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Experimental Section
Materials

All reagents were purchased from chemical companies (Adamas, Macklin, and Sinopharm

Chemical) without secondary purification.

Fe(NO;);-9H,0 (>98%), benzene (>99%), methylbenzene (>99.5%), and benzaldehyde (99%)
were purchased from Sinopharm Chemical Reagent Co., Ltd. Hy[Si(W50,0)4]-xH,O and
H3040PW,-xH,0 were purchased from Shanghai Macklin Biochemical Technology Co., Ltd. All

the other organic reagents were purchased from Adamas-beta LTD.
Catalyst preparation
Synthesis of MIL-100(Fe)

The synthesis of MIL-100(Fe), SiIW@MIL-100(Fe), and PW@MIL-100(Fe) were modified
from the procedure reported by Guan and co-workers.?’ Trimesic acid (5 mmol) and ferric nitrate
nonahydrate (6.0 mmol) were fully dissolved in 25 mL water. The mixture was placed into a Teflon
liner and sealed with a stainless-steel jacket. The reactor was heated at 130 °C for 3 days and then
cooled down to room temperature. The light orange sediment was obtained and washed alternately

with ultrapure water and methanol, then dried at 60 °C in the air.
Synthesis of SiW@MIL-100(Fe)

The synthesis of SiIW@MIL-100(Fe) was similar to MIL-100(Fe) besides the addition of POM
in the synthesis process. Typically, trimesic acid (5 mmol), ferric nitrate nonahydrate (6.0 mmol),
and Hy[SiW,040] (0.6 mmol) were fully dissolved in 25 ml water, then the solution was
transferred to a 50 mL Teflon bottle, and heated at 130 °C for 3 days. The obtained sediment
product was named SiW@MIL-100(Fe)-1. When 0.9, 1.2, and 1.8 mmol of SiW were used in
synthesis, the obtained solid products were referred to as SiW@MIL-100(Fe)-2, -3, and -4,

respectively.

Synthesis of PW@MIL-100(Fe)



The synthesis of PW@MIL-100(Fe) was similar to SiW@MIL-100(Fe). Trimesic acid (5
mmol), ferric nitrate nonahydrate (6.0 mmol), and H4[PW,040] (0.6 mmol) were fully dissolved
in 25 ml water, then the solution was transferred to a 50 mL Teflon bottle, and heated at 130 °C

for 3 days. The obtained product was named PW@MIL-100(Fe).

Characterization

Powder X-Ray diffraction (PXRD) data were collected on the Rigaku 2550V X-ray
diffractometer with Cu Ka radiation. The images of the scanning electron microscope (SEM) and
transmission electron microscopy (TEM) were captured by Hitachi SU-8220 Field emission
scanning electron microscope and JEM-2100F Field emission transmission electron microscope,
respectively. Thermogravimetric analysis (TGA) was obtained under flowing Ar on an SDT Q600
V8.3 Build 101 thermal analysis device with a temperature-increasing rate of 5 °C/min in Ar. N,
sorption experiments were performed on a Micromeritics ASAP2460 aperture analyzer. Fourier
transform infrared (FTIR) spectra were recorded on a Lambda FTIR-7600 spectrometer over 4000-
400 cm™! with a resolution of 4 cm'. Pyridine infrared spectra (Py-IR) were obtained on
PerkinElmer Frontier. The pellets were placed in an in-situ cell equipped with ZnGe windows. The
inductively coupled plasma optical emission spectroscopy (ICP-OES, Agilent 5110) was used to
determine the SiW. Electron paramagnetic resonance (EPR) spectra were obtained from a Bruker
EMXnano EPR spectrometer (9.828 GHz, X-band). Solid-state NMR experiments were performed
on a Bruker Avance III HD 400WB (9.4 T) spectrometer equipped with a 3.2 mm CPMAS probe
at spinning speeds of 15-24 kHz. '"H MAS NMR spectra were acquired with a 7/2 pulse of 3 us
and a recycle time of 2 s, processed with background subtraction, and were referenced to
adamantane at 1.9 ppm (relative to TMS at 0 ppm). C{'H} MAS NMR spectra were acquired
with a BC /2 pulse of 3.57 ps, a 'H decoupling field strength of 80 kHz, and a recycle time of 2
s. The 13C chemical shifts were referenced externally to glycine COOH at 176.2 ppm.

Synthesis of p-xylene from furan derivatives with acrylic acid over the catalysts

Typically, 2,5-dimethylfuran (DMF, 5 mmol) and acrylic acid (AA, 30 mmol) were added into

a glass pressure tube with a given mass of catalysts, n-heptane as an internal standard, and the



experiment was performed under 140 °C for 24 h in CO, atmosphere. After the reaction, the reactor
was cooled to room temperature, and the liquid products were analyzed using Gas
Chromatography (GC). The yields and selectivity of products were analyzed by GC 2060 with a
SE-54 column and a flame ionization detector (FID). The products of CO, and p-Tolyl-2,5-
xylylmethane were analyzed by GC (Tianmei 7900) with a TDX-01 column and an FID. Then
identifications of them were performed by Gas Chromatography-Mass Spectrometer (GC-MS)
(Agilent 7890A-5975C) equipped with an HP-5MS column and an FID.

Catalyst sample treatment method for solid-state NMR test

A certain mass of catalyst sample was suspended and stirred in a probe solution (such as acetone,
2,5-dimethylfuran, or H,O) for 30 minutes. The resulting sample was collected by centrifugation
at 12000 rpm for 3 min and dried in an oven at 60 °C overnight, then used for solid-state NMR

tests.

Quantitative calculation

. moles of DMF reacted
Conversion of DMF = —— x 100 %
initial moles of DMF

o moles of product
Selectivity of product = x 10
moles of DMF reacted 0%

Yield = Conversion X Selectivity

TOF calculation
TOF (mol (mol SiW or Fe(IlI)*h) 1)
Num. of reacted DMF (mol)
B Num.of POM or Fe loading (mol) X Time(hour)

The loading of POM or Fe was calculated regarding the ICP results.



Figure S1. SEM images of (a) MIL-100(Fe) and (b) SiW@MIL-100(Fe)-3.
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Figure S2. TGA-DTA analysis of (a) MIL-100(Fe) and (b) SiW@MIL-100(Fe)-3.
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Figure S3. Absorption and desorption isotherm of MIL-100(Fe) and SiW@MIL-100(Fe)-3.
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Figure S4. (a) Micropore size and (b) mesopore size distribution of MIL-100(Fe) and SiW@MIL-
100(Fe)-3.



GC-MS details

The results from GC-MS (Table 1, entry 3) is shown in Figure S4, and the major peaks at retention
time 3.8, 5.8, 9.1, 11.0, and 22.8 minutes stand for acetone (as diluent), AA, PX, 2,5-hexanedione,
and p-tolyl-2,5-xylylmethane, respectively.
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p-xylene (9.1 min)
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p-tolyl-2,5-xylylmethane (22.8 min)
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Figure S5. The products of the test (Table 1, entry 3) by GC-MS. (GC-MS Agilent 7890A-5975C
equipped with HP-5MS column and an FID)
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Figure S6. The correlation trend between catalytic performance and pore size.
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Figure S7. The GC signals of of the by-product PTX, dimer of PX, over SiW@MIL-100(Fe)-n (n
=1-4) catalysts. (GC 2060 with SE-54 column and a FID).
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Decarboxylation step

The proposed hypothesis was confirmed by the following methods. Firstly, signals of carbon
dioxide and ethylene (decarboxylation product of AA) were detected during the reaction with N,
atmosphere (Figure S8). Specifically, ethylene and carbon dioxide were detected when the
mixture of AA and SIW@MIL-100(Fe)-3 was heated to 140 °C (Figure S8). Secondly, no
undecarboxylated products such as 2,5-DMBA were detected during the reaction analyzed by GC-
MS (Figure S5).
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Figure S8. (a) The carbon dioxide signals and (b) ethylene (with retention time 1.70 min and 3.8
min, respectively) of reaction detected by GC (Tianmei 7900) with a TDX-01 and SE-54 column
and a FID. Reaction conditions: 30 mmol AA, SIW@MIL-100(Fe)-3, 400 mg, 140 °C in N,.
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Figure S9. 'H spectra of MIL-100(Fe)-fur and SiW@MIL-100(Fe)-3-fur with and without
vacuum treatment at 25 °C. (SS =15kHz)
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Figure S10. 3C {'H} spectra of MIL-100(Fe)-fur and SiW@MIL-100(Fe)-3-fur with and
without vacuum treatment at 25 °C. (SS =15kHz)
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Figure S11. The quality effect of DMF and AA to PX with SIW@MIL-100(Fe)-3.
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Figure S12. The effects of DMF/AA molar ratios. Reaction conditions: 5 mmol DMF, 30 mmol
AA. 140 °C, 24 h, 1 bar CO,, 400 mg catalyst.
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Figure S13. The solvent effects of DMF and AA to PX reaction. Reaction conditions: 2 mL
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Figure S14. '"H MAS NMR spectra of SiW@MIL-100(Fe)-3-H,0-C5 with and without vacuum
treatment at 25 °C. (SS =15kHz)
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Figure S15. The cycle performance of SiW@MIL-100(Fe)-3-ace-C4 (scrubbed by acetone).
(Reaction condition: 5 mmol DMF, 30 mmol AA, 140 °C, 1h, 400 mg SiW@MIL-100(Fe)-3 as
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internal standard.)
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Stability of SiW@MIL-100(Fe)-3

To verify the stability of SIW@MIL-100(Fe)-3, we characterized the recovered catalyst by
XRD and TEM. The XRD pattern showed some amorphization (in the range of 3-10 degree) after
reaction and the peak at 20 degree shifted slightly towards lower angles (Figure S16), which might
be a result of the adsorbed acrylic acid. Similar phenomena of a shift of diffraction peak caused by
adsorbed molecules have been reported.! That acrylic acid coordinated with Fe sites was verified
by the diffuse reflection curve of the catalyst (Figure S17). UV-vis diffuse reflection spectra (UV-
vis DRS) showed that the absorption curve of the SIW@MIL-100(Fe)-3 with adsorption of acrylic
acid was red-shifted. Similarly, the curve of the recovered catalysts showed the same shift. In
addition, the TEM images before and after the reaction were shown in Figure S18, and there is no

significant change in the morphology of the catalyst.
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Figure S16. XRD patterns of SiW@MIL-100(Fe)-3 and recovered SiW@MIL-100(Fe)-3.
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Figure S17. UV-vis DRS of SiW@MIL-100(Fe)-3 and recovered SiW@MIL-100(Fe)-3.

(a) (b)

Figure S18. TEM images of (a) SIW@MIL-100(Fe)-3 and (b) used SIW@MIL-100(Fe)-3.
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Table S1. The specific data of the pore canal of the samples.

Surface Area (m?-g') Pore Volume (m?-g'')  Pore Size (nm)

MIL-100(Fe) 1,394.1 0.73 3.1
SiW@MIL-100(Fe)-1 757.0 0.49 7.7
SiW@MIL-100(Fe)-2 707.3 0.43 6.6
SiW@MIL-100(Fe)-3 849.8 0.47 5.0
SiW@MIL-100(Fe)-4 637.5 0.36 6.0

Table S2. The composition of catalysts calculated from ICP-OES.

Fe (wt %) W (wt %)
SiW@MIL-100(Fe)-1 13.22 13.19
SiW@MIL-100(Fe)-2 12.13 14.49
SiW@MIL-100(Fe)-3 11.46 25.09
SiW@MIL-100(Fe)-4 12.06 21.67

Table S3. Summary of the references on the synthesis of PX over heterogeneous catalysts.

P Time DMF Conv. PX Yield

Catalyst Dienophile T (°C) (bar) (h) (%) (%) Ref.
H-Y zeolite ethylene 300 57 - ~90 68 [2]
Mesoporous MFI ethylene 250 50 24 ~99 76 [3]
Dealuminated H-Beta 01000 300 40 20 99 96 [4]
Zeolites

Beta(Si/Al=150) acrylic acid 200 30 0.17 100 83 [5]
SAPO-34 ethylene 250 20 24 84 63 [6]

Si0,-SOsH ethylene 250 45 6 67 60 [7]




SnPO ethylene 250 <20 18 ~99 93 (8]
ZrP grafted SBA-15 ethylene 250 20 2 83 79 9]
WOx/Si0, ethylene 300 54 6 62 45 [10]
NbOx/MCM ethylene 250 40 10 ~99 96 [11]
Bi-BTC acrylic acid 160 10 24 99 92 [12]
[Bmim]HSO,4/

Cu,0/4,7-diphenyl-

1,10-phenanthroline/1-  acrylic acid  25/210 1 1+4 87 72.2 [13]
methyl-2-

pyrrolidinone/quinoline

Sc(OTf);+H;P0O4/Cu,O/

4,7-diphenyl-1,10-

phenanthroline/1- acrylic acid  15/210 1 1+4 90 56.7 [14]
methyl-2-

pyrrolidinone/quinoline

SIW@MIL-100(Fe)-3  acrylicacid 140 1 24 99 84 &i

Yield=Conversion xselectivity x100%
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