/C from the reaction mixture. Following this procedure, the next deprotection steps were carried out using the same catalyst added at the beginning of the iterative process. The same procedure above reported was used in subsequent steps, introducing: Z-Gly-OH (105 mg, 0.5 mmol, 1.0 eq.); Z-Gly-OH (105 mg, 0.5 mmol, 1.0 eq.) or Z-Ala-OH (112 mg, 0.5 mmol, 1.0 eq.); Boc-Tyr(O'Bu)-OH (169 mg, 0.5mmol, 1.0 eq.). After completion of full sequenced elongation, the solution was filtered through a filter paper to remove Pd/C catalyst and the filtrate was washed with 0.1M HCl_(aq) (5 mL) and 0.1M NaHCO_{3(aq)} (5 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under vacuum. A white solid was obtained (Yield = 78% for **12** and Yield = 82% for **13**). Each step was monitored by HPLC-MS analysis (Analysis Method 3 in Analytical methods section).

HPLC chromatogram

Product	m/z observed	Rt (min)	Area (%)
Boc-Tyr(^t Bu)-Gly-Gly-Gly-	825 / [N/+H]+	18 52/	11 2758
Phe-Leu-O ^t Bu	823.4 [WITI]	10.324	11.5256
Boc-Tyr(^t Bu)-Gly-Gly-Phe-	768 4 [M+H]+	20.057	86 0781
Leu-O ^t Bu (12)	700.4 [[0111]	20.037	00.0701
Boc-Tyr(^t Bu)-Gly-Phe-Leu-	711 5 [M+H]+	22 113	2 5961
O ^t Bu		22.115	2.3501

Figure S48. Chromatogram at 210 nm of fully protected Leu-Enkephalin (12). The peak at 16.3 min is related to Toluene.

10. Synthesis of fully protected Leu-Enkephalin in solution-phase by Method Bcont

General procedure

Figure S49. Synthesis of fully protected Leu-enkephalin (12) in a continuous process by method Bcont.

An oven-dried, double-neck, round-bottomed flask equipped with stirring bar was charged with Z-Phe-OH (6) (150 mg, 0.5 mmol, 1.0 eq.), H-Leu-O^tBu hydrochloride (7) (112 mg, 0.5 mmol, 1.0 eq.) in EtOAc (0.1M) under N₂ atmosphere. Subsequently, DIPEA (348 μ L, 2.0 mmol, 4.0 eq.) and T3P[®] (50 wt. % in EtOAc, 447 μ L, 0.75 mmol, 1.5 eq.) were added following this order. The solution was stirred for 5 minutes and then it was directly

injected in H-CUBE[®] following the procedure reported in Method B (Par 6.c, Supp. Info page S28). The reaction mixture was collected in an oven-dried flask purged under N₂ atmosphere and the excess of solvent was evaporated by reduce pressure preserving the system under N₂ atmosphere to reach a standard concentration of 47 g/L employed in the next deprotection steps. The same procedure above mentioned was used in subsequent steps, introducing: Z-Gly-OH (105 mg, 0.5 mmol, 1.0 eq.); Z-Gly-OH (105 mg, 0.5 mmol, 1.0 eq.); Boc-Tyr(O^tBu)-OH (169 mg, 0.5mmol, 1.0 eq.). After completion of full sequenced elongation, the solution was filtered through a filter paper to remove Pd/C catalyst and the filtrate was washed with 0.1M $HCl_{(aq)}$ (5 mL) and 0.1M $NaHCO_{3(aq)}$ (5 mL). The organic layer was dried over anhydrous Na_2SO_4 and concentrated under vacuum. A white solid was obtained (Yield = 81%). Each step was monitored by HPLC-MS analysis (Analysis method 3 in Analytical methods section).

mAU _ 19.985 2000 1500 1000 18.482 500 22.291 0 5 10 15 20 25 min Product m/z observed Rt (min) Area (%) Boc-Tyr(^tBu)-Gly-Gly-Gly-825.4 [M+H]+ 18.482 11.6198 Phe-Leu-O^tBu Boc-Tyr(^tBu)-Gly-Gly-Phe-768.4 [M+H]+ 19.985 85.9404 Leu-O^tBu (12) Boc-Tyr(^tBu)-Gly-Phe-Leu-711.4 [M+H]+ 22.291 2.4399 O^tBu

HPLC chromatogram

Figure S50. Chromatogram at 210 nm of fully protected Leu-Enkephalin (12). The peak at 16.3 min is related to Toluene.

11. Complete deprotection of fully protected peptides

General Procedure

Figure S51. Acidic removal of protecting groups on fully protected Leu-Enkephalin and Pentapetide-18 (Leuphasyl).

In a round-bottom flask, the fully protected peptide (**12** or **13**) was dissolved in a deprotection cocktail (0.08 M) composed by: 95.0% TFA, 2.5% H₂O, and 2.5% TIS. The reaction mixture was stirred at room temperature for 2 h, then 15 mL of DIPE were added dropwise inducing the formation of a white solid. After the complete addition of the solvent, the reaction mixture was cooled to 0°C and slowly stirred for 30 min. Subsequently, the white solid was recovered by filtration. The purity of the target peptide was monitored by HPLC-MS analysis (Analysis Method 4 in Analytical methods section).

HPLC chromatogram

Figure S52. Chromatogram at 210 nm of deprotected Leu-Enkephalin (14) by method Acont.

Product	m/z observed	Rt (min)	Area (%)
H-Tyr- Gly -Gly-Gly-Phe- Leu-OH	613.2 [M+H] ⁺	14.222	3.1811
H-Tyr-Gly-Gly-Phe-Leu-OH (14)	556.2 [M+H]*	15.014	94.4799
H-Tyr-Gly-Phe-Leu-OH	499.1 [M+H] ⁺	15.925	2.3380

Figure S53. Chromatogram at 210 nm of deprotected Leu-Enkephalin (14) employing Z-Gly-Gly-OH by method Acont.

Product	m/z observed	Rt (min)	Area (%)
H-Tyr-Gly-Gly-Gly-Phe-	613 2 [M+H]+	14 570	13 0769
Leu-OH		14.570	13.0705
H-Tyr-Gly-Gly-Phe-Leu-OH	556 2 [M+H]+	14 985	85 6142
(15)	556.2 [[1111]	14.505	05.0142
H-Tyr-Gly-Phe-Leu-OH	499.1 [M+H]⁺	15.918	1.3089

Figure S54. Chromatogram at 210 nm of deprotected Leu-Enkephalin (14) by method Acont_plus.

Product	m/z observed	Rt (min)	Area (%)
H-Ala-Gly-Phe-Leu	407.1[M+H] ⁺	14.318	5.0535
H-Tyr-Ala-Gly-Gly-Phe-Leu- OH	627.3[M+H] ⁺	14.941	1.7817
H-Tyr-Ala-Ala-Gly-Phe-Leu- OH	641.3 [M+H] ⁺	15.123	2.0552
H-Tyr-Ala-Gly-Phe-Leu-OH (15)	570.3 [M+H]⁺	15.460	88.9988
H-Tyr-Ala-Phe-Leu-OH	513.2 [M+H] ⁺	16.003	2.1108

Figure S55. Chromatogram at 210 nm of Pentapeptide-18 (15) by method A_{cont_plus}.

Product	m/z observed	Rt (min)	Area (%)
H-Tyr-Gly-Gly-Gly-Phe-	613.2 [M+H] ⁺	14.619	11.7423
Leu-OH			
H-Tyr-Gly-Gly-Phe-Leu-OH	556.2 [M+H] ⁺	15.032	85.2429
(14) H-Tvr-Glv-Phe-Leu-OH	499.2 [M+H]+	15.985	3.0148
		28.965	0.0110

Figure S56. Chromatogram at 210 nm of deprotected Leu-Enkephalin (14) by method Bcont.

12. PMI calculation for the synthesis of Leu-Enkephalin

PMI is defined as the ratio between the total mass of materials and the mass of the isolated product, as reported below:

$$PMI = \frac{\sum mass \ of \ materials}{mass \ of \ the \ isolated \ product}$$

In this case, the total mass of materials includes:

- Reagents: Z-AA-OH and HCl, H₂N-Leu-O'Bu, DIPEA, T3P[®] (50 wt. % in EtOAc), TFA, scavengers (TIPS and H₂O);
- Solvents: EtOAc (reaction medium and washing/extraction steps), ⁱPrOH (H-CUBE[®] washing), HCl
 0.1M and NaHCO₃ (washing steps), DIPE (crude peptide precipitation);
- Catalyst (Pd/C_(10%)) and H_2 .
- Other: Na₂SO₄

When solvents (EtOAc and ^{*i*}PrOH) and base (DIPEA) were recovered, the value of the final PMI was calculated by subtracting the mass of recovered materials from the mass of used materials, according to the following equation:

 $PMIr = \frac{\sum mass of materials - \sum mass of recovered materials}{mass of the isolated product}$

DIPEA was recovered by extraction (80% $_{w/w}$); EtOAc, water and ^{*i*}PrOH were recovered by distillation (90% $_{w/w}$).

Furthermore, Pd/C in the cartridge (H-CUBE[®]) has a less relevant effect on the PMI since the catalyst can be used many times and, in our experience, the efficiency of the catalyst remained unchanged after 20 cycles. This result is in agreement with the literature.³ For the procedures in bench, Pd/C was filtered and collected to be regenerated later. The recovery of Pd/C was not included in the calculations.

12.a Calculation of total mass of reagents employed for the synthesis of Leu-enkephalin using Method A_{cont}, Method A_{cont_plus} and Method B

Component	Contribution to PMI (g/g product)	Contribution to PMIr (g/g product)
Amino acids	2.52	2.52
T3P [®]	6.11	6.11
DIPEA	5.26	1.05
EtOAc	128.37	12.84
Pd/C _(10%)	0.31	0.31
H ₂	0.04	0.04
H ₂ O	79.23	79.23
Cleavage and washing		
components (HCl, NaOH,	34.77	34.77
NaHCO3, Na2SO4 TFA, TIS)		
DIPE	42.81	42.81
Total	299.43	179.68

Table S9. Calculation of Process Mass Intensity (PMI) and Process Mass Intensity after recovery (PMIr) for the synthesis of Leu-Enkephalin with Method A_{cont}_

Table S10. Calculation of Process Mass Intensity (PMI) and Process Mass Intensity after recovery (PMIr) for the synthesis of Leu-Enkephalin with Method B_{cont} . The amount of hydrogen was calculated based on water consumed by the instrument generating H2.

Component	Contribution to PMI (g/g product)	Contribution to PMIr (g/g product)
Amino acids	2.37	2.37
T3P [®]	4.86	4.86
DIPEA	4.21	0.84
EtOAc	300.28	30.03
Pd/C(10%)	0.02	0.02
H ₂ O	80.09	80.09
ⁱ PrOH	87.33	8.73
Cleavage and washing		
components (HCl, NaOH,	32.71	32.71
NaHCO ₃ , Na ₂ SO ₄ TFA, TIS)		
DIPE	40.28	40.28
Total	552.15	199.93

Component	Contribution to PMI (g/g product)	Contribution to PMIr (g/g product)
Amino acids	2.46	2.46
T3P [®]	5.51	5.51
DIPEA	4.72	0.94
EtOAc	71.6	7.16
Pd/C _(10%)	0.09	0.09
H ₂	0.02	0.02
H ₂ O	38.94	38.94
Cleavage and washing		
components (HCl, NaOH,	31.65	31.65
NaHCO3, Na2SO4 TFA, TIS)		
DIPE	41.83	41.83
Total	196.85	128.60

Table S11. Calculation of Process Mass Intensity (PMI) and Process Mass Intensity after recovery (PMIr) for the synthesis of Leu-Enkephalin with Method A_{cont_plus}

13. Annex

In this section, chromatograms of all the species observed during the synthesis of Leu-Enkephalin are reported. In addition, the two main impurities (double hit of Glycine and des-Gly) are reported as both fully protected and deprotected peptides. All the species were synthesized in a step-by-step process, performing the proper work-up after each reaction to remove any trace of starting materials or solvents. Z-Phe-Leu-O^tBu and H-Phe-Leu-O^tBu chromatograms were already reported in the Par. 5 and 6 (Supp. Info pages S16 and S28). Moreover, in the caption of each chromatogram is specified the HPLC-MS analysis employed.

Figure S57. Chromatogram at 210 nm of fully protected Z-Gly-Phe-Leu-O^tBu. Analysis method 3 in Analytical Methods.

Figure S58. Chromatogram at 210 nm of fully protected H-Gly-Phe-Leu-O^tBu. Analysis method 3 in Analytical Methods.

Figure S59. Chromatogram at 210 nm of fully protected Z-Gly-Gly-Phe-Leu-O^tBu. Analysis method 3 in Analytical Methods.

Figure S60. Chromatogram at 210 nm of fully protected H-Gly-Gly-Phe-Leu-O^tBu. Analysis Method 3 in General Methods.

Figure S61. Chromatogram at 210 nm of fully protected Z-Gly-Gly-Gly-Phe-Leu-O^tBu. Analysis method 3 in Analytical Methods.

Figure S62. Chromatogram at 210 nm of fully protected H-Gly-Gly-Gly-Phe-Leu-O^tBu. Analysis method 3 in Analytical Methods.

Figure S63. Chromatogram at 210 nm of fully protected Boc-Tyr(^tBu)-Gly-Gly-Gly-Phe-Leu-O^tBu. Analysis method 3 in Analytical Methods.

Figure S64. Chromatogram at 210 nm of fully protected Boc-Tyr(^tBu)-Gly-Phe-Leu-O^tBu. Analysis method 3 in Analytical Methods.

Figure S65. Chromatogram at 210 nm of fully protected H-Tyr-Gly-Gly-Gly-Phe-Leu-OH. Analysis method 4 in Analytical Methods.

Figure S66. Chromatogram at 210 nm of fully protected H-Tyr-Gly-Phe-Leu-OH. Analysis method 4 in Analytical Methods.

References

- 1 G. K. Webster, I. Marsden, C. A. Pommerening, C. M. Tyrakowski and B. Tobias, *Journal of Pharmaceutical and Biomedical Analysis*, 2009, **49**, 1261–1265.
- 2 R. M. Maggio, N. L. Calvo, S. E. Vignaduzzo and T. S. Kaufman, *Journal of Pharmaceutical and Biomedical Analysis*, 2014, **101**, 102–122.
- 3 K. R. Knudsen, J. Holden, S. V. Ley and M. Ladlow, *Adv. Synth. Catal.*, 2007, **349**, 535–538.