Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information of

Conversion of Biomass-derived Sugars to 1,1,2-Trialkoxyethane via [2+4]

Retro-aldol Reaction over Alkaline and Alkaline Earth Metal Salt of

Phosphotungstic Acid

Tihang Liu [a], Jiangang Wang [a], Hongyou Cui [a]*, Jinghua Wang [a, b] *

a School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China.

b Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, Zaozhuang University,

Zaozhuang, 277160, China.

Email: cuihy@sdut.edu.cn

wangjh720422@126.com

Tables

Table S1 Comparison of the specific surface area of cesium phosphotungstates with literature results

results		
Catalyst	Specific surface area, m ² /g	Ref
HPW	8	1
HPW	3.9	2
Cs ₂ HPW	3.3	2
Cs ₂ HPW	26	3
$Cs_{2.5}H_{0.5}PW$	13.4	2
$Cs_{2.5}H_{0.5}PW$	110	4
$Cs_{2.5}H_{0.5}PW$	83	3
$Cs_{2.5}H_{0.5}PW$	128	5
Cs ₃ PW	127	2
Cs ₂ HPW	74.24	This work

Table S1 Comparison of the specific surface area of cesium phosphotungstates with literature

- 1. H. Yuan and Q. Shu, *Applied Mechanics and Materials*, 2013, **291**, 300-306.
- M. J. da Silva, N. P. G. Lopes, S. O. Ferreira, R. C. Da Silva, R. Natalino, D. M. Chaves and M. G. Texeira, *Chemical Papers*, 2020, 75, 153-168.
- 3. M. J. da Silva, A. A. Rodrigues and N. P. G. Lopes, *Chemistry*, 2023, 5, 662-690.
- S. Sandesh, P. Manjunathan, A. B. Halgeri and G. V. Shanbhag, *RSC Advances*, 2015, 5, 104354-104362.
- 5. M. Kimura, T. Nakato and T. Okuhara, *Applied Catalysis A: General*, 1997, 165, 227-240.

Figures

Fig. S1 A typical gas chromatogram of the reaction product

Fig. S2 EDS mapping of the fresh and spent Cs₂HPW catalysts

Fig. S3 EDS spectra of the fresh and spent Cs₂HPW catalysts

- Fig. S4 N_2 adsorption-desorption isotherms and pore size distribution of HPW and $Cs_xH_{3-x}PW$
- Fig. S5 GC-MS spectra of the reaction product of glucose conversion in 1-propanol
- Fig. S6 GC-MS spectra of the reaction product of glucose conversion in 2-propanol
- Fig. S7 GC-MS spectra of the reaction product of glucose conversion in 1-butanol

Fig. S8 TG curves of the $Cs_xH_{3-x}PW$ samples

Fig. S9 Effect of glucose concentration

Fig. S10 Color change of reaction mixture with different glucose concentration

Fig. S1 A typical gas chromatogram of the reaction product

Fig. S2 EDS mapping of the fresh Cs_2HPW catalyst (left) and the spent Cs_2HPW catalyst (right)

Fig. S3 EDS spectra of the fresh Cs_2HPW catalyst (left) and the spent catalyst Cs_2HPW (right)

Fig. S4 N₂ adsorption-desorption isotherms and pore size distribution of HPW and Cs_xH_{3-x}PW

47.0000

(m/z)

Counts vs. 125 130

150 155 175 180

185 190

Propene

2-propanol

Diisopropyl ether

1-Propanol

1-isopropoxypropane

Fig. S6 GC-MS spectra of the reaction product of glucose conversion in 2-propanol

1,1,2-tri(1-butoxyl)ethane

Fig. S7 GC-MS spectra of the reaction product of glucose conversion in 1-butanol

Fig. S8 TG curves of the Cs_xH_{3-x}PW samples

Fig. S9 Effect of glucose concentration

Fig. S10 Color change of reaction mixture with different glucose concentration