Room-temperature fabrication of defective CoO_xH_y nanosheets with abundant oxygen vacancies and high porosity as efficient 5-hydroxymethylfurfural

oxidation electrocatalysts

Ruyi Zhong^a, Puwei Wu^a, Qi Wang^b, Xiting Zhang^a, Lei Du^a, Yunhua Liu^a, Huakang Yang^a, Meng Gu^b, Z. Conrad Zhang^c, Limin Huang^{d,*}, and Siyu Ye^{a,*}

^aHuangpu Hydrogen Energy Innovation Center/Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China.

^bDepartment of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China.

^cDalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China.

^dDepartment of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P.R. China.

* Corresponding author: huanglm@sustech.edu.cn (L.-M. Huang); siyu.ye@gzhu.edu.cn (S. Ye)

Catalyst	$R_{s}\left(\Omega\right)$	$R_{ct}\left(\Omega ight)$	CPE-T (F)	CPE-P
CoO _x H _y	11.6	36.7	0.0006	0.80
CoO _x H _y -MA	10.9	8.1	0.0035	0.88
CoO _x H _y -BH	10.9	15.1	0.0026	0.77
CoO _x H _y -MA/BH	12.6	11.1	0.0022	0.81

Table S1. The fitted parameters of Nyquist plots of CoO_xH_y , CoO_xH_y -MA, CoO_xH_y -BH, and CoO_xH_y -MA/BH.

Figure S1. (a, e, i, m) The HAADF-STEM images, and the corresponding EDS mappings of (b-d) Co_3O_4 -300, (f-h) Co_3O_4 -300-MA, (j-l) Co_3O_4 -300-BH, and (n-p) Co_3O_4 -300-MA/BH. The Co, O, and C elements were represented in the color of magenta, blue, and green, respectively.

Figure S2. HRTEM images with increased magnifications of (a-c) Co_3O_4 -300-MA, (d-f) Co_3O_4 -300-MA, and (g-i) Co_3O_4 -300-MA/BH.

 $\label{eq:Figure S3} \textbf{Figure S3}. \ TGA/DTG \ profiles \ of \ CoO_xH_y, \ CoO_xH_y-MA, \ CoO_xH_y-BH, \ and \ CoO_xH_y-MA/BH.$

Figure S4. XRD patterns of CoO_xH_y , CoO_xH_y -MA, CoO_xH_y -BH, and CoO_xH_y -MA/BH.

Figure S5. FTIR spectra of CoO_xH_y , CoO_xH_y -MA, CoO_xH_y -BH, and CoO_xH_y -MA/BH.

Figure S6. XPS (a) Co 2p and (b) O 1s spectra of Co₃O₄-300, Co₃O₄-300-MA, Co₃O₄-300-BH, and Co₃O₄-300-MA/BH.

Figure S7. EPR signals against magnetic field strength of CoO_xH_y , CoO_xH_y -MA, CoO_xH_y -BH, and CoO_xH_y -MA/BH.

Figure S8. XPS N 1s spectra of CoO_xH_y -MA, CoO_xH_y -MA/BH, Co_3O_4 -300-MA, and Co_3O_4 -300-MA/BH.

Figure S9. CVs at different scanning rates from 10 to 50 mV s⁻¹ of (a) CoO_xH_y , (b) CoO_xH_y -MA, (c) CoO_xH_y -BH, and (d) CoO_xH_y -MA/BH.

Figure S10. The HMFOR LSVs of CoO_xH_y -MA with different loadings on the glassy carbon electrode in 1 M KOH solution containing 5 mM HMF at a scanning rate of 5 mV s⁻¹.

Figure S11. The HMF and OER performance of CoO_xH_y , CoO_xH_y -MA, CoO_xH_y -BH, and CoO_xH_y -MA/BH after normalization to their electrochemical surface area.

Figure S13. (a, b, c) The conversion of HMF and the yields of oxidation products, and (d, e, f) the corresponding Faradaic efficiency of CoO_xH_y -MA in 1.0 M KOH containing 5 mM HMF at different potentials of (a, d) 1.47, (b, e) 1.52, and (c, f) 1.57 V, respectively.

Figure S14. DFT-calculated adsorption configurations for Co_3O_4 catalysts: (a, b, c) (3 1 1) surface, (d, e, f) in the presence of surface oxygen vacancy (V_0) site, (g, h, i) in the presence of chemisorbed methylamine (MA) molecule, and (j, k, l) in the presence of V_0 and MA. (b, d, g, j) represent the adsorption behavior of HMF starting from its -CHO group, and (c, f, i, l) represent the adsorption behavior of HMF starting from its -C-OH group.