Supporting information

α-C–H functionalization of Glycine Derivatives Under Mechanochemical Accelerated Aging en Route to the Synthesis of 1,4-Dihydropyridines and α-Substituted Glycine Esters

Keyu Xiang,^a Ying Ping,^{a,b} Tao Ying,^a Weike Su,^a Jingbo Yu^{a,*}

^a National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology. Hangzhou, 310014, P.R. China. E-mail: yjb@zjut.edu.cn

^b College of Ecology, Lishui University, Lishui, 323000, P.R. China

Table of Contents

1. General information	
2. General procedures for the synthesis of substrates	
2.1 The synthesis of <i>N</i> -arylglycine esters	
2.2 The synthesis of <i>N</i> -arylglycine amides	
2.3 The synthesis of <i>N</i> -benzyl-4-methoxyanilines	
3. Reaction optimization & typical procedures	
3.1 Influence of the grinding auxiliaries on the cascade CDC reaction	
3.2 Influence of amount of silica gel on the cascade CDC reaction	
3.3 Influence of aging temperature on the cascade CDC reaction	
3.4 Optimization of reaction conditions	
3.5 Typical procedures for the (cascade) CDC reaction	
3.6 List of unreactive substrates	
3.7 Comparison of the effect of NaCl and silica gel on the yield at different	ent aging time S13
3.8 Modified purification method and the recycling of grinding auxiliary	⁷
4. Multigram-scale synthesis and synthetic application	
4.1 Multigram-scale synthesis	S14
4.2 Purity calculation of 3aa produced from Scheme S3a	
4.3 Further transformations	S15
4.4 Synthesis of calcium channel blocker analogs	S16
5. Experimental probes on reaction mechanism	S16
5.1 Control experiments	S16
5.2 Physical adsorption test	S18
5.3 Particle size distribution of silica gel	S18
6. Green chemistry metrics calculations	S19
6.1 Calculation of <i>E</i> -factor and reaction mass efficiency (RME)	S19
6.2 Calculation of power demands	
6.3 DOZN TM 2.0 data for this work	
6.4 DOZN TM 2.0 groups according to the 12 Principles of Green Chemis	try S31

tegy
S 31
S35
S37
S37
S57
S63
. S147
•

1. General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All of the ball-milling reactions were conducted in a Mix miller (MM 400 RetschGmbh, Hann, Germany) with 25/50 mL stainless-steel grinding jars with stainless-steel balls ($d_{MB} = 1.4$ cm), if not mentioned otherwise. Reactions were monitored by Thin Layer Chromatography (TLC) using UV light (254/365 nm) for detection. Flash chromatography was carried out using silica gel (200-300 mesh). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker 400, 500 or 600 MHz spectrometer in CDCl₃ or d_6 -DMSO with tetramethylsilane (TMS) as internal standard. The following abbreviations were used to explain multiplicities: s = singlet, brs = broad singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet and the *J* coupling constants were reported in Hertz unit (Hz). Melting points were measured using an SRS OptiMelt MPA100 apparatus and were uncorrected. High Resolution Mass spectra (HRMS) was recorded on micrOTOF-Q II 10366, Agilent 6210 LC/TOFMS or Waters GCT Premier TOFMS. Particle size was measured by Malvern Mastersizer 2000. BET experiments were recorded with Micromeritics ASPS 2010.

2. General procedures for the synthesis of substrates

The N-arylglycine esters/amides were synthesized under solvent-free ball-milling conditions.

2.1 The synthesis of N-arylglycine esters

Figure S1 N-arylglycine esters used in this study

All *N*-arylglycine esters were synthesized from the corresponding anilines and alkyl 2-chloroacetate according to the **typical procedure 1**.

Typical procedure 1: ethyl (4-methoxyphenyl)glycinate (**1a**): A mixture of 4-methoxyaniline (0.246 g, 2.0 mmol), ethyl 2-chloroacetate (0.244 g, 2.2 mmol), triethylamine (0.222 g, 2.2 mmol) and silica gel (2.0 g) were placed in a 50 mL stainless-steel jar with two stainless-steel balls ($d_{\text{MB}} = 1.4$ cm). Then, the milling jar was placed in a mixer mill (30 Hz, 60 min). After the reaction was finished, the contents were scratched off the jar and *purified directly by rinsing with cyclohexane in a Buchner funnel to give desired products 1a~1n*.

2.2 The synthesis of N-arylglycine amides

Figure S2 N-arylglycine amides used in this study

Chloroacetamides were synthesized from amines and chloracetyl chloride according to **typical procedure 2**, then *N*-arylglycine amides were obtained by **typical procedure 1**.

Typical procedure 2: *N*-hexyl-2-((4-methoxyphenyl)amino)acetamide (**4a**): A mixture of hexylamine (0.102 g, 1.0 mmol), triethylamine (0.111 g, 1.1 mmol) and silica gel (1.5 g) were placed in a 50 mL stainless-steel jar with two stainless-steel balls ($d_{\text{MB}} = 1.4 \text{ cm}$). After precooling the sealed jar with ice, chloroacetyl chloride (0.124 g, 1.1 mmol) was added, and the milling jar was placed in a mixer mill (20 Hz, 10 min). *4-methoxyaniline (0.123 g, 1.0 mmol) was then added to the mixture, further milling at 30 Hz for 60 min. After the reaction was finished, the contents were scratched off the jar and <u>purified directly by rinsing with cyclohexane in a Buchner funnel to give desired products 4a~4i. (typical procedure 1)*</u>

2.3 The synthesis of N-benzyl-4-methoxyanilines

Scheme S1 The synthesis of N-benzyl-4-methoxyanilines

The *N*-benzyl-4-methoxyanilines were synthesized from 4-methoxyaniline and the corresponding benzyl bromides according to Rathi's report¹.

3. Reaction optimization & typical procedures

3.1 Influence of the grinding auxiliaries on the cascade CDC reaction

Entry	Auxiliaries (g)	Yield (%)
1	Silica gel (0.60)	67
2	LiCl (1.43)	44
3	NaCl (1.50)	59
4	KCl (1.37)	53
5	NaF (0.71)	n.d.
6	KBr (1.91)	31
7	Na ₂ SO ₄ (1.86)	37
8	CaCl ₂ (1.49)	41
9	BaTiO ₃ (4.17)	n.d.
10	Nano ZnO (3.89)	n.d.
11	Kieselguhr (0.60)	n.d.
12	Al ₂ O ₃ (2.42)	n.d.
13	none	n.d.

Table S1	Screen	of th	ie grind	ling	auxi	liaries ^a
----------	--------	-------	----------	------	------	----------------------

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (1.5 mmol) and grinding auxiliaries (with the same volume) were pre-grinded for 30 min at 30 Hz, using two stainless-steel grinding balls ($d_{MB} = 1.4$ cm) in a 25 mL stainless jar, then aging in an opened flask for 24 h at 40 °C.

Entry	Before Milling	After Milling	After Aging
Silica gel			
LiCl			
NaCl			
KCl			
NaF			
KBr			

Table S2 The morphology of the grinding auxiliaries and the reaction mixtures

None

In the absence of grinding auxiliary, the substrates were hardly dispersed (Table S2, none), which gave no aging product (Table S1, entry 13). Most of the powdered mixtures give rise to better yields except Al_2O_3 and $BaTiO_3$ (Table S1, entries 9 and 12), while either the pulpy slurry (Table S2, Kieselguhr, Table S1, entry 11) or the nubbly aggregations ([Table S2, NaF, Table S1, entry 5]; [Table S2 Nano ZnO, Table S1, entry 10]) could not give any aging products. Besides, most of the halogen salts diminished the transformation due to the slight agglomeration of the mixtures.

3.2 Influence of amount of silica gel on the cascade CDC reaction

Further investigation of the amount of silica gel showed that 600 mg silica gel gave the best performance. Lower its usage (400 mg, 500 mg) led to a bad dispersion of the substrates which resulted in poor yields. The excess silica gel (700 mg) also resulted in a sharp decrease of yield, which was probably raised by the dilution of reagents. Thus, our investigation was continued with 600 mg silica gel.

Figure S3 Effect of silica gel amount on the reaction yield. Reaction conditions: 1a (0.5 mmol), 2a (1.5 mmol) and silica gel were pre-grinded at 30 Hz for 30 min, using two stainless-steel balls ($d_{\rm MB} = 1.4$ cm) in a 25 mL stainless jar, then aging in an opened flask for 24 h at 40 °C.

3.3 Influence of aging temperature on the cascade CDC reaction

The aging temperature after pre-grinding was then examined. As seen the results depicted in Figure S4, proper heating during the aging process can promote the reaction transformation, but overheating depreciated the product yield probably due to the augment of the side-reaction² (auto-oxidation of glycine, Scheme S1).

Figure S4 Effect of aging temperature on the reaction yield (pre-grinding at 30 Hz for 30 min). Reaction conditions: **1a** (0.5 mmol), **2a** (1.5 mmol) and silica gel (0.6 g) were pre-grinded at 30 Hz for 30 min, using two stainless-steel balls ($d_{MB} = 1.4$ cm) in a 25 mL stainless jar, then aging in an opened flask for 24 h.

3.4 Optimization of reaction conditions

Table S3 Optimization of the cascade CDC reaction of 1a and 2a

Entry	1a (mmol)	2a (mmol)	Frequency (Hz)	Milling Time (min)	Aging Temp. (°C)	Aging Time (h)	Yield (%)
1	0.5	1.5	30	20	40	24	55
2	0.5	1.5	30	60	40	24	68
3	0.5	1.5	30	30	40	24	67
4	0.5	1.5	25	30	40	24	53
5	0.5	1.5	20	30	40	24	48
6	0.5	1.5	15	30	40	24	35
7	0.5	2	30	30	40	24	68
8	0.5	1.1	30	30	40	24	54

9	0.5	1.1	30	30	rt	24	50
10	0.5	1.1	30	30	rt	36	56
11	0.5	1.1	30	30	rt	48	61
12	0.5	1.1	30	30	rt	60	65
13	0.5	1.1	30	30	rt	72	70
14	0.5	1.1	30	30	rt	84	71
15	0.5	1.1	30	30	rt	96	71
16 ^b	0.5	1.1	30	30	rt	24	36

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** and silica gel (0.6 g) were pre-grinded for a certain time at a certain frequency, using two stainless-steel balls ($d_{MB} = 1.4$ cm) in a 25 mL stainless jar, then aging in an opened flask. ^{*b*} The Teflon jar and balls were used, aging in an opened flask at rt for 24 h. rt = room temperature

The yield of **3aa** rise along the increased milling time (Table S3, entries $1\sim3$) and milling frequency (Table S3, entries $3\sim6$). When the amount of **2a** was increased from 3.0 to 4.0 equiv., nearly the same product yield was obtained (Table S3, entries 3 and 7), while decreased its dosage from 3.0 to 2.2 equiv. led to a lower yield of 54%. Nevertheless, as the "do not require energy" aging time extended to 84 h (Table S3, entries $9\sim14$), the yield of **3aa** could be increased to 71% in the presence of the low amount of **2a** (2.2 equiv.), but further prolonging the aging time to 96 h had no additional benefit on the yield (Table S3, entry 15).

Figure S5 The effect of the product of frequency and milling time on the yield of **3aa.** Reaction conditions: **1a** (0.5 mmol), **2a** (1.1 mmol) and silica gel (0.6 g) were pre-grinded for a certain time at a certain frequency, using two stainless-steel balls ($d_{MB} = 1.4$ cm) in a 25 mL stainless jar, then aging in an opened flask for 24 h at 40 °C.

Considering the ball-milling frequency can notably affect the rate of molecular collisions and interparticle mixing during the impact³ while longer milling time means more energy accumulation, we next investigated the relationship between the yield of **3aa** and milling time & frequency detailly under the optimal chemical conditions (Figure S5). As expected, an improved yield was obtained with higher milling frequency, while prolonging the milling time at a specific frequency had a positive effect on the following transformation. It should be noted that the higher frequency gave better results when the products of frequency and milling time were kept in constant (Fig S5, $30 \times 30 \times 15 \times 60$; $25 \times 40 \times 20 \times 50$), yet no significant change was obtained

when the milling time was prolonged to 60 min at 30 Hz. The overall evaluation showed that the milling frequency was a key parameter for the following aging transformation.

3.5 Typical procedures for the (cascade) CDC reaction

Typical procedure for the synthesis of products 3 and 5: A mixture of glycine esters $1a \sim 1m$ (0.5 mmol, 1.0 equiv.) or amides $4a \sim 4i$ (0.5 mmol, 1.0 equiv.), $2a \sim 2g$ (1.1 mmol, 2.2 equiv.), LAG (TFA, $\eta = 0.009$, if needed) and silica gel (0.6 g)/NaCl (1.5 g) were placed in a stainless-steel jar (25 mL) with two stainless-steel balls ($d_{\text{MB}} = 1.4$ cm) and pre-grinded at 30 Hz for 30 min. After the milling was finished, the contents were scratched off the jars and aging in an opened flask (100 mL) for 84 h at rt. Then, purified by (a) rinsing with cyclohexane and filtration (details see 3.8); (b) column chromatography on silica gel using EtOAc/n-hexane to give the desired products.

Typical procedure for the synthesis of unsymmetrical products: A mixture of glycine esters 1a/11 (0.5 mmol, 1.0 equiv.), two different β -carbonyl esters/acetylacetone 2a/2b/2f (0.55 mmol, 1.1 equiv.) and 2b/2g (0.55 mmol, 1.1 equiv.) as well as silica gel (0.6 g) were placed in a stainless-steel jar (25 mL) with two stainless-steel balls ($d_{\text{MB}} = 1.4$ cm) and pre-grinded at 30 Hz for 30 min. After the milling was finished, the contents were scratched off the jars and aging in an opened flask (100 mL) for 84 h at rt. Then, purified directly by column chromatography on silica gel using EtOAc/*n*-hexane to give the desired products **3aab**, **3aag**, **3acg**, **3afg** and **3lb**.

Typical procedure for the synthesis of α -glycine derivatives 7: A mixture of glycine esters 1a/1f/1l (0.5 mmol, 1.0 equiv.), $6a\sim6o$ (0.5 mmol, 1.0 equiv.), $Cu(OTf)_2$ (1 mol%, for $6j\sim6o$), LAG (TFA, $\eta = 0.01$, if needed) and silica gel (0.6 g)/NaCl (1.5 g) were placed in a stainless-steel jar (25 mL) with two stainless-steel balls ($d_{MB} = 1.4$ cm) and pre-grinded at 30 Hz for 30 min. After the milling was finished, the contents were scratched off the jars and aging in an opened flask (100 mL) for 96 h/24 h (for $6j\sim6o$) at rt. Then, purified by (a) rinsing with cyclohexane and filtration (details see 3.8); (b) column chromatography on silica gel using EtOAc/n-hexane to give the desired products.

3.6 List of unreactive substrates

Figure S6 Unreactive substrates

Glycine esters with strong electron-withdrawing groups (nitro-, cyano-, carbonyl and trifluoromethyl) on the benzene rings were tested but failed to give any products, neither did the alkyl substituent, which was probably due to their low reactivity or the formation of less stable intermediates during the C–H activation. (The starting materials for getting these compounds were prepared according to literature methods⁴, thus their characterization data were not shown).

3.7 Comparison of the effect of NaCl and silica gel on the yield at different aging time

Figure S7 Reaction of 1a and 2a with NaCl and silica gel as grinding auxiliary (*isolated yields obtained without column chromatography*). Reaction conditions: 1a (0.5 mmol), 2a (1.1 mmol) and NaCl (1.5 g)/silica gel (0.6 g) were pre-grinded for 30 min at 30 Hz, using two stainless-steel balls ($d_{\rm MB} = 1.4$ cm) in a 25 mL stainless jar, then aging in an opened flask at rt.

3.8 Modified purification method and the recycling of grinding auxiliary

Silica gel as grinding auxiliary: After the reaction was completed, the mixtures were placed to the Buchner funnel, rinsing with cyclohexane, and then concentrated under vacuum to give desired products **3aa**, **3ba**, **3ca**, **3da**, **3ab**, **3lb**, **3ic**, **5fa**, **5ga**, and **5ha**. <u>*The residues (containing mainly silica gel) were directly used for the next reaction after drying under reduced pressure.*</u>

NaCl as grinding auxiliary: After the reaction was completed, the mixtures were dissolved in EtOAc, then filtered to give <u>the recovered NaCl as offwhite solid which can be directly used for the next reaction after</u> <u>drying under reduced pressure</u>. The filtrate was concentrated and rinsed with cyclohexane/ EtOAc (5:1) in a Buchner funnel (with a thin layer of SiO₂), and then concentrated under vacuum to give desired products **3aa, 3ga, 3gb, 3af, 3cg, 5ea, 7ac, 7ah** and **11**.

For the synthesis of **3aa**, <u>NaCl can be recycled and reused for at least 5 times and its recovery yields (mass</u> of recovered solid g/1.5 g) were ranging from 95.3% to 98.6%. The average consumption of NaCl for single reaction is 46 mg.

For the synthesis of **7ah**, <u>NaCl can be recycled and reused for at least 5 times and its recovery yields (mass</u> of recovered solid g/1.5 g) were ranging from 96.3% to 96.8%. The average consumption of NaCl for single reaction is 51 mg.

For the synthesis of **11**, <u>NaCl can be recycled and reused for at least 5 times and its recovery yields (mass of</u> recovered solid g/1.5 g) were ranging from 96.3% to 97.1%. The average consumption of NaCl for single reaction is 50 mg.

4. Multigram-scale synthesis and synthetic application

4.1 Multigram-scale synthesis

Scheme S3 Multigram-scale synthesis of **3aa**, **3ag** and **5cb**. Reaction conditions: (a) **1a** (5.0 mmol, 1.0 equiv.), **2a** (11 mmol, 2.2 equiv.) and silica gel (3.0 g) were placed in a stainless-steel jar (50 mL) with two stainlesssteel balls ($d_{MB} = 1.4$ cm) milling at 30 Hz for 30 min (two jars), then the reaction mixture was aging in an opened flask (500 mL) for 96 h. <u>After the reaction was completed, the contents were rinsed with cyclohexane</u>, <u>the filtrate was concentrated and dried under vacuum to give</u> **3aa**. (b) **1a** (5.0 mmol, 1.0 equiv.), **2g** (11 mmol, 2.2 equiv.), TFA ($\eta = 0.01$) and silica gel (3.0 g) were placed in a stainless-steel jar (50 mL) with two stainless-steel balls ($d_{MB} = 1.4$ cm) milling at 30 Hz for 30 min (two jars), then the reaction mixture was aging in an opened flask (500 mL) for 96 h. After the reaction was completed, the contents were purified directly by column chromatography on silica gel using EtOAc/*n*-hexane (1:2) as eluent to give **3ag**. (c) **4c** (5.0 mmol, 1.0 equiv.), **2b** (11 mmol, 2.2 equiv.), TFA ($\eta = 0.01$) and silica gel (3.0 g) were placed in a stainless-steel jar (50 mL) with two stainless-steel balls ($d_{MB} = 1.4$ cm) milling at 30 Hz for 30 min (two jars), then the reaction mixture was attainless-steel jar (50 mL) with two stainless-steel balls ($d_{MB} = 1.4$ cm) milling at 30 Hz for 30 min (two jars), then the reaction mixture was aging in an opened flask (500 mL) for 96 h. After the reaction was completed, the contents were purified directly by column chromatography on silica gel using EtOAc/*n*-hexane (1:3) as eluent to give **5cb**.

4.2 Purity calculation of 3aa produced from Scheme S3a

To measure the purity of **3aa** produced from the gram-scale synthesis (**Scheme S3a**), 50 mg "product" was measured by NMR, and 15 mg mesitylene was added as an internal standard.

Figure S8 ¹H NMR of product 3aa with internal standard mesitylene

Purity =
$$\frac{0.63}{2}$$
 (H integral of **3aa**) $\div \frac{1}{3}$ (H integral of mesitylene)
× $\frac{15(mass of mesitylene)}{120(Mw of mesitylene)}$ × 403(Mw of **3aa**) \div 50(mass of crude product) = 95.2%

4.3 Further transformations

Scheme S4 Further transformation of **3ag.** Reaction conditions: To a stirred solution of **3ag** (186 mg, 0.5 mmol) in CH₃CN (5 mL) was added slowly ceric ammonium nitrate (CAN, 677 mg, 1.25 mmol, 2.5 equiv.) in distilled water (5.0 mL) at 0 °C under N₂. The combined reaction mixture was further stirred at the same temperature for about 1 h. Progress of this was monitored by TLC and quenched by adding the saturated NaHCO₃ solution to bring the pH 10 and extracted with EtOAc (4×5 mL). The combined organic layer was washed with brine solution, dried over Na₂SO₄ and evaporated under vacuum. The crude product was separated by column chromatography eluting with Hexane/EA/TEA (70:30:1) respectively, afforded **8** (71.6 mg, 54% yield). To a solution of **8** (0.132 g, 0.5 mmol) in 5 mL of water was added NaOH (1.0 equiv.), reflux

for 1 h. After cooling to room temperature, the reaction mixture was acidified by 1 M HCl (pH 10 to 3) to yield 57.6 mg of **9** as a yellow precipitate.

4.4 Synthesis of calcium channel blocker analogs

Scheme S5 Synthesis of calcium channel blocker analogs. Reaction conditions: A mixture of 10 (0.5 mmol, 1.0 equiv.), 2a (1.1 mmol, 2.2 equiv.), LAG (TFA, $\eta = 0.01$) and NaCl (1.5 g) were placed in a stainless-steel jar (25 mL) with two stainless-steel balls and pre-grinded at 30 Hz for 30 min. After the milling was finished, the contents were scratched off the jars and aging in an opened flask (100 mL) for 48 h at rt. Then, the reaction mixtures were dissolved in EtOAc and filtered to give the recovered NaCl as offwhite solid which can be directly used for the next reaction after drying under reduced pressure (the recovery yields were ranging from 96.3% to 97.1%, and the average consumption of NaCl for single reaction is 50 mg). The filtrate was concentrated and rinsed with EtOAc/cyclohexane (5:1) in a Buchner funnel (with a thin layer of SiO₂), and then concentrated under vacuum to give desired products.

5. Experimental probes on reaction mechanism

5.1 Control experiments

Scheme S6 Radical trapping experiments. Reaction conditions: 1a (0.5 mmol, 1.0 equiv.), 2a (1.1 mmol, 2.2 equiv.), silica gel (0.6 g) and BHT (2.0 equiv.) were placed in a stainless-steel jar (25 mL) with two stainless-steel balls ($d_{\rm MB} = 1.4$ cm) in a mixer mill, milling at 30 Hz for 30 min. Then aging in an opened flask for 24 h at rt.

Scheme S7 Reaction of 13 and 2a under ball-milling. Reaction conditions: 13 (0.5 mmol, 1.0 equiv.), 2a (1.1 mmol, 2.2 equiv.) and silica gel (0.6 g) were placed in a stainless-steel jar (25 mL) with two stainless-steel balls ($d_{\rm MB} = 1.4$ cm) in a mixer mill, milling at 30 Hz for 30 min.

Scheme S8 Three-component reaction of 1a, 2a and *p*-toluidine. Reaction conditions: 1a (0.5 mmol, 1.0 equiv.), 2a (1.1 mmol, 2.2 equiv.), *p*-toluidine (0.5 mmol, 1.0 equiv.) and silica gel (0.6 g) were placed in a stainless-steel jar (25 mL) with two stainless-steel balls ($d_{\rm MB} = 1.4$ cm) in a mixer mill, milling at 30 Hz for 30 min. Then aging in an opened flask for 24 h at rt.

	0.0	6 g Silica Gel	1a/Silica Gel	2a	200	(-)
1a	8	30 Hz, 30 min	pre-grinded mixture no imine was detected	I aging, 84 h, rt II neat stirring, 84 h, rt	30%	(a)
			1a/Silica Gel	2a 🗡	3aa	(b)
			physical mixture	II neat stirring, 84 h, rt	n.d.	
				III neat stirring, 84 h, 60 °C	n.d.	

Scheme S9 The effects of pre-grinding and neat stirring. Reaction conditions: (a) 1a (0.5 mmol, 1.0 equiv.) and 0.6 g silica gel were placed in a stainless-steel jar (25 mL) with two stainless-steel balls ($d_{\text{MB}} = 1.4$ cm) in a mixer mill, milling at 30 Hz for 30 min. After the milling was finished, the contents were scratched off the jars and aging in an opened flask for 84 h, (I, without agitation; II, with neat stirring); (b) 1a (0.5 mmol, 1.0 equiv.) and 0.6 g silica gel were physically mixed and placed in an opened flask for 84 h (I, with neat stirring at rt; II, with neat stirring at 60 °C). (rt = room temperature, n.d. = not detected).

5.2 Physical adsorption test

Preparation of *C***-30**: 0.6 g silica gel was placed in a stainless-steel jar (25 mL) with two stainless-steel balls ($d_{MB} = 1.4$ cm) in a mixer mill, milling at 30 Hz for 30 min. After the milling was finished, the mixture was washed with ethyl acetate.

Preparation of *BM***-30: 1a** (0.5 mmol), **2a** (1.1 mmol) and 0.6 g silica gel were placed in a stainless-steel jar (25 mL) with two stainless-steel balls ($d_{MB} = 1.4$ cm) in a mixer mill, milling at 30 Hz for 30 min. After the milling was finished, the mixture was washed with ethyl acetate.

ASAP 2010 was used to measure the BET surface area at 77.29 K by nitrogen physisorption. Before the test, the samples were evacuated at 393 K for 6 h.

5.3 Particle size distribution of silica gel

The particle size distribution of silica gel was measured by Malvern Mastersizer 2000. After neat grinding of the silica gel, the particle size distribution of silica gel was drastically changed (Figure S11), and large particles were identified due to the aggregation of silica gel particles. In contrast, no obvious aggregation was founded (the average particle size of silica gel was greatly decreased, see Table 5) when the milling process proceeded in the presence of organic reactants (BM-30w), which might be attributed to the protective effect of the substrates.

Figure S11 Particle size distribution of silica gel

6. Green chemistry metrics calculations

6.1 Calculation of *E*-factor and reaction mass efficiency (RME)

The *E*-factor is the actual amount of waste produced in the process, defined as everything but the desired product. It takes the chemical yield into account and includes reagents, solvent losses, and all process aids. A higher *E*-factor means more waste and, consequently, greater negative environmental impact. The ideal *E*-factor is $zero^5$.

$$E \text{ factor} = \frac{\Sigma \text{m}(\text{reactants}) + \Sigma \text{m}(\text{reacgents}) + \Sigma \text{m}(\text{solvents}) + \Sigma \text{m}(\text{additives}) - \Sigma \text{m}(\text{desired product})}{\Sigma \text{m}(\text{desired product})}$$

The quantitative reaction mass efficiency (RME) and E-factor are related by the equation as follows⁶,

$$\mathbf{RME} = \frac{1}{1+E}$$

Calculation of *E*-factor for the synthesis of 3aa

This work (silica gel)

 $E \text{ factor} = \frac{104.62 \text{ (1a)} + 127.73 \text{ (2a)} + 600 \text{ (silica gel)} - 143.82 \text{ (3aa)}}{143.82 \text{ (3aa)}}$

= 4.79 kg waste/1kg product

$$RME = \frac{1}{1 + 4.79} = 17.3\%$$

= 1.16 kg waste/1kg product

$$RME = \frac{1}{1+1.16} = 46.3\%$$

$$E \text{ factor} = \frac{104.62 \text{ (1a)} + 145.15 \text{ (2a)} + 5.43 \text{ (TMSCl)} + 40.88 \text{ (TBPA)} + 3828.5 \text{ (CH3CN)} - 157.34 \text{ (3aa)}}{157.34 \text{ (3aa)}}$$

= 25.87 kg waste/1kg product

$$RME = \frac{1}{1 + 25.87} = 3.7\%$$

$$E \text{ factor} = \frac{41.56 \text{ (1a)} + 51.09 \text{ (2a)} + 7.23 \text{ (Cu(OTf)2)} + 872.0 \text{ (toluene)} - 58.90 \text{ (3aa)}}{58.90 \text{ (3aa)}}$$

= 15.50 kg waste/1kg product

$$RME = \frac{1}{1 + 15.50} = 6.1\%$$

= 42.08 kg waste/1kg product

$$RME = \frac{1}{1 + 42.08} = 2.3\%$$

6.2 Calculation of power demands

The power for each running facilities (MM 400 RetschGmbh, *ball milling*; MS 300 Hot Plate Magnetic Stirrer, *heating and stirring*) were measured by power detector.

The power demand was calculated according to the equation as follows¹⁰,

$$E = \frac{E_{\text{line power}}}{\text{batch size} \times \text{yield}}$$

This work

Item	Ball milling (30 Hz)
Power (W)	102
Time (h)	0.5
Eline power (W·h)	51

 $E = \frac{51}{1 \text{ mmol (batch size, two jars)} \times 0.71 \text{ (yield)}} = 71.3 \text{ W} \cdot \text{h} \cdot \text{mmol}^{-1}$

Jia's 2014 work

Item	Heating	Heat preservation	Stirring
Power (W)	240	1	2.5
Time (h)	0.1	4	4
Eline power (W·h)	24	4	10

 $E = \frac{24 + 4 + 10}{0.5 \text{ mmol} \times 0.78 \text{ (yield)}} = 97.4 \text{ W} \cdot \text{h} \cdot \text{mmol}^{-1}$

Zhu & Le's 2016 work

Item	Heating	Heat preservation	Stirring
Power (W)	240	1	2.5
Time (h)	0.1	12	12
Eline power (W·h)	24	12	30

 $E = \frac{24 + 12 + 30}{0.2 \text{ mmol} \times 0.73 \text{ (yield)}} = 425 \text{ W} \cdot \text{h} \cdot \text{mmol}^{-1}$

Zhu & Le's 2020 work

Item	Irradiation	Stirring
Power (W)	18	2.5
Time (h)	12	12
$E_{line power} (W \cdot h)$	216	30

 $E = \frac{216 + 30}{0.2 \text{ mmol} \times 0.56 \text{ (yield)}} = 2196 \text{ W} \cdot \text{h} \cdot \text{mmol}^{-1}$

6.3 DOZNTM 2.0 data for this work

The DOZN 2.0 tool is accessible here: https://bioinfo.merckgroup.com/dozn

DOZN A	App
DOZN Quantitative Scoring Analysis	.
	Welcome, My Account Log
	out
A Home (product-list.xhtml) > / Product Detail	Contact Us
Assess Product Greenn	ess 🕹 Download

Product Information e

*Product Name	
3aa (mechano)	
*Mass	
0.143	
*Unit	
g	~
*Product Number	
N/A	
*Brand	
OTHER	~
* Other Brand	
Other	

Coproducts o

ADD A COPRODUCT

No Coproducts found

Reaction Conditions o

Default Unit (Applies to each individual reaction condition)		
*Time Unit Omin Ohr		
*Pressure Unit OTorr OmBar ©atm		
*Temperature Unit ●°C ○°F ○K		

eaction Con	dition #1	Remove
Name of Syr	nthesis Step	
Ball milling		
Time		
0.5		
Time Unit		
hr		\checkmark
Pressure Inp	but Method	
0		
Exact	General	
Value	Conditions	
Pressure Sc	ore 🛈	
No mentio	n of vacuum or pressure change	~
Temperature	e Input Method	
0		
Exact	General	
Value	Conditions	
Temperature	e Score 🔁	
Room tem	perature	~

eaction Con	dition #2	Remov		
Name of Syr	thesis Step			
aging				
Time				
84.0				
Time Unit				
hr		~		
Pressure Inp	but Method			
0	۲			
Exact	General			
Value	le Conditions			
Pressure Sc	ore 🛈			
No mention of vacuum or pressure change		~		
Temperature	Input Method			
0				
Exact	General			
Value Conditions				
Temperature	Score 🖲			
Room tem	perature	×		

ADD A REACTION CONDITION

Raw Materials o

Weight	Unit (Applies to each individual raw material)
*Unit ©g	Okg

		DOZN App	
aw Material :	#1		Remove
*Product Nar	ne		
2a			
*Product Nur	nber		
537365			
*Brand			
SIGMA-ALI	DRICH		~
*Mass			
0.127			
		Is Waste? 6	
0	\bigcirc		
Yes	No		
		Is Renewable? 0	
0	\bigcirc		
Yes	No		
		Is Solvent?	
0	\bigcirc		
Yes	No		
B Score 0			
1			\sim
Used As 🔁			
Reactant			\checkmark
Reaction Co	nditione A		
	iunons e		
U Ball	milling		

aw Material	#2		Remov
*Product Na	me		
1a			
*Product Nu	mber		
392262			
*Brand			
OTHER			~
* Other Bran	d		
Fluorochem	ı		
*Mass			
0.1045			
		Is Waste? 6	
0	\bigcirc		
Yes	No		
		Is Renewable?	
0	\bigcirc		
Yes	No		
		Is Solvent? 0	
0	\bigcirc		
Yes	No		
B Score 0			
1			\checkmark
Used As O			
Reactant			×
Reaction Co	nditions A		

a bduct Name a bduct Number 1943 and IGMA-ALDRICH ss s s s Solid waste, non-hazardous(drying agents etc.) Derivative? Solid waste, non-hazardous(drying agents etc.) Solid waste, non	
G oduct Number 1943 and IGMA-ALDRICH ss 6 Is Waste? ● ○ ○ Yes No raste Severity ● Solid waste, non-hazardous(drying agents etc.) Derivative? ● ○ ○ Yes No Is Renewable? ● ○ ○ Yes No Is Solvent? ● ○ ○ Yes No Is Solvent? ● ○ ○ Yes No	
and IGMA-ALDRICH IGMA-ALDRICH IS Waste? IS Waste? IS Waste? IS Waste? IS Waste? IS Waste? IS Renewable? IS Renewable? IS Renewable? IS Solvent? IS S	
and IGMA-ALDRICH ss 6 Is Waste? ① Yes No raste Severity ① Solid waste, non-hazardous(drying agents etc.) Derivative? ① Yes No Is Renewable? ① Yes No Is Solvent? ① Yes No Score ① 1 d As ① uxiliary	
and IGMA-ALDRICH ss 6 Is Waste? ① Yes No Paste Severity ① Solid waste, non-hazardous(drying agents etc.) Derivative? ① Yes No Is Renewable? ① Yes No Is Solvent? ① Yes No Score ① 1 d As ① uxiliary	
IGMA-ALDRICH	
ss 6 Is Waste? ① Yes No Paste Severity ① Solid waste, non-hazardous(drying agents etc.) Derivative? ① Yes No Is Renewable? ① Yes No Is Solvent? ① Yes No Score ① 1 d As ① uxiliary	~
6 Is Waste? Ves No Vaste Severity Solid waste, non-hazardous(drying agents etc.) Derivative? Ves No Is Renewable? Ves No Is Solvent? Ves No Score 1 d As uxiliary	
Is Waste? Solid waste in non-hazardous(drying agents etc.) Derivative? Solid waste, non-hazardous(drying agents etc.) Solid waste, non-hazardous(drying agents etc.)	
Yes Yes Solid waste, non-hazardous(drying agents etc.) Derivative? ● O O Yes No Is Renewable? ● Yes Yes Yes Yes No Is Solvent? ● 1 d As ● uxiliary	
Yes No Yaste Severity Solid waste, non-hazardous(drying agents etc.) Derivative? O Yes No Is Renewable? Yes No Is Solvent? Yes No Score 1 d As uxiliary	
solid waste, non-hazardous(drying agents etc.) Derivative? Yes No Is Renewable? Yes No Is Solvent? Yes No Score I A S Uxiliary	
Solid waste, non-hazardous(drying agents etc.) Derivative? Yes No Is Renewable? Yes No Is Solvent? Yes No Score 1 d As	
Derivative? O O O Ves No Is Renewable? O O Ves No Is Solvent? O Ves No Score 1 d As uxiliary	~
 ○ ○ > Is Renewable? ● ○ ○ ○ Yes No Is Solvent? ● ○ ○ Yes No Score ● 1 d As ● uxiliary 	
Yes No Is Renewable? Yes No Is Solvent? Yes No Score 1 d As uxiliary	
Is Renewable?	
Ves No Is Solvent? • Ves No Score • 1 d As •	
Yes No Is Solvent? Yes No Score 1 d As uxiliary	
Is Solvent? Is Solvent? Is So	
Yes No Score 1 1 d As 1 uxiliary	
Yes No Score ① 1 d As ① uxiliary	
Score 1 1 d As 0 uxiliary	
1 d As 🔁 uxiliary	
d As 🔁 uxiliary	~
uxiliary	
	~
ction Conditions 🔁	
Ball milling aging	

https://bioinfo.merckgroup.com/dozn/faces/secured/new_product.xhtml?productId=1338

Process Information

1	
	~
*Mass used for B score of	í Product
0.143	
*Unit	
g	~
*Number of Catalytic Step	15
0	
*Number of Synthesis Step	ps
1	
	Is Monitored?
\bigcirc	
Yes No	
VE SAVE & CALCULAT	TE
DZN SCORE RESULT	
	La Download
	Aggregate Score
	1
Scoring Matrix	
Aggregate Score	Scoring Matrix
1	

https://bioinfo.merckgroup.com/dozn/faces/secured/new_product.xhtml?productId=1338

7/8

		17 - 17 - 10
#1 Prevention		8.39
#2 Atom Economy		5.81
#3 Less Hazardous Chemical Synthesis		6.81
#4 Designing Safer Chemicals		2.00
#5 Safer Solvents and Auxiliaries		0.00
#6 Design for Energy Efficiency		0.00
#7 Use of Renewable Feedstocks		5.81
#8 Reduce Derivatives		0.00
#9 Catalysis		1.00
#10 Design for Degradation		2.00
#11 Real-time analysis for Pollution Prevention		1.00
#12 Inherently Safer Chemistry for Accident Prevent	ion	6.81
Note: For more information on above Principles (clic (http://www.sigmaaldrich.com/chemistry/greener-al	ck here ternatives/green-chemistry	v.html))
Groups	Principles	Score
Groups #1 Improved Resource Use	Principles 1, 2, 7, 8, 9, 11	Score 3.67
Groups #1 Improved Resource Use #2 Increased Energy Efficiency	Principles 1, 2, 7, 8, 9, 11 6	Score 3.67 0.00
Groups #1 Improved Resource Use #2 Increased Energy Efficiency #3 Reduced Human and Environmental Hazards	Principles 1, 2, 7, 8, 9, 11 6 3, 4, 5, 10, 12	Score 3.67 0.00 3.52

 $https://bioinfo.merckgroup.com/dozn/faces/secured/new_product.xhtml?productId{=}1338$

8/8

Figure S12 DOZN data of AA strategy for the synthesis 3aa

6.4 DOZNTM 2.0 groups according to the 12 Principles of Green Chemistry

Table S4 The groups of DOZN 2.0

Groups	12 Principles of Green Chemistry
	1: Waste prevention
	2: Atom economy
Improved recourse use	7: Use of renewable feedstock
Improved resource use	8: Reduce derivatives
	9: Catalysis
	11: Real-time analysis for pollution prevention
Energy efficiency	6: Design for energy efficiency
	3: Less hazardous chemical synthesis
Reduced human and environmental	4: Designing safer chemicals
	5: Safer solvents and auxiliaries
nazarus	10: Design for degradation
	12: Inherently safer chemistry for accident prevention

6.5 Comparison of the greenness between AA facilitated CDC strategy and Hantzsch strategy

The Hantzsch method is a classic strategy for the synthesis of 1,4-DHPs, and some impressive modified approaches with significantly improved greenness have been reported¹¹. In spite of the structure of the synthesized 1,4-DHPs were not identical, it is also useful to compare the relative greenness of our method with Hantzsch method that produce similar products.

This work (NaCl, recovered and reused for 5 times, see section 3.8)

187.44

= 0.54 kg waste/1kg product

$$RME = \frac{1}{1+0.54} = 64.9\%$$

Power demands (E)

Item	Ball milling (30 Hz)
Power (W)	102
Time (h)	0.5
$E_{line power} (W \cdot h)$	51

 $\frac{51}{1 \text{ mmol (batch size, two jars)} \times 0.92 \text{ (yield)}} = 55.4 \text{ W} \cdot \text{h} \cdot \text{mmol}^{-1}$ **E** =

Pal's work^{11a}

= 1.79 kg waste/1kg product

$$RME = \frac{1}{1+1.79} = 35.8\%$$

Power demands (E)

Item	Heating	Heat preservation	Stirring
Power (W)	_	1	2.5
Time (h)	_	10	10
Eline power (W·h)	24*	10	25

*The heating time was estimated according to previous calculation.

 $\mathbf{E} = \frac{24 + 10 + 25}{1.2 \text{ mmol} \times 0.69 \text{ (yield)}} = 71 \text{ W} \cdot \text{h} \cdot \text{mmol}^{-1}$

= 1.70 kg waste/1kg product

$$RME = \frac{1}{1+1.70} = 37.0\%$$

Power demands (E)

Item	Heating	Heat preservation	Stirring
Power (W)	_	1	2.5
Time (h)	_	9	9
Eline power (W·h)	24*	9	22.5

*The heating time was estimated according to previous calculation.

$$\mathbf{E} = \frac{24 + 9 + 22.5}{1.2 \text{ mmol} \times 0.71 \text{ (yield)}} = 65 \text{ W} \cdot \text{h} \cdot \text{mmol}^{-1}$$

Reddy's work^{11b}

 $RME = \frac{1}{1 + 2.26} = 30.7\%$

Power demands (E)

Item	Irradiation	Stirring
Power (W)	250	2.5
Time (h)	1/30	5/12
Eline power (W·h)	8.33	1.04

 $\mathbf{E} = \frac{8.33 + 1.04}{0.98 \text{ mmol} \times 0.62 \text{ (yield)}} = 15 \text{ W} \cdot \text{h} \cdot \text{mmol}^{-1}$

$$RME = \frac{1}{1+1.79} = 35.8\%$$

Power demands (E)

Item	Irradiation	Stirring
Power (W)	250	2.5
Time (h)	1/30	1/3
Eline power (W·h)	8.33	0.83

 $\mathbf{E} = \frac{8.33 + 0.83}{0.98 \text{ mmol} \times 0.72 \text{ (yield)}} = 13 \text{ W} \cdot \text{h} \cdot \text{mmol}^{-1}$

	TT1		· ·		1.	C	1.00		•
I anie No	Ine	oreen	metrics	assessment	results	ΩŤ	different	strat	reotes
Table 55	1 IIC	groon	metries	assessmen	results	01	uniterent	Sua	i ogios

	Compounds	E-factor (kg/kg)	RME (%)	E (W·h·mmol ⁻¹)
	3aa	1.16	46.3	71
This work	11 a	0.54	64.9	55
Pal's work	S6.1	1.79	35.8	71

	S6.2	1.70	37.0	65
	S6.3	2.26	30.7	15
Reddy's work	S6.4	1.79	35.8	13

As shown in Table S5. Reddy's work has advantage in terms of power demands due to its short energy input time (2 min). Nevertheless, column chromatography was not required for the purification of **3aa**, that would save considerable time, energy and solvents. It should be noted that Reddy's and Pal's Hantzsch strategies have worse performance on *E*-factor and RME, since the use of ethyl 3,3-diethoxypropanoate instead of ethyl glyoxylate (which is labile and needs to be kept in toluene) as substrate has largely reduced the atom economy. In contrast, our cascade CDC strategy could give products by losing H₂O as only waste. Moreover, the Hantzsch strategies require heating-up process (conventional heating or microwave irradiation), while our protocol can be carried out at room temperature (the stainless-steel vessel internal temperature was mensurated by IR thermometer and showed no higher than 30 °C after pre-grinding at 30 Hz for 30 min).

6.6 Comparison of the greenness for the synthesis of α-substituted glycine ester

This work (NaCl, recovered and reused for 5 times, see section 3.8)

Chandrasekharam's work¹²

$$RME = \frac{1}{1 + 24.71} = 3.9\%$$
7. Characterization data

7.1 Characterization data for products 3, 5, 7, 8, 9 and 11

4-*Ethyl* 3,5-*dimethyl* 1-(4-*methoxyphenyl*)-2,6-*dimethyl*-1,4-*dihydropyridine*-3,4,5-*tricarboxylate* (**3aa**)⁸ Yellow solid (143.8 mg, 71% yield); mp 101–103 °C; ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.07 (d, *J* = 8.8 Hz, 1H), 6.92 (d, *J* = 8.8 Hz, 1H), 4.86 (s, 1H), 4.14 (q, *J* = 7.1 Hz, 1H), 3.84 (s, 3H), 3.75 (s, 6H), 2.06 (s, 6H), 1.24 (t, *J* = 7.1 Hz, 1H).

Trimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (**3ba**) Yellow oil (150.0 mg, 77% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.03 (d, J = 8.9 Hz, 2H), 6.88 (d, J = 8.9 Hz, 2H), 4.86 (s, 1H), 3.80 (s, 3H), 3.71 (s, 6H), 3.65 (s, 3H), 2.03 (s, 6H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 174.0, 167.6 (2C), 159.4, 149.8 (2C), 132.4, 131.2 (2C), 114.4 (2C), 100.4 (2C), 55.4, 52.0, 51.4 (2C), 39.5, 18.0 (2C). **HRMS (ESI**) *m/z* calcd for C₂₀H₂₄NO₇ [M+H]⁺, 390.1547, found 390.1537.

4-Isopropyl 3,5-dimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (**3ca**) Yellow oil (167.9 mg, 81% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.06 (d, *J* = 8.8 Hz, 2H), 6.90 (d, *J* = 8.8 Hz, 2H), 4.90–5.00 (m, 1H), 4.77 (s, 1H), 3.82 (s, 3H), 3.72 (s, 6H), 2.03 (s, 6H), 1.20 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.1, 167.9 (2C), 159.4, 149.5 (2C), 132.6, 131.2 (2C), 114.4 (2C), 100.8 (2C), 67.8, 55.4, 51.3 (2C), 40.1, 21.7 (2C), 18.1 (2C). **HRMS (ESI)** *m/z* calcd for C₂₂H₂₈NO₇ [M+H]⁺, 418.1860, found 418.1851.

4-Benzyl 3,5-*dimethyl* 1-(4-*methoxyphenyl*)-2,6-*dimethyl*-1,4-*dihydropyridine*-3,4,5-*tricarboxylate* (**3da**) Pale yellow oil (141.6 mg, 61% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.33–7.28 (m, 5H), 6.91–6.80 (m, 4H), 5.14 (s, 2H), 4.96 (s, 1H), 3.82 (s, 3H), 3.72 (s, 6H), 2.04 (s, 6H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 173.2, 167.7 (2C), 159.4, 150.0 (2C), 136.4, 132.4, 131.2 (2C), 128.4 (2C), 127.9, 127.7 (2C), 114.4 (2C), 100.4 (2C), 66.3, 55.5, 51.4 (2C), 39.8, 18.1 (2C). **HRMS (ESI)** *m*/*z* calcd for C₂₆H₂₈NO₇ [M+H]⁺, 466.1860, found 466.1864.

4-(Tert-butyl) 3,5-dimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (**3ea**)

Yellowish solid (118.6 mg, 55% yield); mp 120–123 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.02 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 4.73 (s, 1H), 3.80 (s, 3H), 3.72 (s, 6H), 2.03 (s, 6H), 1.39 (s, 9H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 172.5, 168.0 (2C), 159.4, 149.0 (2C), 132.7, 131.2 (2C), 114.4 (2C), 101.2 (2C), 80.2, 55.4, 51.2 (2C), 40.7, 27.9 (3C), 18.0 (2C). HRMS (ESI) *m*/*z* calcd for C₂₃H₂₇NO₇ [M+H]⁺, 432.2017, found 432.2014.

4-Ethyl 3,5-dimethyl 2,6-dimethyl-1-(p-tolyl)-1,4-dihydropyridine-3,4,5-tricarboxylate (3fa)⁸

Colorless oil (125.1 mg, 65% yield); ¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.22 (d, *J* = 8.2 Hz, 2H), 7.03 (d, *J* = 8.2 Hz, 2H), 4.86 (s, 1H), 4.14 (q, *J* = 7.1 Hz, 3H), 3.75 (s, 6H), 2.39 (s, 3H), 2.05 (s, 6H), 1.24 (t, *J* = 7.1 Hz, 3H).

4-Isopropyl 3,5-dimethyl 2,6-dimethyl-1-(p-tolyl)-1,4-dihydropyridine-3,4,5-tricarboxylate (**3ga**) Yellow oil (142.3 mg, 71% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.19 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 8.0 Hz, 2H), 4.99–4.92 (m, 1H), 4.78 (s, 1H), 3.71 (s, 6H), 2.36 (s, 3H), 1.19 (d, *J* = 6.3 Hz, 6H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 173.1, 167.9 (2C), 149.2 (2C), 138.6, 137.4, 129.9 (4C), 100.8 (2C), 67.8, 51.2 (2C), 40.2, 21.6 (2C), 21.0, 18.1 (2C). **HRMS (ESI)** *m*/*z* calcd for C₂₂H₂₇NNaO₆ [M+Na]⁺, 424.1731, found 424.1738.

4-Ethyl 3,5-*dimethyl* 2,6-*dimethyl*-1-*phenyl*-1,4-*dihydropyridine*-3,4,5-*tricarboxylate* (**3ha**)¹³ Colorless oil (144.2 mg, 78% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.46–7.40 (m, 3H), 7.19–7.15 (m, 2H), 4.87 (s, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.75 (s, 6H), 2.05 (s, 6H), 1.25 (t, *J* = 7.1 Hz, 3H).

4-*Ethyl* 3,5-*dimethyl* 1-(4-*fluorophenyl*)-2,6-*dimethyl*-1,4-*dihydropyridine*-3,4,5-*tricarboxylate* (**3ia**) Yellow oil (125.7 mg, 64% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.19–7.08 (m, 4H), 4.84 (s, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.74 (s, 6H), 2.04 (s, 6H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, Chloroform*d*) δ 173.5, 167.7 (2C), 162.3 (d, *J*₁ = 248.2 Hz, 2C), 149.0 (2C), 136.0 (d, *J*₄ = 3.5 Hz, 2C), 132.1 (d, *J*₃ =

8.6 Hz, 2C), 116.4 (d, $J_2 = 22.7$ Hz, 2C), 101.3 (2C), 60.8, 51.5 (2C), 39.9, 18.1 (2C), 14.2. ¹⁹F NMR (400 MHz, Chloroform-*d*) δ -111.73. **HRMS (ESI)** *m*/*z* calcd for C₂₀H₂₂¹⁹FNO₆ [M+H]⁺, 392.1504, found 392.1496.

4-*Ethyl* 3,5-*dimethyl* 1-(4-*chlorophenyl*)-2,6-*dimethyl*-1,4-*dihydropyridine*-3,4,5-*tricarboxylate* (**3ja**)¹³ Yellow oil (93.8 mg, 46% yield); ¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.41 (d, *J* = 8.6 Hz, 2H), 7.14 (d, *J* = 8.6 Hz, 2H), 4.85 (s, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.75 (s, 6H), 2.05 (s, 6H), 1.28 (t, *J* = 7.1 Hz, 3H).

4-*Ethyl* 3,5-*dimethyl* 1-(4-*bromophenyl*)-2,6-*dimethyl*-1,4-*dihydropyridine*-3,4,5-*tricarboxylate* (**3ka**) Yellow oil (141.6 mg, 63% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.58–7.55 (m, 2H), 7.10–7.04 (m, 2H), 4.84 (s, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.75 (s, 6H), 2.04 (s, 6H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 173.5, 167.7 (2C), 148.6 (2C), 139.2, 132.7 (2C), 132.1 (2C), 122.9, 101.4 (2C), 60.8, 51.5 (2C), 40.0, 18.1 (2C), 14.2. **HRMS (ESI)** *m*/*z* calcd for C₂₀H₂₂⁷⁹BrNNaO₇ [M+Na]⁺, 474.0523, found 474.0531.

4-ethyl 3,5-dimethyl 1-mesityl-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (**3na**) Yellow oil (124.6 mg, 60% yield); ¹**H NMR** (400 MHz, Chloroform-d) δ 6.92 (s, 2H), 4.90 (s, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.74 (s, 6H), 2.30 (s, 3H), 2.06 (d, *J* = 5.2 Hz, 6H), 1.95 (s, 6H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-d) δ 173.8, 168.3 (2C), 138.6, 136.9 (2C), 136.8 (2C), 135.5, 129.5, 129.2, 100.0 (2C), 60.6, 51.3 (2C), 40.3, 21.0, 17.80, 17.7, 16.9 (2C), 14.2. **HRMS (ESI)** *m/z* calcd for C₂₃H₃₀NO₆ [M+H]⁺, 416.2078, found 416.2073.

Triethyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (**3ab**)⁸ Yellowish solid (183.2 mg, 85% yield); mp 104–105 °C (lit. mp 106–107 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.07 (d, *J* = 8.8 Hz, 2H), 6.90 (d, *J* = 8.8 Hz, 2H), 4.84 (s, 1H), 4.26–4.10 (m, 6H), 3.82 (s, 3H), 2.04 (s, 6H), 1.28 (t, *J* = 7.1 Hz, 6H), 1.23 (t, *J* = 7.1 Hz, 3H).

3,5-Diethyl 4-methyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (**3bb**) Yellow solid (136.3 mg, 65% yield); mp 96–101 °C; ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.06 (d, *J* = 8.9 Hz, 2H), 6.90 (d, *J* = 8.9 Hz, 2H), 4.87 (s, 1H), 4.26–4.13 (m, 4H), 3.82 (s, 3H), 3.67 (s, 3H), 2.04 (s, 6H), 1.27 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 174.4, 167.4 (2C), 159.4, 149.3 (2C), 132.6, 131.3 (2C), 114.4 (2C), 100.9 (2C), 60.1 (2C), 55.4, 51.9, 39.8, 18.1 (2C), 14.2 (2C). **HRMS (ESI)** *m/z* calcd for C₂₂H₂₇NNaO₇ [M+Na]⁺, 440.1680, found 440.1691.

3,5-*Diethyl* 4-*methyl* 2,6-*dimethyl*-1-(*p*-tolyl)-1,4-*dihydropyridine*-3,4,5-*tricarboxylate* (**3lb**)⁸ Yellow oil (157.5 mg, 78% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.23–7.19 (m, 2H), 7.06–7.01 (m, 2H), 4.89 (s, 1H), 4.27–4.15 (m, 4H), 3.69 (s, 3H), 2.39 (s, 3H), 2.04 (s, 6H), 1.29 (t, *J* = 7.1 Hz, 6H).

3,5-Diethyl 4-*isopropyl* 2,6-*dimethyl-1-(p-tolyl)-1,4-dihydropyridine-3,4,5-tricarboxylate* (**3gb**)⁸ Yellow oil (144.7 mg, 67% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.22–7.18 (m, 2H), 7.07 – 7.02 (m, 2H), 5.03–4.93 (m, 1H), 4.81 (s, 1H), 4.26–4.14 (m, 4H), 2.38 (s, 3H), 2.03 (s, 6H), 1.30 (t, *J* = 7.1 Hz, 6H), 1.22 (d, *J* = 6.3 Hz, 6H).

4-Allyl 3,5-diethyl 2,6-dimethyl-1-phenyl-1,4-dihydropyridine-3,4,5-tricarboxylate (**3mb**) Pale yellow solid (125.6 mg, 63% yield); mp 70–72 °C; ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.58–7.43 (m, 3H), 7.26 (d, *J* = 6.3 Hz, 2H), 5.94–5.81 (m, 1H), 5.26–5.14 (m, 2H), 4.84 (s, 1H), 4.56 (d, *J* = 4.5 Hz, 2H), 4.19–4.06 (m, 4H), 1.97 (s, 6H), 1.20 (t, *J* = 6.9 Hz, 6H). ¹³**C NMR** (150 MHz, DMSO- d_6) δ 172.3, 166.5 (2C), 148.4 (2C), 139.4, 132.7, 130.2, 129.6 (2C), 129.0 (2C), 116.5, 100.2 (2C), 64.4, 59.8 (2C), 17.7 (2C), 14.2 (2C). **HRMS (ESI)** *m/z* calcd for C₂₃H₂₇NNaO₆ [M+Na]⁺, 436.1730, found 436.1736.

Tribenzyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (**3dc**)

Yellow oil (177.0 mg, 57% yield); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.37–7.08 (m, 17H), 6.93 (d, *J* = 6.4 Hz, 2H), 5.11 (s, 4H), 5.04 (s, 2H), 4.99 (s, 1H), 3.75 (s, 3H), 1.95 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.4, 167.1 (2C), 159.5, 150.5 (2C), 136.6 (2C), 136.3, 132.3, 128.5, 128.5 (4C), 128.4 (2C), 128.0 (2C), 127.9 (2C), 127.8 (2C), 127.7 (4C), 114.5 (2C), 100.5 (2C), 66.5, 66.0 (2C), 55.5, 39.8, 18.3 (2C). HRMS (ESI) *m*/*z* calcd for C₃₈H₃₅NNaO₇ [M+Na]⁺, 640.2306, found 640.2325.

3,5-Dibenzyl 4-isopropyl 2,6-dimethyl-1-(p-tolyl)-1,4-dihydropyridine-3,4,5-tricarboxylate (**3gc**) Yellow oil (187.7 mg, 68% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.41–7.30 (m, 10H), 7.22 (d, *J* = 8.2 Hz, 2H), 7.06 (d, *J* = 8.2 Hz, 2H), 5.24–5.15 (m, 4H), 5.00 (s, 1H), 4.93 (h, *J* = 6.2 Hz, 1H), 2.39 (s, 3H), 2.08 (s, 6H), 1.09 (d, *J* = 6.2 Hz, 6H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 173.2, 167.1 (2C), 149.8 (2C), 138.7, 137.3, 136.5 (2C), 130.0 (2C), 129.9 (2C), 128.4 (4C), 127.7 (2C), 127.6 (4C), 100.6 (2C), 68.0, 65.8 (2C), 40.0, 21.6 (2C), 21.1, 18.2 (2C). **HRMS (ESI)** *m*/*z* calcd for C₃₄H₃₅NNaO₆ [M+Na]⁺, 576.2357, found 576.2360.

3,5-Dibenzyl 4-ethyl 1-(4-fluorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (**3ic**) Yellow oil (212.3 mg, 78% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.40–7.35 (m, 4H), 7.35–7.29 (m, 6H), 7.22–7.16 (m, 2H), 7.15–7.09 (m, 2H), 5.26–5.14 (m, 4H), 5.01 (s, 1H), 4.05 (q, *J* = 7.1 Hz, 2H), 2.07 (s, 6H), 1.11 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 173.6, 166.8 (2C), 162.2 (d, *J*₁ = 248.3 Hz, 2C), 149.4 (2C), 136.4 (2C), 135.8 (d, *J*₄ = 3.6 Hz, 2C), 132.0 (d, *J*₃ = 8.6 Hz, 2C), 128.3 (4C), 127.7 (2C), 127.6 (4C), 116.43 (d, *J*₂ = 22.6 Hz, 2C), 101.2 (2C), 65.9 (2C), 60.7, 39.8, 18.1 (2C), 14.0. ¹⁹**F NMR** (400 MHz, Chloroform-*d*) δ -111.66. **HRMS (ESI**) *m*/*z* calcd for C₃₂H₃₀¹⁹FNNaO₆ [M+Na]⁺, 566.1949, found 566.1976.

4-Ethyl 3,5-diisopropyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (3ad)⁸

Yellow oil (168.1 mg, 73% yield); ¹**H NMR** (600 MHz, Chloroform-d) δ 7.08–7.05 (m, 2H), 6.91–6.88 (m, 2H), 5.09–5.02 (m, 2H), 4.83 (s, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 2.02 (s, 6H), 1.27–1.22 (m, 15H).

3,5-Di(adamantan-1-yl) 4-ethyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (**3ae**)

Yellow solid (198.6 mg, 62% yield); mp 201–207 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.04 (d, *J* = 8.7 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 4.75 (s, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 3H), 2.13 (s, 18H), 1.96 (s, 6H), 1.67–1.59 (m, 12H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 174.0, 166.5 (2C), 159.2, 148.1 (2C), 132.9, 131.3 (2C), 114.1 (2C), 102.4 (2C), 79.9 (2C), 60.3, 55.3, 41.4 (6C), 40.7, 36.2 (6C), 30.7 (6C), 17.9 (2C), 14.3. HRMS (ESI) *m/z* calcd for C₃₉H₅₀NO₇ [M+H]⁺, 644.3582, found 644.3587.

4-*Ethyl* 3,5-*dimethyl* 2,6-*diethyl*-1-(4-*methoxyphenyl*)-1,4-*dihydropyridine*-3,4,5-*tricarboxylate* (**3af**) Yellow oil (148.2 mg, 69% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.20 (d, *J* = 8.1 Hz, 2H), 6.92–6.89 (m, 2H), 4.84 (s, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.83 (s, 3H), 3.74 (s, 6H), 2.73–2.66 (m, 2H), 2.43–2.35 (m, 2H), 1.22 (t, *J* = 7.1 Hz, 3H), 0.91 (t, *J* = 7.3 Hz, 6H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 173.9, 167.1 (2C), 159.5, 156.4 (2C), 132.0 (2C), 131.3, 114.2 (2C), 100.9 (2C), 60.6, 55.4, 51.3 (2C), 39.4, 23.3 (2C), 14.2, 13.4 (2C). **HRMS (ESI)** *m*/*z* calcd for C₂₃H₂₉NNaO₇ [M+Na]⁺, 454.1836, found 454.1852.

Ethyl 3,5-diacetyl-1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate (**3ag**)⁸

Yellow oil (116.2 mg, 63% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.06 (d, *J* = 8.7 Hz, 2H), 6.92 (d, *J* = 8.7 Hz, 2H), 4.72 (s, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.84 (s, 3H), 2.41 (s, 6H), 2.01 (s, 6H), 1.25 (t, *J* = 7.1 Hz, 3H).

Methyl 3,5-diacetyl-1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate (**3bg**) Yellow oil (107.7 mg, 60% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.06 (d, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 9.0 Hz, 2H), 4.77 (s, 1H), 3.84 (s, 3H), 3.70 (s, 3H), 2.41 (s, 6H), 2.02 (s, 6H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 197.9 (2C), 173.5, 159.6, 148.6 (2C), 132.3, 131.1 (2C), 114.6 (2C), 110.2 (2C), 55.5, 52.2, 40.8, 30.2 (2C), 18.9 (2C). **HRMS (ESI**) *m/z* calcd for C₂₀H₂₃NNaO₅ [M+Na]⁺, 380.1468, found 380.1471.

Isopropyl 3,5-diacetyl-1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate (**3cg**) Yellow oil (132.7 mg, 69% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.07 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 5.01–4.95 (m, 1H), 4.66 (s, 1H), 3.84 (s, 3H), 2.41 (s, 6H), 2.01 (s, 6H), 1.23 (d, *J* = 6.3 Hz, 6H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 198.0 (2C), 172.5, 159.6, 148.4 (2C), 132.4, 131.2 (2C), 114.6 (2C), 110.3 (2C), 68.6, 55.5, 41.3, 30.1 (2C), 21.7 (2C), 18.8 (2C). **HRMS** (**ESI**) *m/z* calcd for C₂₂H₂₈NO₅ [M+H]⁺, 386.1962, found 386.1957.

Ethyl 3,5-diacetyl-2,6-dimethyl-1-(p-tolyl)-1,4-dihydropyridine-4-carboxylate (3fg)¹⁴

Yellow oil (101.3 mg, 57% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.22 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 4.73 (s, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 2.41 (s, 6H), 2.39 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H).

Ethyl 3,5-diacetyl-2,6-dimethyl-1-phenyl-1,4-dihydropyridine-4-carboxylate (3hg)¹⁴

Yellowish solid (52.4 mg, 31% yield); mp 76–80 °C (lit. mp 77–80 °C); ¹**H NMR** (500 MHz, Chloroform*d*) δ 7.49–7.40 (m, 3H), 7.21–7.15 (m, 2H), 4.74 (s, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 2.42 (s, 6H), 2.01 (s, 6H), 1.27 (t, *J* = 7.1 Hz, 3H).

3,4-Diethyl 5-*methyl* 1-(4-*methoxyphenyl*)-2,6-*dimethyl*-1,4-*dihydropyridine*-3,4,5-*tricarboxylate* (**3aab**) Yellow oil (70.1 mg, 34% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.11–7.03 (m, 2H), 6.96–6.88 (m, 2H), 4.85 (s, 1H), 4.28–4.11 (m, 4H), 3.84 (s, 3H), 3.75 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 173.7, 168.0, 167.4, 159.4, 149.7, 149.2, 132.7, 131.3 (2C), 114.4 (2C), 101.2, 100.6, 60.6, 60.1, 55.4, 51.4, 40.0, 18.2, 18.1, 14.3, 14.2. **HRMS** (**ESI**) *m/z* calcd for C₂₂H₂₇NNaO₇ [M+Na]⁺, 440.1680, found 440.1689.

4-Ethyl 3-methyl 5-acetyl-1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4-dicarboxylate (**3aag**)⁸ Yellow oil (91.7 mg, 48% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.11–7.01 (m, 2H), 6.94–6.90 (m, 2H), 4.77 (s, 1H), 4.19–4.10 (m, 2H), 3.84 (s, 3H), 3.75 (s, 3H), 2.42 (s, 3H), 2.09 (s, 3H), 1.98 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H).

3-Benzyl 4-*ethyl* 5-*acetyl*-1-(4-*methoxyphenyl*)-2,6-*dimethyl*-1,4-*dihydropyridine*-3,4-*dicarboxylate* (**3acg**) Yellow oil (65.4 mg, 28% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.38–7.32 (m, 4H), 7.31–7.27 (m, 1H), 7.06 (d, *J* = 8.9 Hz, 2H), 6.91 (d, *J* = 8.9 Hz, 2H), 5.25 (d, *J* = 12.7 Hz, 1H), 5.18 (d, *J* = 12.7 Hz, 1H), 4.84 (s, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.82 (s, 3H), 2.40 (s, 3H), 2.10 (s, 3H), 1.98 (s, 3H), 1.19 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 198.8, 173.2, 166.9, 159.5, 150.5, 147.9, 136.5, 132.4, 131.1 (2C), 128.4 (2C), 127.8, 127.7 (2C), 114.5 (2C), 109.6, 100.5, 65.9, 60.9, 55.4, 40.8, 29.7, 18.6, 18.2, 14.1. **HRMS (ESI)** *m/z* calcd for C₂₇H₂₉NNaO₆ [M+Na]⁺, 486.1887, found 486.1892.

4-Ethyl 3-methyl 5-acetyl-2-ethyl-1-(4-methoxyphenyl)-6-methyl-1,4-dihydropyridine-3,4-dicarboxylate (**3afg**)

Yellow oil (63.4 mg, 32% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.13 (d, J = 8.4 Hz, 2H), 6.94–6.90 (m, 2H), 4.77 (s, 1H), 4.19–4.11 (m, 2H), 3.84 (s, 3H), 3.76 (s, 3H), 2.43 (s, 3H), 2.00 (s, 3H), 1.25 (s, 3H), 0.93 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 198.9, 173.4, 167.0, 159.5, 156.2, 148.7, 132.0, 131.3 (2C), 114.3 (2C), 109.7, 100.2, 60.9, 55.5, 51.5, 40.5, 29.9, 23.3, 18.6, 14.2, 13.4. **HRMS (ESI)** m/z calcd for C₂₂H₂₇NNaO₇ [M+Na]⁺, 424.1736, found 424.1731.

3-*Ethyl* 4-methyl 5-acetyl-2,6-dimethyl-1-(p-tolyl)-1,4-dihydropyridine-3,4-dicarboxylate (**3lbg**) Yellow oil (85.5 mg, 46% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.22 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 4.82 (s, 1H), 4.25–4.18 (m, 2H), 3.70 (s, 3H), 2.41 (s, 3H), 2.39 (s, 3H), 2.08 (s, 3H), 1.98 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 198.7, 173.8, 167.2, 149.5, 147.9, 138.8, 137.2, 130.0 (2C), 130.0 (2C), 109.3, 100.9, 60.3, 52.1, 40.7, 29.8, 21.1, 18.7, 18.2, 14.3. HRMS (ESI) *m/z* calcd for C₂₁H₂₅NO₅ [M+H]⁺, 372.1806, found 372.1794.

Dimethyl 4-(*hexylcarbamoyl*)-1-(4-*methoxyphenyl*)-2,6-*dimethyl*-1,4-*dihydropyridine*-3,5-*dicarboxylate* (5aa)

Yellow oil (137.4 mg, 60% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.15 (d, *J* = 8.4 Hz, 2H), 6.92–6.87 (m, 2H), 6.29 (t, *J* = 5.4 Hz, 1H), 4.43 (s, 1H), 3.81 (s, 3H), 3.71 (s, 6H), 3.23–3.18 (m, 2H), 2.03 (s, 6H), 1.50–1.44 (m, 2H), 1.29–1.24 (m, 6H), 0.86–0.83 (m, 3H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 173.0, 168.2 (2C), 159.4, 150.4 (2C), 132.8, 131.3 (2C), 114.3 (2C), 101.2 (2C), 55.4, 51.4 (2C), 40.8, 39.4, 31.4, 29.6, 26.4, 22.5, 18.4 (2C), 13.9. **HRMS (ESI)** *m/z* calcd for C₂₅H₃₅N₂O₆ [M+H]⁺, 459.2489, found 459.2476.

Dimethyl 4-((4-fluorophenethyl)carbamoyl)-1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5dicarboxylate (**5ba**)

Yellow oil (126.6 mg, 51% yield); ¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.16–7.08 (m, 4H), 6.97–6.89 (m, 4H), 6.40 (t, *J* = 5.7 Hz, 1H), 4.42 (s, 1H), 3.83 (s, 3H), 3.67 (s, 6H), 3.48 (q, *J* = 6.7 Hz, 2H), 2.78 (t, *J* = 6.7 Hz, 2H), 2.03 (s, 6H). ¹³**C** NMR (125 MHz, Chloroform-*d*) δ 173.0, 168.1 (2C), 161.4 (d, *J*₁ = 242.4 Hz), 159.4, 150.4 (2C), 134.8 (d, *J*₄ = 2.3 Hz), 132.7, 131.2 (2C), 130.1 (d, *J*₃ = 7.6 Hz, 2C), 115.1 (d, *J*₂ = 21.1 Hz, 2C), 114.4 (2C), 101.0 (2C), 55.4, 51.4 (2C), 40.5, 40.5, 34.8, 18.4 (2C). ¹⁹**F** NMR (600 MHz, Chloroform-*d*) δ -117.09. HRMS (ESI) *m/z* calcd for C₂₇H₃₀FN₂O₆ [M+H]⁺, 497.2082, found 497.2068.

Diethyl 4-(*cyclohexylcarbamoyl*)-1-(4-*methoxyphenyl*)-2,6-*dimethyl*-1,4-*dihydropyridine*-3,5-*dicarboxylate* (**5cb**)

Yellow oil (146.2 mg, 60% yield); ¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.17 (brs, 2H), 6.92–6.87 (m, 2H), 6.18 (d, *J* = 8.2 Hz, 1H), 4.38 (s, 1H), 4.21–4.14 (m, 4H), 3.81 (s, 3H), 3.73–3.68 (m, 1H), 2.03 (s, 6H), 1.89–1.85 (m, 2H), 1.71–1.63 (m, 3H), 1.59–1.55 (m, 1H), 1.41 (s, 1H), 1.28 (t, *J* = 7.1 Hz, 6H), 1.19–1.12 (m, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 172.3, 167.8 (2C), 159.3, 150.1 (2C), 133.0, 131.3 (2C), 114.3 (2C), 101.4 (2C), 60.2 (2C), 55.4, 47.9, 41.3, 33.0 (2C), 25.6 (2C), 24.7, 18.4 (2C), 14.4 (2C). HRMS (ESI) *m/z* calcd for C₂₇H₃₆N₂NaO₆ [M+Na]⁺, 507.2471, found 507.2465.

Dimethyl 4-(isopropylcarbamoyl)-1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (5da)

Yellow oil (118.7 mg, 57% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.17 (brd, 2H), 6.90 (d, J = 9.0 Hz, 2H), 6.08 (d, J = 7.7 Hz, 1H), 4.38 (s, 1H), 4.03–3.96 (m, 1H), 3.82 (s, 3H), 3.73 (s, 6H), 2.04 (s, 6H), 1.13 (d, J = 6.5 Hz, 6H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 172.2, 168.1 (2C), 159.4, 150.4 (2C), 132.87, 131.3 (2C), 116.4 (2C), 101.3 (2C), 55.7, 55.4 (2C), 51.4, 41.1, 22.7 (2C), 18.4 (2C). **HRMS (ESI)** *m/z* calcd for C₂₂H₂₉N₂O₆ [M+H]⁺, 417.2020, found 417.1993.

Dimethyl 4-(diisopropylcarbamoyl)-1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5dicarboxylate (**5ea**)

Yellow oil (185.7 mg, 81% yield); ¹**H** NMR (500 MHz, DMSO-*d*₆) δ 7.36 (d, *J* = 9.0 Hz, 2H), 7.05 (d, *J* = 9.0 Hz, 2H), 4.95 (s, 1H), 4.60–4.52 (m, 1H), 3.80 (s, 3H), 3.64 (s, 6H), 3.44–3.36 (m, 1H), 1.94 (s, 6H), 1.26 (d, *J* = 6.7 Hz, 6H), 1.14 (d, *J* = 6.5 Hz, 6H). ¹³**C** NMR (125 MHz, Chloroform-*d*) δ 172.3, 168.1 (2C), 159.2, 150.2 (2C), 133.3, 131.5 (2C), 114.2 (2C), 101.6 (2C), 55.4, 51.2 (2C), 45.7, 37.4, 21.2, 20.7, 18.5 (2C). HRMS (ESI) *m*/*z* calcd for C₂₅H₃₄N₂NaO₆ [M+Na]⁺, 481.2309, found 481.2331.

Dimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-4-(morpholine-4-carbonyl)-1,4-dihydropyridine-3,5dicarboxylate (**5fa**)

Yellow oil (155.6 mg, 70% yield); ¹H NMR (500 MHz, DMSO- d_6) δ 7.38 (d, J = 9.0 Hz, 2H), 7.05 (d, J = 9.0 Hz, 2H), 4.90 (s, 1H), 3.80 (s, 3H), 3.75 (brs, 2H), 3.65 (s, 6H), 3.62 (brs, 2H), 3.56–3.44 (m, 4H), 1.94 (s, 6H). ¹³C NMR (150 MHz, Chloroform-d) δ 173.8, 167.8 (2C), 159.4, 151.4 (2C), 133.1, 131.2 (2C), 114.4 (2C), 101.5 (2C), 67.2, 67.0, 55.4, 51.3 (2C), 47.3, 42.7, 35.5, 18.6 (2C). HRMS (ESI) m/z calcd for C₂₃H₃₉N₂O₇ [M+H]⁺, 445.1969, found 445.1942.

Dimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-4-(phenylcarbamoyl)-1,4-dihydropyridine-3,5-dicarboxylate (**5ga**)

Yellow oil (137.4 mg, 61% yield); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.73 (s, 1H), 7.60–7.57 (m, 2H), 7.32–7.28 (m, 2H), 7.13 (d, *J* = 9.0 Hz, 2H), 7.05 (t, *J* = 7.4 Hz, 1H), 6.91 (d, *J* = 9.0 Hz, 2H), 5.28 (s, 1H), 4.64 (s, 1H), 3.82 (s, 3H), 3.77 (s, 6H), 2.06 (s, 6H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 171.0, 168.5 (2C), 159.5, 150.7 (2C), 138.9, 132.5, 131.2 (2C), 128.8 (2C), 123.4, 119.3 (2C), 100.6 (2C), 55.4, 51.7 (2C), 41.7, 18.6 (2C). **HRMS (ESI)** *m/z* calcd for C₂₅H₂₇N₂O₆ [M+H]⁺, 451.1864, found 451.1836.

Dimethyl 4-((4-(ethoxycarbonyl)phenyl)carbamoyl)-1-(4-methoxyphenyl)-2,6-dimethyl-1,4dihydropyridine-3,5-dicarboxylate (**5ha**)

Grey solid (216.5 mg, 83% yield); mp 114–117 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 9.08 (s, 1H), 8.00–7.96 (m, 2H), 7.66–7.62 (m, 2H), 7.13–7.09 (m, 2H), 6.93–6.88 (m, 2H), 4.64 (s, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.82 (s, 3H), 3.77 (s, 6H), 2.05 (s, 6H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 171.3, 168.6 (2C), 166.2, 159.5, 150.8 (2C), 143.0, 132.4, 131.1 (2C),130.6 (2C), 125.06, 118.5 (2C), 114,5(2C), 100.3 (2C), 60.7, 55.4, 51.8 (2C), 41.8, 18.6 (2C), 14.3. HRMS (ESI) *m/z* calcd for C₂₈H₃₁N₂O₈ [M+H]⁺, 523.2075, found 523.2064.

Dimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-4-(naphthalen-1-ylcarbamoyl)-1,4-dihydropyridine-3,5dicarboxylate (5ia)

Maroon oil (100.2 mg, 40% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 9.14 (s, 1H), 8.24–8.21 (m, 1H), 8.07–8.04 (m, 1H), 7.87–7.84 (m, 1H), 7.63 (d, *J* = 8.1 Hz, 1H), 7.57–7.53 (m, 1H), 7.51–7.45 (m, 2H), 7.18–7.12 (m, 2H), 6.93–6.88 (m, 2H), 4.86 (s, 1H), 3.84–3.82 (m, 9H), 2.09 (s, 6H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 171.6, 168.6 (2C), 159.5, 150.8 (2C), 134.1, 133.6, 132.6, 131.3 (2C), 128.7, 126.3, 126.0,

125.9, 125.72, 124.38, 120.78, 118.62, 114.5 (2C), 100.9 (2C), 55.5, 51.8 (2C), 41.8, 18.6 (2C). **HRMS (ESI)** *m/z* calcd for C₂₉H₂₉N₂O₆ [M+H]⁺, 502.2054, found 502.2037.

ethyl 2-((4-methoxyphenyl)amino)-3-nitropropanoate (7aa)¹⁵

Yellow oil (87.1 mg, 65% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 6.76 – 6.71 (m, 2H), 6.69 – 6.63 (m, 2H), 5.69 (d, *J* = 8.5 Hz, 1H), 4.97 (dd, *J* = 13.8, 5.2 Hz, 1H), 4.85 (dd, *J* = 13.8, 6.9 Hz, 1H), 4.75 (d, *J* = 6.5 Hz, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.64 (s, 3H), 1.16 (t, *J* = 7.1 Hz, 3H).

diethyl 2-benzoyl-3-((4-methoxyphenyl)amino)succinate (7ab)¹⁶

Pale yellow oil (123.7 mg, 62% yield); ¹**H NMR** (600 MHz, Chloroform-d) δ 7.98 – 7.90 (m, 2H), 7.59 – 7.54 (m, 1H), 7.48 – 7.42 (m, 2H), 6.84 – 6.53 (m, 4H), 5.07 – 4.93 (m, 1H), 4.87 – 4.76 (m, 1H), 4.17 – 4.07 (m, 4H), 3.70 (s, 3H), 1.21 – 1.05 (m, 6H).

diethyl 2-acetyl-3-((4-methoxyphenyl)amino)-2-methylsuccinate (7ac)¹⁶

Yellow oil (158.1 mg, 90% yield); ¹**H NMR** (400 MHz, Chloroform-d) δ 6.83 – 6.67 (m, 4H), 4.48 (s, 1H), 4.29 – 4.19 (m, 2H), 4.15 – 4.07 (m, 2H), 3.74 (s, 3H), 2.30 (s, 3H), 1.57 (s, 3H), 1.33 – 1.26 (m, 3H), 1.22 – 1.14 (m, 3H).

triethyl 1-((4-methoxyphenyl)amino)propane-1,2,2-tricarboxylate (7ad)¹⁷

Yellow oil (152.5 mg, 80% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.83 – 6.67 (m, 4H), 4.48 (s, 1H), 4.27 – 4.09 (m, 6H), 3.73 (s, 3H), 1.63 (s, 3H), 1.31 – 1.17 (m, 9H); ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 171.3, 170.4, 170.2, 153.3, 141.3, 116.5 (2C), 114.6 (2C), 63.3, 61.8 (2C), 61.4, 58.1, 55.6, 19.0, 14.0 (2C), 13.9.

methyl 2-(1,3-dioxoisoindolin-2-yl)-2-(p-tolylamino)acetate (7le)¹⁸

Yellow solid (142.6 mg, 88% yield), mp 138–140 °C; ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.87 – 7.81 (m, 2H), 7.75 – 7.70 (m, 2H), 6.99 (d, *J* = 8.3 Hz, 2H), 6.74 (d, *J* = 8.4 Hz, 2H), 6.22 (s, 1H), 3.83 (s, 3H), 2.20 (s, 3H).

ethyl 2-((4-methoxyphenyl)amino)-2-(2,4,6-trimethoxyphenyl)acetate (7af)¹⁹

White solid, mp 75–77 °C (135.0 mg, 72% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 6.67 (d, *J* = 9.0 Hz, 2H), 6.61 (d, *J* = 9.0 Hz, 2H), 6.23 (s, 2H), 5.37 (d, *J* = 7.4 Hz, 1H), 5.05 (d, *J* = 9.2 Hz, 1H), 4.10 – 3.99 (m, 2H), 3.76 (s, 9H), 3.62 (s, 3H), 1.07 (t, *J* = 7.1 Hz, 3H).

ethyl 2-(4-(dimethylamino)phenyl)-2-(p-tolylamino)acetate (7fg)²⁰

Brown oil (96.8 mg, 62% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.34 (d, *J* = 8.5 Hz, 2H), 6.94 (d, *J* = 8.5 Hz, 2H), 6.71 (d, *J* = 8.4 Hz, 2H), 6.50 (d, *J* = 8.4 Hz, 2H), 4.95 (s, 1H), 4.67 (s, 1H), 4.28 – 4.19 (m, 1H), 4.16 – 4.07 (m, 1H), 2.94 (s, 6H), 2.20 (s, 3H), 1.22 (t, *J* = 7.1 Hz, 3H).

ethyl 2-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-((4-methoxyphenyl)amino)acetate (**7ah**)¹² Brown oil (123.9 mg, 71% yield); ¹**H NMR** (400 MHz, Chloroform-d) δ 6.78 – 6.72 (m, 2H), 6.68 – 6.62 (m, 2H), 6.25 (s, 1H), 5.26 (s, 1H), 4.28 – 4.17 (m, 6H), 3.72 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H).

ethyl 2-(1H-indol-3-yl)-2-((4-methoxyphenyl)amino)acetate (7ai)²¹

Brown oil (134.5 mg, 83% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 11.11 (s, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 2.5 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.13 – 7.07 (m, 1H), 7.04 – 6.99 (m, 1H), 6.74 – 6.64 (m, 4H), 5.74 (d, *J* = 7.9 Hz, 1H), 5.30 (d, *J* = 5.2 Hz, 1H), 4.15 – 4.08 (m, 1H), 4.07 – 4.00 (m, 1H), 3.63 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H).

ethyl 1-(2-ethoxy-1-((4-methoxyphenyl)amino)-2-oxoethyl)-2-oxoetyclopentane-1-carboxylate (**7aj**)¹⁶ Yellow oil (163.5 mg, 90% yield); ¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.56 (s, 1H), 6.92 (d, *J* = 8.9 Hz, 2H), 6.80 (d, *J* = 8.9 Hz, 2H), 5.58 (t, *J* = 2.7 Hz, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 4.09 (q, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 3.08 – 3.05 (m, 2H), 2.70 – 2.67 (m, 2H), 2.05 – 2.00 (m, 2H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 3H).

ethyl 1-(2-ethoxy-1-((4-methoxyphenyl)amino)-2-oxoethyl)-2-oxocyclohexane-1-carboxylate (**7ak**)¹⁶ Yellow oil (158.4 mg, 84% yield); ¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.77 – 6.74 (m, 2H), 6.72 – 6.69 (m, 2H), 5.99 (s, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 4.06 (q, *J* = 7.1 Hz, 2H), 3.75 (s, 3H), 3.05 – 3.01 (m, 2H), 2.51 (t, *J* = 6.3 Hz, 2H), 1.81 – 1.77 (m, 2H), 1.55 (brs, 1.5H), 1.31 – 1.28 (m, 3.5H), 1.20 (t, *J* = 7.1 Hz, 3H).

tert-butyl 1-(2-ethoxy-1-((4-methoxyphenyl)amino)-2-oxoethyl)-2-oxocyclohexane-1-carboxylate (**7al**)²² Yellow oil (162.1 mg, 80% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.80 – 6.63 (m, 4H), 4.26 – 4.06 (m, 3H), 3.74 (s, 3H), 2.90 – 2.23 (m, 4H), 2.07 – 1.60 (m, 4H), 1.47 (s, 9H), 1.23 – 1.15 (m, 3H).

1-(2-(benzyloxy)-1-((4-methoxyphenyl)amino)-2-oxoethyl)-2-oxocyclohexane-1-

adamantan-1-yl carboxylate (**7dm**) Yellow oil (212.6 mg, 78% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.31 – 7.14 (m, 5H), 6.84 – 6.57 (m, 4H), 5.18 – 5.03 (m, 2H), 4.33 (s, 1H), 3.75 (s, 3H), 2.91 – 2.69 (m, 1H), 2.52 – 2.23 (m, 3H), 2.20 – 2.03 (m, 9H), 2.01 – 1.66 (m, 4H), 1.65 – 1.58 (m, 6H); ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 207.8, 171.9, 153.0, 142.2, 135.5, 128.3, 128.3, 128.2, 128.0, 128.0, 116.4, 115.6, 114.8, 114.6, 82.9, 67.1, 66.6, 62.0, 55.7, 41.0, 40.9, 40.8, 36.0 (3C), 35.3, 30.8 (3C), 30.8, 26.7, 22.3, 21.4. **HRMS (ESI)** *m/z* calcd for C₃₃H₄₀NO₆ [M+H]⁺, 546.2856, found 546.2850.

methyl 2-(2-*ethoxy*-1-((4-*methoxyphenyl*)*amino*)-2-*oxoethyl*)-1-*oxo*-2,3-*dihydro*-1*H*-*indene*-2-*carboxylate* (7**an**)

Yellow oil (172.8 mg, 87% yield); ¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.79 – 7.73 (m, 1H), 7.63 – 7.59 (m, 1H), 7.51 – 7.46 (m, 1H), 7.41 – 7.35 (m, 1H), 6.85 – 6.70 (m, 4H), 5.02 (s, 1H), 4.14 – 4.02 (m, 2H), 3.84 – 3.77 (m, 1H), 3.76 – 3.70 (m, 6H), 3.35 – 3.29 (m, 1H), 1.01 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 199.4, 171.7, 169.3, 153.7, 152.7, 141.0, 140.6, 135.4, 127.8, 126.2, 124.9, 117.2, 116.9, 114.7, 114.6, 62.9, 62.8, 61.6, 55.6, 53.1, 33.4, 14.0; **HRMS (ESI)** *m/z* calcd for C₂₂H₂₄NO₆ [M+H]⁺, 398.1604, found 398.1601.

adamantan-1-yl 2-(2-isopropoxy-1-((4-methoxyphenyl)amino)-2-oxoethyl)-3-oxo-2,3-dihydrobenzofuran-2carboxylate (**7co**)

Yellow solid (226.6 mg, 85% yield); mp 148–150 °C; ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 7.7 Hz, 1H), 7.63 (t, *J* = 8.0 Hz, 1H), 7.23 (d, *J* = 8.9 Hz, 1H), 7.14 (t, *J* = 7.4 Hz, 1H), 6.89 – 6.76 (m, 4H), 5.03 (s, 1H), 4.73 – 4.67 (m, 1H), 3.76 (s, 3H), 2.13 – 2.00 (m, 9H), 1.58 (s, 6H), 0.97 (d, *J* = 6.3 Hz, 3H), 0.55 (d, *J* = 6.2 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 192.2, 171.7, 168.1, 153.6, 140.8, 138.1, 124.8, 122.9, 116.8 (2C), 114.6 (2C), 113.4, 93.2, 84.7, 70.1, 62.3, 55.7, 40.8 (3C), 35.9 (3C), 30.9 (3C), 21.4, 20.6. **HRMS (ESI)** *m/z* calcd for C₃₁H₃₆NO₇ [M+H]⁺, 534.2492, found 534.2491.

Ethyl 3,5-diacetyl-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate (8)

Yellow oil (71.6 mg, 54% yield); ¹H NMR (600 MHz, Chloroform-*d*) δ 6.15 (s, 1H), 4.81 (s, 1H), 4.08 (q, J = 7.1 Hz, 2H), 2.38 (s, 6H), 2.31 (s, 6H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ

197.4 (2C), 173.0, 144.3 (2C), 108.3 (2C), 61.2, 41.6, 29.7 (2C), 20.1 (2C), 14.1. **HRMS (ESI)** *m/z* calcd for C₁₄H₂₀NO₄ [M+H]⁺, 288.1206, found 288.1196.

3,5-Diacetyl-2,6-dimethyl-1,4-dihydropyridine-4-carboxylic acid (9)²³

Yellow solid (57.6 mg, 90% yield); mp 170–172 °C (lit. mp 173–174 °C); ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.92 (s, 1H), 4.61 (s, 1H), 2.27 (s, 6H), 2.23 (s, 6H).

dimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (**11a**)²⁴ Brown solid (187.3 mg, 92% yield); mp 147–149 °C (lit. mp 148–149 °C); ¹**H NMR** (400 MHz, Chloroform*d*) δ 7.35 (d, *J* = 7.4 Hz, 2H), 7.31 – 7.26 (m, 2H), 7.21 – 7.16 (m, 1H), 7.00 (d, *J* = 7.7 Hz, 2H), 6.92 (d, *J* = 8.2 Hz, 2H), 5.14 (s, 1H), 3.84 (s, 3H), 3.69 (s, 6H), 2.07 (s, 6H).

dimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (11b) Yellow solid; mp 154–155 °C (169.7 mg, 75% yield); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.27 (t, *J* = 2.0 Hz, 1H), 8.07 – 8.04 (m, 1H), 7.74 – 7.72 (m, 1H), 7.44 (t, *J* = 7.9 Hz, 1H), 7.13 – 7.10 (m, 2H), 6.99 – 6.97 (m, 2H), 5.19 (s, 1H), 3.86 (s, 3H), 3.70 (s, 6H), 2.10 (s, 6H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 168.0 (2C), 159.6, 149.2, 149.1, 148.6, 133.8 (2C), 132.4, 128.8 (2C), 122.3, 121.4, 114.8 (2C), 104.7 (2C), 55.6, 51.4 (2C), 38.7, 18.7 (2C). HRMS (ESI) *m/z* calcd for C₂₄H₂₅N₂O₇ [M+H]⁺, 453.1673, found 453.1671.

7.2 Characterization data for reactants 1, 4 and 10

ethyl (4-methoxyphenyl)glycinate (1a)²⁵

Colorless solid (401.4 mg, 96% yield); mp 59–60 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.71 (d, *J* = 8.4 Hz, 2H), 6.50 (d, *J* = 8.4 Hz, 2H), 5.56 (s, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 2H), 3.63 (s, 3H), 1.18 (t, *J* = 7.1 Hz, 3H).

MeO

methyl (4-methoxyphenyl)glycinate (1b)²⁶

Pale brown solid (370.7 mg, 95% yield); mp 79–80 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 6.74 – 6.68 (m, 2H), 6.53 – 6.48 (m, 2H), 3.84 (s, 2H), 3.63 (s, 6H).

isopropyl (4-methoxyphenyl)glycinate (1c)

Yellow solid (419.4 mg, 94% yield); ¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.80 – 6.78 (m, 2H), 6.60 – 6.58 (m, 2H), 5.12 – 5.08 (m, 1H), 3.83 (s, 2H), 3.74 (s, 3H), 1.26 (d, *J* = 6.3 Hz, 6H). ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 170.9, 152.6, 141.3, 114.9 (2C), 114.4 (2C), 68.9, 55.7, 47.1, 21.8 (2C). **HRMS (ESI)** *m/z* calcd for C₁₂H₁₈NO₃ [M+H]⁺, 224.1487, found 224.1483.

benzyl (4-methoxyphenyl)glycinate (1d)²⁶

White solid (498.9 mg, 92% yield); mp 73–74 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.29 (m, 5H), 6.81 – 6.77 (m, 2H), 6.62 – 6.58 (m, 2H), 5.21 (s, 2H), 3.93 (s, 2H), 3.75 (s, 3H).

tert-butyl (4-methoxyphenyl)glycinate (1e)²⁶

Yellow oil (422.1 mg, 89% yield); ¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.79 (d, *J* = 8.9 Hz, 2H), 6.58 (d, *J* = 8.9 Hz, 2H), 3.76 (s, 2H), 3.74 (s, 3H), 1.48 (s, 9H).

ethyl p-tolylglycinate (1f)²⁵

White solid (359.2 mg, 93% yield); mp 48–50 °C; ¹**H** NMR (400 MHz, DMSO- d_6) δ 6.88 (d, J = 8.4 Hz, 2H), 6.45 (d, J = 8.4 Hz, 2H), 4.10 (q, J = 7.1 Hz, 2H), 3.83 (s, 2H), 2.14 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H).

isopropyl p-tolylglycinate (1g)

White solid (385.2 mg, 93% yield); mp 39–40 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.03 (d, *J* = 8.1 Hz, 2H), 6.56 (d, *J* = 8.3 Hz, 2H), 5.13 (hept, *J* = 6.3 Hz, 1H), 3.86 (s, 2H), 2.27 (s, 3H), 1.30 (d, *J* = 6.3 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.9, 144.9, 129.8 (2C), 127.4, 113.2 (2C), 68.9, 46.5, 21.9, 20.5. HRMS (ESI) *m*/*z* calcd for C₁₂H₁₈NO₂ [M+H]⁺, 208.1338, found 208.1341.

ethyl phenylglycinate (1h)²⁵

White solid (307.9 mg, 86% yield); mp 56–57 °C; ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.07 (t, J = 7.7 Hz, 2H), 6.62 – 6.48 (m, 3H), 4.11 (q, J = 7.1 Hz, 2H), 3.87 (s, 2H), 1.19 (t, J = 7.1 Hz, 3H).

ethyl (4-fluorophenyl)glycinate (1i)²⁵

Colourless solid (315.3 mg, 80% yield); mp 73–74 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 6.93 – 6.84 (m, 2H), 6.53 – 6.47 (m, 2H), 4.08 (q, J = 7.1 Hz, 2H), 3.83 (s, 2H), 1.16 (t, J = 7.1 Hz, 3H).

ethyl (4-chlorophenyl)glycinate (1j)²⁵

Colourless solid (345.1 mg, 81% yield); mp 95–97 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 7.09 (d, J = 8.2 Hz, 2H), 6.55 (d, J = 8.4 Hz, 2H), 4.11 (q, J = 7.1 Hz, 2H), 3.88 (s, 2H), 1.19 (t, J = 7.1 Hz, 3H).

ethyl (4-bromophenyl)glycinate (1k)²⁵

Colourless solid (416.3 mg, 81% yield); mp 96–97 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.21 – 7.14 (m, 2H), 6.52 – 6.45 (m, 2H), 4.12 – 4.04 (m, 2H), 3.88 – 3.82 (m, 2H), 1.33 – 1.19 (m, 3H).

methyl p-tolylglycinate (11)²⁷

White solid (322.4 mg, 90% yield); mp 87–88 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 6.88 (d, *J* = 8.3 Hz, 2H), 6.45 (d, *J* = 8.3 Hz, 2H), 3.85 (s, 2H), 3.63 (s, 3H), 2.14 (s, 3H).

allyl phenylglycinate (1m)

Brown oil (290.5 mg, 76% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 – 7.17 (m, 2H), 6.81 – 6.73 (m, 1H), 6.65 – 6.61 (m, 2H), 6.00 – 5.88 (m, 1H), 4.71 – 4.68 (m, 2H), 3.95 (s, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.0, 147.0, 131.7, 129.5 (2C), 119.0, 118.5, 113.2 (2C), 66.0, 46.0. HRMS (ESI) *m/z* calcd for C₁₁H₁₄NO₂ [M+H]⁺, 192.1025, found 192.1031.

ethyl mesitylglycinate (**1n**)²⁸

Colorless oil (367.1 mg, 83% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 6.72 (s, 2H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.82 – 3.68 (m, 2H), 2.16 (d, *J* = 24.4 Hz, 9H), 1.16 (t, *J* = 7.1 Hz, 3H).

N-hexyl-2-((4-methoxyphenyl)amino)acetamide (4a)

Brown oil (427.9 mg, 81% yield); ¹**H** NMR (400 MHz, Chloroform-*d*) δ 6.84 (s, 1H), 6.78 (d, J = 8.4 Hz, 2H), 6.56 (d, J = 8.4 Hz, 2H), 3.76 – 3.69 (m, 5H), 3.28 – 3.22 (m, 2H), 1.48 – 1.40 (m, 2H), 1.23 (brs, 6H), 0.84 (t, J = 6.4 Hz, 3H). ¹³**C** NMR (100 MHz, Chloroform-*d*) δ 170.6, 153.1, 141.2, 114.9 (2C), 114.4 (2C), 55. 7, 49.7, 39.1, 31.4, 29.5, 26.4, 22.5, 13.9. **HRMS (ESI)** *m/z* calcd for C₁₅H₂₅N₂O₂ [M+H]⁺, 265.1916, found 265.1910.

N-(4-fluorophenethyl)-2-((4-methoxyphenyl)amino)acetamide (4b)

Yellow solid (501.6 mg, 83% yield); mp 102–104 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.85 (t, *J* = 5.9 Hz, 1H), 7.19 – 7.14 (m, 2H), 7.09 – 7.00 (m, 2H), 6.72 (d, *J* = 8.8 Hz, 2H), 6.45 (d, *J* = 8.7 Hz, 2H), 5.57 (s, 1H), 3.64 (s, 3H), 3.52 (s, 2H), 3.30 (q, *J* = 6.8 Hz, 2H), 2.68 (t, *J* = 7.1 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 170.5, 159.8 (d, *J*₁ = 239.8 Hz), 151.3, 142.5, 135.5 (d, *J*₄ = 3.1 Hz), 130.4 (d, *J*₃ = 7.8 Hz, 2C), 114.9 (d, *J*₂ = 20.8 Hz, 2C), 114.6 (2C), 113.4 (2C), 55.3, 48.0, 34.3. HRMS (ESI) *m/z* calcd for C₁₇H₂₀FN₂O₂ [M+H]⁺, 303.1509, found 303.1517.

N-cyclohexyl-2-((4-methoxyphenyl)amino)acetamide (4c)

White solid (450.6 mg, 86% yield); mp 94.0–94.8 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.79 (d, J = 7.6 Hz, 2H), 6.71 (d, J = 5.6 Hz, 1H), 6.58 (d, J = 7.6 Hz, 2H), 3.82 (dd, J = 8.9, 4.1 Hz, 1H), 3.75 (s, 3H), 3.71 (s, 2H), 1.85 (d, J = 12.0 Hz, 2H), 1.69 – 1.55 (m, 3H), 1.40 – 1.29 (m, 2H), 1.16 – 1.03 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.6, 153.2, 141.2, 114.9, 114.6, 55.7, 50.0, 47.8, 33.0, 25.4, 24.8. HRMS (ESI) *m/z* calcd for C₁₅H₂₃N₂O₂ [M+H]⁺, 263.1760, found 263.1750.

N-isopropyl-2-((4-methoxyphenyl)amino)acetamide (4d)

Pale brown solid (390.9 mg, 88% yield); mp 60–61 °C; ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.84 – 6.73 (m, 2H), 6.64 (s, 1H), 6.59 – 6.51 (m, 2H), 4.16 – 4.07 (m, 1H), 3.76 – 3.71 (m, 3H), 3.69 (t, *J* = 2.4 Hz, 2H), 1.15 – 1.08 (m, 6H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 169.8, 153.1, 141.3, 114.9 (2C), 114.5 (2C), 55.7, 49.9, 41.0, 22.6 (2C). **HRMS (ESI)** *m/z* calcd for C₁₂H₁₉N₂O₂ [M+H]⁺, 223.1447, found 223.1439.

N,*N*-diisopropyl-2-((4-methoxyphenyl)amino)acetamide (4e)

White solid (433.2 mg, 82% yield); mp 99–100 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 6.71 (d, J = 8.1 Hz, 2H), 6.61 (d, J = 8.3 Hz, 2H), 5.13 (s, 1H), 4.11 – 3.97 (m, 1H), 3.75 (s, 2H), 3.64 (s, 3H), 3.52 – 3.42 (m, 1H), 1.32 (d, J = 5.7 Hz, 6H), 1.15 (d, J = 5.7 Hz, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ 167.6, 150.9, 142.4, 114.5 (2C), 113.5 (2C), 55.3, 46.9, 46.6, 44.9 (2C), 20.4 (2C), 20.4 (2C). HRMS (ESI) *m/z* calcd for C₁₅H₂₅N₂O₂ [M+H]⁺, 265.1916, found 265.1908.

2-((4-methoxyphenyl)amino)-1-morpholinoethan-1-one (4f)

White solid (395.2 mg, 79% yield); mp 110–111 °C; ¹**H** NMR (400 MHz, Chloroform-*d*) δ 6.80 (d, J = 8.1 Hz, 2H), 6.61 (d, J = 8.4 Hz, 2H), 3.85 (s, 2H), 3.76 – 3.64 (m, 9H), 3.46 (s, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.0, 152.4, 141.5, 114.9 (2C), 114.4 (2C), 66.8, 66.4, 55.8, 46.3, 44.7, 42.3. **HRMS (ESI)** *m*/*z* calcd for C₁₃H₁₉N₂O₃ [M+H]⁺, 251.1396, found 251.1387.

2-((4-methoxyphenyl)amino)-N-phenylacetamide (4g)²⁹

Light yellow solid (445.6 mg, 87% yield); mp 101–103 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.71 (s, 1H), 7.57 – 7.49 (m, 2H), 7.31 (dd, J = 8.5, 7.4 Hz, 2H), 7.11 (t, J = 7.5 Hz, 1H), 6.85 – 6.78 (m, 2H), 6.68 – 6.63 (m, 2H), 3.86 (s, 2H), 3.75 (s, 3H).

ethyl 4-(2-((4-methoxyphenyl)amino)acetamido)benzoate (4h)

White solid (525.0 mg, 80% yield); mp 140–141 °C; ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.90 (s, 1H), 8.00 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H), 6.82 (d, *J* = 7.9 Hz, 2H), 6.65 (d, *J* = 7.9 Hz, 2H), 4.35 (q, *J* = 6.9 Hz, 2H), 3.88 (s, 2H), 3.75 (s, 3H), 1.38 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.4, 166.1, 153.8, 141.3, 140.7, 130.7 (2C), 126.2, 118.8 (2C), 115.1 (2C), 114.9 (2C), 60.9, 55.7, 50.8, 14.3. HRMS (ESI) *m/z* calcd for C₁₈H₂₁N₂O₄ [M+H]⁺, 329.1501, found 329.1493.

2-((4-methoxyphenyl)amino)-N-(naphthalen-1-yl)acetamide (4i)

Pale maroon solid (379.6 mg, 62% yield); mp 162-163 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.90 (s, 1H), 8.00 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 7.9 Hz, 2H), 6.82 (d, *J* = 7.9 Hz, 2H), 6.65 (d, *J* = 7.8 Hz, 2H), 4.35 (q, *J* = 6.8 Hz, 2H), 3.88 (s, 2H), 3.75 (s, 3H), 1.38 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.4, 166.1, 153.8, 141.3, 140.7, 130.7 (2C), 126.2 (2C), 118.8 (2C), 115.1 (2C), 114.9 (2C), 60.9, 55.7, 50.8, 14.3. HRMS (ESI) *m*/z calcd for C₁₉H₁₉N₂O₂ [M+H]⁺, 307.1447, found 307.1441.

N-benzyl-4-methoxyaniline $(10a)^{30}$

Pale yellow solid (189.7 mg, 89% yield); mp 48–50 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.34 (m, 4H), 7.34 – 7.27 (m, 1H), 6.85 – 6.79 (m, 2H), 6.66 – 6.62 (m, 2H), 4.31 (s, 2H), 3.77 (s, 3H).

4-methoxy-N-(2-nitrobenzyl)aniline (10b)³¹

Red oil (211.6 mg, 82% yield); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.24 (t, *J* = 2.0 Hz, 1H), 8.14 – 8.07 (m, 1H), 7.76 – 7.67 (m, 1H), 7.50 (t, *J* = 7.9 Hz, 1H), 6.81 – 6.73 (m, 2H), 6.61 – 6.54 (m, 2H), 4.41 (s, 2H), 3.73 (s, 3H).

8. NMR spectra

For products 3, 5, 7, 8, 9 and 11

4-Ethyl 3,5-dimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (3aa)

Trimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (3ba)

4-Isopropyl 3,5-dimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (**3ca**)

4-Benzyl 3,5-dimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (3da)

4-(*tert-butyl*) 3,5-Dimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (**3ea**)

 $\label{eq:2.1} 4- \ensuremath{\textit{Ethyl}}\ 3, 5- \ensuremath{\textit{dimethyl}}\ 2, 6- \ensuremath{\textit{dimethyl}}\ 1- (p-\ensuremath{\textit{tolyl}}\)-1, 4-\ensuremath{\textit{dihydropyridine-}}\ 3, 4, 5-\ensuremath{\textit{tricarboxylate}}\ ({\bf 3fa})$

 $\label{eq:source} 4-Isopropyl\ 3, 5-dimethyl\ 2, 6-dimethyl-1-(p-tolyl)-1, 4-dihydropyridine-3, 4, 5-tricarboxylate\ ({\bf 3ga})$

4-Ethyl 3,5-dimethyl 2,6-dimethyl-1-phenyl-1,4-dihydropyridine-3,4,5-tricarboxylate (3ha)

4-Ethyl 3,5-dimethyl 1-(4-fluorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (3ia)

4-Ethyl 3,5-dimethyl 1-(4-chlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (3ja)

4-Ethyl 3,5-dimethyl 1-(4-bromophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (3ka)

4-ethyl 3,5-dimethyl 1-mesityl-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (3na)

 $\label{eq:constraint} Triethyl\ 1-(4-methoxyphenyl)-2, 6-dimethyl-1, 4-dihydropyridine-3, 4, 5-tricarboxylate\ {\bf (3ab)}$

3,5-Diethyl 4-methyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (3bb)

3,5-Diethyl 4-methyl 2,6-dimethyl-1-(p-tolyl)-1,4-dihydropyridine-3,4,5-tricarboxylate (3lb)

4-Allyl 3,5-diethyl 2,6-dimethyl-1-phenyl-1,4-dihydropyridine-3,4,5-tricarboxylate (3mb)

110 100 fl (ppm)

90

80 70

150 140 130 120

210 200 190 180 170 160

40 30 20

10 0 -10

60 50

 $3, 5-Dibenzyl\ 4-isopropyl\ 2, 6-dimethyl-1-(p-tolyl)-1, 4-dihydropyridine-3, 4, 5-tricarboxylate\ ({\bf 3gc})$

4-Ethyl 3,5-diisopropyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (3ad)

3,5-Di(adamantan-1-yl)

tricarboxylate (3ae)

 $\label{eq:2.1} 4- Ethyl~3, 5- dimethyl~2, 6- diethyl-1-(4-methoxyphenyl)-1, 4- dihydropyridine-3, 4, 5- tricarboxylate~({\bf 3af})$

 $\label{eq:expectation} Ethyl~3, 5-diacetyl-1-(4-methoxyphenyl)-2, 6-dimethyl-1, 4-dihydropyridine-4-carboxylate~({\bf 3ag})$

Methyl 3,5-diacetyl-1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate (3bg)

Isopropyl 3,5-diacetyl-1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate (3cg)

 $\label{eq:expectation} Ethyl~3, 5-diacetyl-2, 6-dimethyl-1-(p-tolyl)-1, 4-dihydropyridine-4-carboxylate~(3fg)$

3,4-Diethyl 5-methyl 1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4,5-tricarboxylate (**3aab**)

4-Ethyl 3-methyl 5-acetyl-1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4-dicarboxylate (**3aag**)

3-Benzyl 4-ethyl 5-acetyl-1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,4-dicarboxylate (**3acg**)

3-Ethyl 4-methyl 5-acetyl-2,6-dimethyl-1-(p-tolyl)-1,4-dihydropyridine-3,4-dicarboxylate (3lbg)

Dimethyl 4-((4-fluorophenethyl)carbamoyl)-1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (**5ba**)

Diethyl 4-(cyclohexylcarbamoyl)-1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5dicarboxylate (**5cb**)

Dimethyl 4-(diisopropylcarbamoyl)-1-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5dicarboxylate (**5ea**)

Dimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-4-(morpholine-4-carbonyl)-1,4-dihydropyridine-3,5dicarboxylate (**5fa**)

1-(4-methoxyphenyl)-2,6-dimethyl-4-(phenylcarbamoyl)-1,4-dihydropyridine-3,5-

Dimethyl dicarboxylate (**5ga**)

Dimethyl 4-((4-(ethoxycarbonyl)phenyl)carbamoyl)-1-(4-methoxyphenyl)-2,6-dimethyl-1,4dihydropyridine-3,5-dicarboxylate (**5ha**)

Dimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-4-(naphthalen-1-ylcarbamoyl)-1,4-dihydropyridine-3,5dicarboxylate (**5ia**)

ethyl 2-((4-methoxyphenyl)amino)-3-nitropropanoate (7aa)

diethyl 2-benzoyl-3-((4-methoxyphenyl)amino)succinate (7ab)

ethyl 2-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-((4-methoxyphenyl)amino)acetate (7ah)

S116

 $ethyl \ 1-(2-ethoxy-1-((4-methoxyphenyl)amino)-2-oxoethyl)-2-oxocyclopentane-1-carboxylate \ (7aj)$

ethyl 1-(2-ethoxy-1-((4-methoxyphenyl)amino)-2-oxoethyl)-2-oxocyclohexane-1-carboxylate (7ak)

tert-butyl 1-(2-ethoxy-1-((4-methoxyphenyl)amino)-2-oxoethyl)-2-oxocyclohexane-1-carboxylate (7al)

adamantan-1-yl 1-(2-(benzyloxy)-1-((4-methoxyphenyl)amino)-2-oxoethyl)-2-oxocyclohexane-1-

methyl $2\-(2\-ethoxy-1\-((4\-methoxyphenyl)amino)\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-1H\-indene\-2\-oxoethyl)\-1\-oxo\-2,3\-dihydro\-2,3\-dihydro\-1H\-indene\-2,3\-dihydro\-2,3\-dihyd$

adamantan-1-yl 2-(2-isopropoxy-1-((4-methoxyphenyl)amino)-2-oxoethyl)-3-oxo-2,3-

dihydrobenzofuran-2-carboxylate (7co)

Ethyl 3,5-diacetyl-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate (8)

3,5-Diacetyl-2,6-dimethyl-1,4-dihydropyridine-4-carboxylic acid (9)

 $dimethyl\ 1-(4-methoxyphenyl)-2, 6-dimethyl-4-phenyl-1, 4-dihydropyridine-3, 5-dicarboxylate\ ({\bf 11a})$

dimethyl 1-(4-methoxyphenyl)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (11b)

For reactants 1, 4 and 10

ethyl (4-methoxyphenyl)glycinate (1a)

isopropyl (4-methoxyphenyl)glycinate (1c)

benzyl (4-methoxyphenyl)glycinate (1d)

isopropyl p-tolylglycinate (1g)

ethyl phenylglycinate (1h)

ethyl (4-fluorophenyl)glycinate (1i)

ethyl (4-chlorophenyl)glycinate (1j)

ethyl (4-bromophenyl)glycinate (1k)

methyl p-tolylglycinate (11)

ethyl mesitylglycinate (1n)

N-hexyl-2-((4-methoxyphenyl)amino)acetamide (4a)

N-(4-fluorophenethyl)-2-((4-methoxyphenyl)amino)acetamide (4b)

N-cyclohexyl-2-((4-methoxyphenyl)amino)acetamide (4c)

N-isopropyl-2-((4-methoxyphenyl)amino)acetamide (4d)

 $\textit{N,N-diisopropyl-2-((4-methoxyphenyl)amino)acetamide} \ \textbf{(4e)}$

2-((4-methoxyphenyl)amino)-1-morpholinoethan-1-one (4f)

2-((4-methoxyphenyl)amino)-N-phenylacetamide (4g)

ethyl 4-(2-((4-methoxyphenyl)amino)acetamido)benzoate (4h)

$\label{eq:lambda} 2-((4-methoxyphenyl)amino)-N-(naphthalen-1-yl)acetamide~(4i)$

9. References

¹ N. Sharma, H. Sharma, M. Kumar, M. Grishina, U. Pandit, Poonam and B. Rathi, *Org. Biomol. Chem.*, 2022, 20, 6673–6679.

² C. Huo, Y. Yuan, M. Wu, X. Jia, X. Wang, F. Chen, J. Tang, Angew. Chem. Int. Ed., 2014, 53, 1–5.

³ a) R. Schmidt, C. Burmeister, M. Baláž, A. Kwade, A. Stolle, Org. Process Res. Dev., 2015, 19, 427-

436. b) J. Andersen, J. Mack, Chem. Sci., 2017, 8, 5447-5453.

⁴ a) G. Jadhav, I. Kaur, M. Maryati, B. Airhihen, P. Fischer and G. Winkler, Bioorg. *Med. Chem. Lett.*, **2015**, *25*, 4219–4224; b) I. Stoikov, A. Yantemirova, R. Nosov, I. Rizvanov, A. Julmetov, V. Klochkov, I. Antipin, A. Konovalova and I. Zharov, *Org. Biomol. Chem.*, **2011**, *9*, 3225–3234; c) R. Rohlmann, T. Stopka, H. Richter and O. Mancheño, J. Org. Chem., **2013**, *78*, 6050–6064.

⁵ R. Sheldon, *Green Chem.*, **2007**, *9*, 1273-1283.

⁶ J. Andraos and M. Sayed, J. Chem. Educ., 2007, 84, 1004–1010.

⁷ X. Jia, Y. Wang, F. Peng, C. Huo, L. Yu, J. Liu and X. Wang, Adv. Synth. Catal., 2014, 356, 1210–1216.

⁸ Z. Zhu, Z. Xie and Z. Le, J. Org. Chem., 2016, 81, 9449–9454.

⁹ X. Zhu, Z. Zhu, D. Guo, S. Liu, J. Ji, J. Tang, E. Yuan, Z. Xie and Z. Le, *Tetrahedron*, **2020**, *76*, 131353.

¹⁰ (a) F. Schneider, T. Szuppa, A. Stolle, B. Ondruschka and H. Hopf, *Green Chem.*, **2009**, *11*, 1894–1899; (b) Q. Xu, X. Sheng, N. Li, J. Zhang, H. Shi, M. Niu, Q. Ping and Ning Li, *ACS Sustainable Chem. Eng.*, **2021**, *9*, 8232–8237.

¹¹ (a) T. Reddy, G. Reddy, L. Reddy, C. Meda, K. Parsa, K. Kumar, Y. Lingappa and M. Pal, *Eur. J. Med. Chem.*, **2013**, *62*, 395–404; (b) G. Reddy, V. Reddy and T. Reddy, *Der Pharma Chem.*, **2016**, *8*, 289–300.

¹² D. Ramana, L. Chowhan and M. Chandrasekharam, *ChemistrySelect*, 2017, 2, 2241–2244.

¹³ X. Chen, X. Huang, Y. Chen, F. He and X. Li, *Lett. Org. Chem.*, **2009**, *6*, 213–218.

¹⁴ Y. Liu, J. Liu, X. Wang, T. Cheng and R. Li, *Tetrahedron*, **2013**, *69*, 5242–5247.

¹⁵ Z. Zhu, Z. Le and Z. Xie, *Synlett*, **2016**, *28*, 485–488.

¹⁶ G. Zhang, Y. Zhang and R. Wang, Angew. Chem. Int. Ed., 2011, 50, 10429–10432.

¹⁷ S. Kobayashi, M. Salter, Y. Yamazaki and Y. Yamashita, *Chem. Asian J.*, **2010**, *5*, 493–495.

¹⁸ L. Xiao, Z. Zhu, D. Guo, Z. Xie, Y. Lu and Z. Le, *Synlett*, **2018**, *29*, 1659–1663.

¹⁹ S. Li, X. Yang, Y. Wang, H. Zhou, B. Zhang, G. Huang, Y. Zhang and Y. Li, *Adv. Synth. Catal.*, **2018**, *360*, 4452–4456.

²⁰ Y. Wei, J. Wang, Y. Wang, X. Yao, C. Yang and C. Huo, Org. Biomol. Chem., 2018, 16, 4985–4989.

²¹ C. Huo, Y. Yuan, M. Wu, X. Jia, X. Wang, F. Chen and J. Tang, *Angew. Chem. Int. Ed.*, **2014**, *53*, 13544–13547.

²² Y. Hamashima, N. Sasamoto, D. Hotta, H. Somei, N. Umebayashi, and Mikiko Sodeok, *Angew. Chem. Int. Ed.*, **2005**, *44*, 1525–1529.

²³ I. Goba, B. Turovska, S. Belyakov and E. Liepinsh, J. Mol. Struct., 2014, 1074, 549-558.

²⁴ A. Manvar, R. Pissurlenkar, V. Virsodia, K. Upadhyay, D. Manvar, A. Mishra, H. Acharya, A. Parecha,

C. Dholakia, A. Shah and E. Coutinho, Mol. Divers., 2010, 14, 285-305.

²⁵ W. Huang and W. Sha, J. Chem. Res., **2013**, *37*, 460–463.

²⁶ T. Inokuma, T. Jichu, K. Nishida, A. Shigenaga and A. Otaka, *Chem. Pharm. Bull.*, **2017**, *65*, 573–581.

²⁷ J. Zhang, J. Jiang, Y. Li, Y. Zhao and X. Wan, Org. Lett., 2013, 15, 3222–3225.

²⁸ Y. Song, H. Zhang, J. Guo, Y. Shao, Y. Ding, L. Zhu and X. Yao, *Eur. J. Org. Chem.*, **2021**, 5914–5921.

²⁹ M. Zhang, S. Imm, S. Bahn, H. Neumann and M. Beller, *Angew. Chem. Int. Ed.*, **2011**, *50*, 11197–11201.

³⁰ D. Bagal, R. Watile, M. Khedkar, K. Dhake and B. Bhanage, *Catal. Sci. Technol.*, **2012**, *2*, 354–358.

³¹ U. Sharma, N. Kumar, P. Verma, V. Kumara and B. Singh, *Green Chem.*, **2012**, *14*, 2289–2293.