Supporting Information

Green strategy for recycling cathode materials from spent lithiumion batteries using glutathione

Kunhong Gu¹, Xingyuan Gu², Yongwei Wang¹, Wenqing Qin¹, Junwei Han^{1*}

1. School of Minerals Processing & Bioengineering, Central South University,

Changsha 410083, China

2. School of Traditional Chinese Medicine, Beijing University of Chinese Medicine,

Beijing 100029, China

Corresponding author: Junwei Han, <u>hanjunwei@csu.edu.cn</u>

The following are included in the supplementary information below:

- Fig. S1 The preparation process for raw materials
- Fig. S2 XRD and SEM diagrams of raw materials.
- Fig. S3 Flow chart of the recycling process
- Fig. S4 Response surface diagram of the influence of H₂SO₄ concentration and GSH dosage(n(A)/n(T)) on metal leaching efficiencies: (a)Li, (b)Ni, (c)Co, (d)Mn.
- Fig. S5 Response surface diagram of the influence of H₂SO₄ concentration and leaching temperature on metal leaching efficiencies: (a)Li, (b)Ni, (c)Co, (d)Mn.
- Fig. S6 Response surface diagram of the influence of GSH dosage(n(A)/n(T)) and leaching temperature on metal leaching efficiencies: (a)Li, (b)Ni, (c)Co, (d)Mn.
- Fig. S7 Optimal leaching conditions and prediction of leaching efficiencies
- Fig. S8 Fitting results of surface chemical reaction control model for metal leaching efficiencies in H₂SO₄+GSH leaching system:(a) Li, (b)Ni, (c)Co, (d)Mn
- Fig. S9 Fitting results of internal diffusion control model for metal leaching efficiencies in H₂SO₄+GSH leaching system:(a) Li, (b)Ni, (c)Co, (d)Mn
- Fig. S10 Fitting results of Avrami equation for metal leaching efficiencies in H₂SO₄+GSH leaching system:(a) Li, (b)Ni, (c)Co, (d)Mn
- Fig. S11 Fitting results of surface chemical reaction control model for metal leaching efficiencies in H₂SO₄+H₂O₂ leaching system:(a) Li, (b)Ni, (c)Co, (d)Mn
- Fig. S12 Fitting results of internal diffusion control model for metal leaching efficiencies in H₂SO₄+H₂O₂ leaching system:(a) Li, (b)Ni, (c)Co, (d)Mn
- Fig. S13 Fitting results of Avrami equation for metal leaching efficiencies in H₂SO₄+H₂O₂ leaching system:(a) Li, (b)Ni, (c)Co, (d)Mn
- Fig. S14 Properties of the recovered lithium carbonate: (a) XRD of the recovered lithium carbonate, (b) SEM of the recovered lithium carbonate and (c) EDS of the recovered lithium carbonate
- Table S1 Main chemical composition of the cathode materials
- Table S2 Content of GSH and GSSG in leaching solution

- Table S3 Chemical composition of leachate under the optimal condition
- Table S4 Content of GSH and GSSG in solution
- Table S5 The results of regression analysis and variance analysis
- Table S6 Fitting electrochemical parameters obtained from EIS
- Table S7 The composition of the remaining solution after metal recovery
- **Table S8** The materials and energy consumption to dispose of 1 kg spent NCM cathode materials
- Table S9 The comparison of different methods for recycling of spent cathode material
- References

Fig. S1 The preparation process for raw materials

Fig. S2 XRD and SEM diagrams of raw materials.

Fig. S3 Flow chart of the recycling process

Fig. S4 Response surface diagram of the influence of H₂SO₄ concentration and GSH

dosage(n(A)/n(T)) on metal leaching efficiencies: (a)Li, (b)Ni, (c)Co, (d)Mn.

Fig. S5 Response surface diagram of the influence of H_2SO_4 concentration and leaching

temperature on metal leaching efficiencies: (a)Li, (b)Ni, (c)Co, (d)Mn.

Fig. S6 Response surface diagram of the influence of GSH dosage(n(A)/n(T)) and leaching

temperature on metal leaching efficiencies: (a)Li, (b)Ni, (c)Co, (d)Mn.

Fig. S7 Optimal leaching conditions and prediction of leaching efficiencies

Fig. S8 Fitting results of surface chemical reaction control model for metal leaching efficiencies in

H₂SO₄+GSH leaching system:(a) Li, (b)Ni, (c)Co, (d)Mn

Fig. S9 Fitting results of internal diffusion control model for metal leaching efficiencies in

H₂SO₄+GSH leaching system:(a) Li, (b)Ni, (c)Co, (d)Mn

Fig. S10 Fitting results of Avrami equation for metal leaching efficiencies in H₂SO₄+GSH

leaching system:(a) Li, (b)Ni, (c)Co, (d)Mn

Fig. S11 Fitting results of surface chemical reaction control model for metal leaching efficiencies

in $H_2SO_4+H_2O_2$ leaching system:(a) Li, (b)Ni, (c)Co, (d)Mn

Fig. S12 Fitting results of internal diffusion control model for metal leaching efficiencies in

H₂SO₄+H₂O₂ leaching system:(a) Li, (b)Ni, (c)Co, (d)Mn

Fig. S13 Fitting results of Avrami equation for metal leaching efficiencies in $H_2SO_4+H_2O_2$

leaching system:(a) Li, (b)Ni, (c)Co, (d)Mn

Fig. S14 Properties of the recovered lithium carbonate: (a) XRD of the recovered lithium carbonate, (b) SEM of the recovered lithium carbonate and (c) EDS of the recovered lithium

carbonate

Composition	Li	Ni	Со	Mn	Al	Cu
Wt.%	6.97	30.74	12.69	18.71	0.64	0.02
	Tabla S2	Content of	GSH and GSSG	in leaching s	olution	
				in reaching s	orution	
	Compositio	on	GSSG	GSI	Н	
			0.52 mol/L	0.52 m	iol/L	
			0.52 mone	0.32 m		

Table S1 Main chemical composition of the cathode materials

Table S3 Chemical composition of leachate under the optimal condition

Composition	Li	Ni	Co	Mn	GSSG	GSH
	3.49 g/L	15.34 g/L	6.31 g/L	9.3 g/L	0.26 mol/L	-

Table S4 Content of GSH and GSSG in solution

Composition	GSSG	GSH
	0.85 mol/L	-

Table S5 The results of regression analysis and variance analysis

Response value	Error source	P value	significance
	Leaching model	0.0011	Significant
Ll	loss of fit	0.1213	Not significant
ЪТ'	Leaching model	0.0036	Significant
N1	loss of fit	0.0937	Not significant
C	Leaching model	0.0026	Significant
Co	loss of fit	0.0884	Not significant
Mn	Leaching model	0.0031	Significant
	loss of fit	0.1159	Not significant

Table S6 Fitting electrochemical parameters obtained from EIS

Materials	$R_{s}(\Omega)$	$\mathrm{R}_{\mathrm{SEI}}(\Omega)$	$R_{ct}(\Omega)$
G-NCM	3.75	15.77	58.14
H-NCM	3.92	23.43	80.92

Table S7 The composition of the remaining solution after metal recovery

Composition	Li	Ni	Co	Mn	GSSG	GSH
	3.48 g/L	0.61 mg/L	0.33 mg/L	0.4 mg/L	0.26 mol/L	-

Table S8 The materials and energy consumption to dispose of 1 kg spent NCM cathode materials

	Items	Commodity price (\$)	Dosage	Total
	Spent NCM cathode materials	31.06 for 1kg	1kg	31.06
Laashina	GSH	70 fo1 1kg	3.17kg	221.9
Leaching	H_2SO_4	0.08 for 1kg	1.96kg	0.16
	Energy cost	0.07 for 1 KW·h	0.09	0.006
Regeneration	Li ₂ CO ₃	53.2 for 1kg	1kg	53.2
	Energy cost	0.07 for 1 KW·h	0.5	0.035
Cost				306.36

Calculation of costs:

At present, it is still in the stage of laboratory research, and there is no industrial data for reference. To simplify the cost calculation, only the costs of raw materials, chemical reagents and energy for the treatment of 1 kg spent NCM cathode material are considered. As all chemical reagents are provided by Chinese suppliers, the commodity price is converted from RMB (Υ) to USD (\$) according to the current exchange rate (December 2022).

(a)The cost of raw materials. The cost of spent NCM cathode materials is calculated at \$31.06 /kg.

(b)The cost of reagents. According to the price and dosage of the reagents listed in Table S3, the cost of reagents for the recovery process is calculated as follow.

1- Leaching process:

2- Regeneration process:

(c)The cost of energy. According to Table S3, the cost of energy for the recovery process is calculated as follow.

$$0.07/\text{ KW} + 0.09 \text{ KW} + 0.07/\text{kg} = 0.5 = 0.0413$$

The total costs:

31.06 + 222.05 + 53.2 + 0.0413 = 306.36

Calculation of benefits and profits: When recycling of 1 kg of spent NCM523 cathode

materials, 0.962 kg regenerated NCM523 can be obtained and 1 kg of NCM523 cathode

material is 893.75\$, the benefits and profits are calculated as follows.

Benefits:

893.75\$/kg*0.962 kg=859.79 \$

Profits:

\$859.79 - \$306.36 = 553.43\$

Methods	Chemicals	Energy	Leaching efficiencies		
	consumption	Consumption	Leaching efficiencies	Kel.	
	2mol/L H ₂ SO ₄ ,1-time		Over 90% of Li Ni Co	Thia	
	theoretical dosage	200rpm,65°C,1h	and Mn	work	
	ofGSH,10:1 of LS			WUIK	
Inorgani	4mol/L H ₂ SO ₄ , 2 times		08% Ni 00% Co and		
morgani	theoretical dosage of H ₂ O ₂ ,	500rpm,90°C, 2h	9070 IN1,9970 CO allu 8404 Mm	[1]	
c	8:1 of LS		0470 WIII		
aciu	1mol/L H ₂ SO ₄ , 0.075mol/L	05°C 4h	96.7% Li, 96.4%	[2]	
	NaHSO ₃ , 20:1 of LS	95 C, 41	Ni,91.6%Co,87.9%Mn		
	$3 \text{ mol/L H}_2\text{SO}_4, 5\%$ ethanol,	00%C 21	Over 000/ of Liand Co	[2]	
	20:1 of LS	90°C, 3h	Over 99% of Li and Co	[3]	
	3.5 mol/L acetic acid, 40 g/L,	60°C 00min	99.97 %Li,92.67 %Ni,	Г 4 Э	
	4% H ₂ O ₂ (volume fraction)	00 C, 90mm	93.62 %Co,96.32 %Mn	[+]	
Organic	1.0 mol/L citric acid, 8%	70 min 70 °C	$O_{\rm War} 0.00/$ of Li and Ca	[5]	
acid	H ₂ O ₂ , S/L of 40:1,	70 mm ,70 °C	Over 99% of Li and Co		
	0.075 mol/L benzenesulfonic	80 min 00 %C	00 500/ 1: 0(520/ C-	[[]]	
	acid, 3% H ₂ O ₂ , S/L of 15:1,	80 min ,90 °C	99.38% L1, 90.33%C0	[0]	
	1.5 mol/L NH ₃ H ₂ O, 1 mol/L		(0.520/1:1000/N)		
	(NH ₄) ₂ SO ₃ and NH ₄ HCO ₃ ,	180 min, 60 °C	60.53% L1, 100%N1,	[7]	
Alkaline	S/L of 20:1,		80.99% Co, 100%Cu		
leaching	6 mol/L NH ₃ H ₂ O, 0.5 mol/L		00.20/ I: 1000/ C-	[8]	
	NH ₄ Cl, 0.5 mol/L,	30min, 150 °C	90.5% L1, 100% C0,		
	(NH ₄) ₂ SO ₃ , S/L of 10:1,		98.3% NI		

Table S9 The comparison of different methods for recycling of spent cathode material

References

- Y. Yang, G. Huang, S. Xu, Y. He, X. Liu, Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries, Hydrometallurgy, 165 (2016) 390-396.
- [2] P. Meshram, B.D. Pandey, T.R. Mankhand, Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching, Chemical Engineering Journal, 281 (2015) 418-427.
- [3] J. Zhao, B. Zhang, H. Xie, J. Qu, X. Qu, P. Xing, H. Yin, Hydrometallurgical recovery of spent cobalt-based lithium-ion battery cathodes using ethanol as the reducing agent, Environ Res, 181 (2020) 108803.
- [4] W. Gao, J. Song, H. Cao, X. Lin, X. Zhang, X. Zheng, Y. Zhang, Z. Sun, Selective recovery of valuable metals from spent lithium-ion batteries – Process development and kinetics evaluation, Journal of Cleaner Production, 178 (2018)

833-845.

- [5] M. Yu, Z. Zhang, F. Xue, B. Yang, G. Guo, J. Qiu, A more simple and efficient process for recovery of cobalt and lithium from spent lithium-ion batteries with citric acid, Separation and Purification Technology, 215 (2019) 398-402.
- [6] Y. Fu, Y. He, L. Qu, Y. Feng, J. Li, J. Liu, G. Zhang, W. Xie, Enhancement in leaching process of lithium and cobalt from spent lithium-ion batteries using benzenesulfonic acid system, Waste Manag, 88 (2019) 191-199.
- [7] C. Wu, B. Li, C. Yuan, S. Ni, L. Li, Recycling valuable metals from spent lithiumion batteries by ammonium sulfite-reduction ammonia leaching, Waste Manag, 93 (2019) 153-161.
- [8] S. Wang, C. Wang, F. Lai, F. Yan, Z. Zhang, Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts, Waste Manag, 102 (2020) 122-130.