Electronic Supplementary information for

Selective C–C bond cleavage of oxidized lignin in aqueous phase

under mild conditions

Yuzhen Hu^{b,c,d}, Yanbin Cui^c, Shuoxiao Zhao^c, Xuelai Zhao^c, Xiaohong Hu^a, Zhenlong Song^c,

Wei Fan^{b*}, Qi Zhang^{a*}

a. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School

of Energy and Environment, Southeast University, Nanjing 210096, PR China. E-mail address:

zhangqiseu@seu.edu.cn

b. Chemical Engineering Department, University of Massachusetts Amherst, MA, USA. E-mail address: wfan@ecs.umass.edu

c. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.

d. University of Chinese Academy of Sciences, Beijing 100049, PR China

Table of Contents

- 1. Chemicals and materials
- 2. Synthesis and characterization of lignin models
- Bond dissociation energies of lignin model and possible intermediates calculated by DFT
- 4. Supplementary experimental results

1. Chemicals and materials

CeO₂, Al₂O₃, MgO, ZnO, SiO₂, TiO₂, ZrO₂, CaO, HY, SBA-15, NaOH were all purchased from Meryer (Shanghai) Co., Ltd. Dichloromethane (99%), hydrochloric acid (37%), anhydrous Na₂SO₄ (99%), 1,2-Diphenylethanone (98%), Diphenylethanedione (98%), 2-Hydroxy-1-phenylethanone (98%), phenyl formate (>97%), phenol (99.5%), 2-bromoacetophenone (99%), and acetone (99%) were all purchased from Shanghai Macklin Biochemical Co., Ltd. D₂O (99.5%) and DMSO-d₆ (99.9%) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. All analytical reagent chemicals were used as received without further purification. Bamboo was obtained from the southern China. The CEL bmboom lignin was extracted according to a reported procedure. [1]

2. Synthesis and characterization of lignin models

Preparation of 2-phenoxy-1-phenylethanone (1a)

2-Phenoxy-1-phenylethanone was prepared by reference.² To a solution of phenol (2.4 g, 25 mmol) and K_2CO_3 (3.5 g, 25 mmol) in acetone (50 mL) was added 2-bromoacetophenone (4.7g, 23 mmol) with Ar atmosphere protection and was stirred at RT for 16 h. After reaction, the suspension was filtered and concentrated in vacuum. The solid was dissolved in ethyl acetate and washed with NaOH aqueous and water successively. The organic phase was then dried by anhydrous Na₂SO₄. The crude product was recrystallized from ethanol to give 2-phenoxy-1-phenylethanone as a white solid in 78% yield. For the other methoxy substituted β -O-4 compounds, the procedures are the same as described above, except that different stating materials were used.

Procedure for the preparation of deuterium labelled 1a-d₂

The deuterated compound (Model 1a-d₂) was synthesized according to following procedure: 2phenoxy-1-phenylethanone (1.1 g, 5.0 mmol) and anhydrous K_2CO_3 (0.1 g, 0.5 mmol) were added into D₂O (10 mL) in a 25 mL round bottom flask under argon atmosphere. The mixture was refluxed in an oil bath at 100 °C for 12 h. After cooling down to room temperature, the solvent was replaced by fresh D₂O under argon atmosphere, and further refluxed at 100 °C for another 12 h. Then the obtained solid was washed to remove K_2CO_3 residues. Finally, the solid was dried under vacuum to give a deuterated compound as a light yellow solid.

$$\begin{array}{c} O \\ H \\ H \\ H \\ H \\ \end{array} \xrightarrow{Ar/100 \circ C/24h} \\ \hline K_2 CO_3/D_2 O \\ \end{array} \xrightarrow{O} \\ D \\ D \\ \end{array}$$

The structures of these compounds are confirmed by ¹H NMR and ¹³C(Fig. S1-S5).

¹H NMR and ¹³C NMR:

Model 1a: β 2-phenoxy-1-phenylethanone.

White solid.¹H NMR (400 MHz, DMSO-d6) δ 8.03-8.05 (t, J = 7.3 Hz, 2H), 7.68-7.72 (t, J = 7.4 Hz, 1H), 7.56-7.60 (t, J = 7.7 Hz, 2H), 7.26-7.32 (m, 2H), 6.93-6.99 (m, 3H), 5.58 (s, 2H). ¹³C NMR (101 MHz, DMSO-d₆) δ = 195.11, 158.39, 134.90, 134.25, 129.89, 129.31, 128.34, 121.34, 115.08, 70.50.

Fig. S1 ¹H NMR and ¹³C NMR spectra of model 1a

Model 1a-d2: Light yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 8.03-8.06 (t, J = 7.3 Hz, 2H), 7.68-7.73 (t, J = 7.4 Hz, 1H), 7.56-7.60 (t, J = 7.7 Hz, 2H), 7.26-7.31 (m, 2H), 6.93-6.99 (m, 3H). 13C NMR (101 MHz, DMSO-d6) δ = 195.21, 158.39, 134.91, 134.26, 129.89, 129.31, 128.35, 121.32, 115.07.

Fig. S2 ¹H NMR and ¹³C NMR spectra of model 1a-d₂

White solid.1H NMR (400 MHz, DMSO-d6) δ 8.03-8.04 (t, J = 7.4 Hz, 2H), 7.68-7.72 (t, J = 7.4 Hz, 1H), 7.55-7.59 (t, J = 7.8 Hz, 2H), 6.89-7.01 (m, 2H), 6.81-6.85 (m, 3H), 5.54 (s, 2H), 3.79(s, 3H). 13C NMR (101 MHz, DMSO-d6) δ = 195.20, 149.47, 147.91, 134.94, 134.21, 129.29, 128.36, 121.84, 121.02, 114.21, 112.96, 71.23, 56.03.

Fig. S3 ¹H NMR and ¹³C NMR spectra of model 2a.

¹H NMR (400 MHz, DMSO- d_6) δ 8.06 – 7.98 (m, 1H), 7.33 – 7.23 (m, 1H), 7.13 – 7.05 (m, 1H), 7.00 – 6.90 (m, 2H), 5.49 (s, 1H), 3.86 (s, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 193.40 , 164.02 , 158.45 , 130.70 , 129.86 , 127.79 , 121.26 , 115.05 , 114.52 , 70.23 , 56.07 , 40.00 .

Fig. S4 ¹H NMR and ¹³C NMR spectra of model 3a.

Model 4a: 1-(3,4-dimethoxyphenyl)-2-phenoxyethanone. Light yellow solid. ¹H NMR (400 MHz, DMSO-d6) $\delta = 7.72-7.74$ (dd, J = 8.4 Hz, 1.9, 1H),7.50 (d, J = 1.9 Hz, 1H), 7.26-7.31 (m, 2H), 6.93 –7.12(m, 4H), 5.51 (s, 2H), 3.84-3.87(d, J = 8.5 Hz, 6H). 13C NMR (101 MHz, DMSO-d6) δ = 193.47, 158.48, 154.02, 149.19, 129.87, 127.72, 123.07, 121.27, 115.09, 111.50, 110.63, 70.24, 56.30, 56.06.

Fig. S5 ¹H NMR and ¹³C NMR spectra of model 3a

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.06 – 7.98 (m, 2H), 7.71 – 7.62 (m, 1H), 7.59 – 7.50 (m, 2H), 7.02 (t, J = 8.4 Hz, 1H), 6.68 (d, J = 8.4 Hz, 2H), 5.15 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 195.41 , 153.19 , 133.92 , 129.16 , 128.58 , 124.40 , 106.09 , 75.21 , 56.32 , 40.20 .

- 12.0 HZ, 9H). 13C NMR (101 MHZ, DM3O-d0) 6 - 193.38, 133.99, 149.40, 149.10, 147 127.76, 123.08, 121.78, 121.00, 114.15, 112.95, 111.48, 110.70, 71.01, 56.29, 56.03.

Fig. S7 ¹H NMR and ¹³C NMR spectra of model 6a.

3. Bond dissociation energies of lignin model and possible intermediates calculated by DFT

BDEs were obtained as the difference of the sum of the energies of the dissociated product fragments and the energy of the molecule.

$$BDE = (E_{Frag1} + E_{Frag2}) - E_{Mol}$$
(1)

where E_{Mol} is the total energy of the molecule, E_{Frag1} and E_{Frag2} are energies of the dissociated products through the selected C-C linkages. All dissociated fragments were fully optimized.

Fig. S8 Optimized structure and Charge distribution of model 1a.

Center	Atomic	Atomic		Coordinates (Angstroms)		
Number	Number	Туре	Х		Y	Z
 1	6	0	-3.995225	-1.304849	-0.431142	
2	6	0	-2.694516	-1.147097	0.037367	
3	6	0	-2.131487	0.130777	0.143863	
4	6	0	-2.893480	1.245296	-0.227425	
5	6	0	-4.190174	1.087167	-0.696105	
6	6	0	-4.743869	-0.189369	-0.798308	
7	1	0	-4.424240	-2.297917	-0.509687	
8	1	0	-2.129135	-2.027688	0.318975	
9	1	0	-2.442505	2.226170	-0.137543	
10	1	0	-4.772605	1.956359	-0.982137	
11	1	0	-5.757707	-0.314063	-1.163838	
12	6	0	-0.743423	0.366637	0.648995	

Standard orientation:

13	6	0	0.087472	-0.860950	1.040627
14	1	0	0.149696	-1.545209	0.185133
15	1	0	-0.419880	-1.393863	1.849793
16	6	0	2.332679	-0.270388	0.561823
17	6	0	2.822213	1.024399	0.418554
18	6	0	2.851812	-1.313132	-0.203822
19	6	0	3.842239	1.272452	-0.495466
20	1	0	2.380896	1.812928	1.013349
21	6	0	3.864823	-1.053829	-1.123923
22	1	0	2.479303	-2.321905	-0.058861
23	6	0	4.362831	0.238555	-1.272176
24	1	0	4.224982	2.281479	-0.607930
25	1	0	4.272141	-1.866384	-1.716566
26	1	0	5.155183	0.438230	-1.985533
27	8	0	1.367312	-0.521321	1.521675
28	8	0	-0.285749	1.483552	0.750533

Fig. S9 Optimized structure and Charge distribution of hydroperoxide intermediate f.

Standard orientation:

Cen	ter Atomic	Atomic	Co	ordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ	
	1 6	0	3.901793	-1.516573	-0.685262	
2	6	0	2.604361	-1.039977	-0.518476	
3	6	0	2.383080	0.312745	-0.222639	
4	6	0	3.483203	1.173540	-0.105721	
5	6	0	4.775314	0.693113	-0.263004	
6	6	0	4.987496	-0.654800	-0.554076	

7	1	0	4.063249	-2.563214	-0.919399
8	1	0	1.773791	-1.726416	-0.612924
9	1	0	3.295254	2.218543	0.108360
10	1	0	5.618958	1.367254	-0.162612
11	1	0	5.997064	-1.031186	-0.680666
12	6	0	1.024887	0.923182	-0.062619
13	6	0	-0.200131	-0.025444	0.013782
14	6	0	-2.558728	0.264143	0.042143
15	6	0	-2.867293	-1.087528	-0.109598
16	6	0	-3.548550	1.236454	-0.102022
17	6	0	-4.174605	-1.452944	-0.431706
18	1	0	-2.115902	-1.846662	0.060996
19	6	0	-4.847737	0.856350	-0.411852
20	1	0	-3.271847	2.276318	0.025294
21	6	0	-5.166813	-0.490905	-0.585266
22	1	0	-4.414418	-2.504766	-0.547438
23	1	0	-5.613445	1.616478	-0.525499
24	1	0	-6.181374	-0.785691	-0.829610
25	8	0	-1.302850	0.739981	0.350018
26	8	0	0.867169	2.117882	-0.022615
27	8	0	0.028092	-1.114232	0.888332
28	8	0	0.529899	-0.584598	2.145529
29	1	0	1.443581	-0.910748	2.122001
30	1	0	-0.351063	-0.530321	-0.950711

Fig. S10 Optimized structure and Charge distribution of radical intermediate g.

Standard orientation:

Center	Atomic	Atomic		Coordinates (Angstroms)	
Number	Number	Туре	Х	Ŋ	Ζ	Ζ
1	6	0	4.779884	0.590962	0.571325	
2	6	0	3.531647	1.114614	0.253985	
3	6	0	2.456303	0.254023	-0.038340	
4	6	0	2.654176	-1.137059	-0.015841	
5	6	0	3.909742	-1.653889	0.299779	
6	6	0	4.970601	-0.795028	0.597230	
7	1	0	5.601383	1.256073	0.796897	
8	1	0	3.364973	2.181409	0.227498	
9	1	0	1.847887	-1.800414	-0.285092	
10	1	0	4.060710	-2.723979	0.307200	
11	1	0	5.941743	-1.201802	0.843392	
12	6	0	1.155626	0.875317	-0.345302	
13	6	0	-0.139739	-0.081739	-0.367737	
14	1	0	-0.126810	-0.601525	0.604773	
15	6	0	-2.531273	0.263471	-0.094817	
16	6	0	-2.845816	-1.094762	-0.176883	
17	6	0	-3.483334	1.197441	0.318716	
18	6	0	-4.132325	-1.515383	0.176999	
19	1	0	-2.121831	-1.807961	-0.541114	
20	6	0	-4.763244	0.765790	0.659149	
21	1	0	-3.199423	2.238096	0.361923	
22	6	0	-5.092138	-0.593542	0.595866	
23	1	0	-4.380485	-2.565938	0.111820	
24	1	0	-5.502408	1.488069	0.977481	
25	1	0	-6.085166	-0.925861	0.863855	
26	8	0	0.993055	2.074775	-0.528536	
27	8	0	-1.273302	0.791883	-0.432282	
28	8	0	0.002592	-0.951342	-1 398358	

4. Supplementary experimental results

Fig. S11 Gas chromatogram of the conversion of 1a over the Pd/CeO₂ catalyst at 50 °C for 3h.

The external standard (ES) is acetophenone.

Fig. S12 Effect of (a) Pd loadings and (b) base concentration on catalytic performances of Pd/CeO₂ for the oxidation of 1a. Optimization of reaction conditions by adjusting the amounts of (c) Pd/CeO₂ and (d) H_2O_2 . Optimization of reaction conditions by

changing (e) temperatures and (f) reaction time. Typical conditions: **1a** (0.1 mmol), catalyst (0.02 g), $H_2O_2(30\%, 0.5mL)$, NaOH aqueous solution (2.5 wt %, 2.5 mL), 50 °C, 3h.

Fig. S13 (a) Performance on oxidative cleavage of 1a over recycled Pd/CeO₂
catalysts. (b) XRD spectra of fresh and recycled Pd/CeO₂ catalysts. Conditions: 1a
(0.1 mmol), catalyst (0.02g), H₂O₂ (30%, 0.5mL), NaOH aqueous solution (2.5 wt.%, 2.5 mL), 50 °C, 3h.

Fig. S14 Gas chromatogram of the monomers obtained from the depolymerisation of oxidized

bamboo lignin.

Fig. S15 Ex-situ XPS spectra of Pd 3d (a) before and (c) after treatment at reaction conditions without reactant. Ex-situ XPS spectra of Ce 3d (b) before and (d) after treatment at reaction

conditions without reactant.

Entry	Sample	Pd content (wt.%)
1	1 wt.% Pd/CeO ₂	0.95
2	2 wt.% Pd/CeO ₂	1.90
3	5 wt.% Pd/CeO ₂	4.56
4	Pd/Al ₂ O ₃	1.82
5	Pd/ZrO ₂	1.94
6	Pd/MgO	1.82
7	Pd/ZnO	1.88
8	Pd/TiO ₂	1.95
9	Pd/CaO	1.89
10	Pd/SiO ₂	1.99

Table S1 The actual palladium content of the prepared catalysts determined by ICP.

11	Pd/HY	1.83
12	Pd/SBA-15	1.92

Table S2 The Pd^{0}/Pd^{2+} value of different Pd catalysts determined by XPS.

Entry	Sample	Pd^{0}/Pd^{2+}
1	Pd	1.15
3	Pd/CeO ₂	1.16
5	Pd/SiO ₂	0.96
6	Pd/Al ₂ O ₃	0.90

 Table S3 Radical inhibition experiments using TEMPO as a radical quenching

agent.

0.1.4.4	TEMPO (aquiv)	$C_{\text{emphasized}}(0/)$	Yields (C mol%)		
Substrate	TEMPO (equiv.)	Conversion (%)	acid	elds (C mol%) id phenol .5 87.4 .9 19.3 .5 35.7 .3 94.9 .9 27.8 .2 49.8 .4 89.5 .2 10.8 .5 38.9 .8 88.3 .9 17.7	
	-	94.6	84.5	87.4	
1a	1	33.7	16.9	19.3	
	0.5	57.2	40.5	35.7	
	-	100.0	81.3	94.9	
2a	1	41.2	23.9	27.8	
	0.5	62.9	50.2	49.8	
	-	95.5	82.4	89.5	
3a	1	22.3	12.2	10.8	
	0.5	49.7	33.5	38.9	
	-	93.7	76.8	88.3	
4a	1	30.9	15.9	17.7	
	0.5	59.8	42.8	45.5	
	-	92.0	80.2	79.9	
5a	1	35.5	23.6	22.1	
	0.5	58.7	46.3	42.2	

	-	100.0	78.3	92.2	
6a	1	34.3	18.9	17.7	
	0.5	60.4	49.4	45.8	

Conditions: lignin model (0.1 mmol), 2 wt% Pd/CeO₂ (0.02g), H₂O₂ (30%, 0.5mL),

NaOH aqueous solution (2.5 wt %, 2.5 mL), 50 $^{\circ}\mathrm{C}$ and 3 h.

Reference

[1] H.M. Chang, E.B. Cowling, W. Brown, E. Adler, G. Miksche, COMPARATIVE STUDIES ON CELLULOLYTIC ENZYME LIGNIN AND MILLED WOOD LIGNIN OF SWEETGUM AND SPRUCE, Holzforschung, 29 (1975) 153-159.