SUPPORTING INFORMATION

Visible Light-Induced Synthesis of 1,3-Disubstituted Bicyclo-[1.1.1]pentane Ketones via Cooperative Photoredox and *N*-Heterocyclic Carbene Catalysis

Yan Gao, Zicong Zheng, Yu Zhu, Wenhao Xu, Yu Zhou, Chuanming Yu, and Xinpeng Jiang*

Contents

1. General information	S2
2. Preparation of the solution of [1.1.1]propellane	S2
3. General procedure	S2
4. Gram-scale experiment	S3
5. Mechanistic studies	S3
6. Characterization of products	S7
7. Reference	S19
8. Copies of ¹ H, ¹⁹ F, and ¹³ C NMR spectra of all products.	S20

1. General information

General remarks. Reactions were performed under an Ar atmosphere using pre-dried glassware. Thin-layer chromatography (TLC) was conducted on plates (GF254) supplied by Yantai Chemicals (China). Column chromatography was performed on silica gel (300-400 mesh).

Materials. Compounds **1s**,^[1] **1ab-1ac**,^[2] (**3b-3l**, **3o-3q**),^[3] **3m**,^[4] **3n**,^[5] (NHC **A**, **F**, and **G**),^[6] and (NHC **B** and **C**)^[7] were prepared using reported procedures. Other compounds were purchased from Energy Chemical or Bidepharm and used without further purification.

Instrumentation. NMR spectra were recorded using Bruker Avance III 400 MHz or Bruker Avance III 600 MHz spectrometers. Chemical shifts (δ) were reported in ppm relative to the residual solvent signal (CDCl₃ δ = 7.26 for ¹H NMR and δ = 77.0 for ¹³C NMR). Multiplicities are given as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), td (triplet of doublets), or m (multiplet). Melting points were determined using a Büchi B-540 capillary melting point apparatus. HRMS spectra were recorded on an electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) mass spectrometer. Electron spin resonance (ESR) spectra were recorded with a JEOL JES FA200 (Xband). The UV-Vis absorption spectra were measured on a SHIMADZU UV-2550 spectrometer. Emission intensities results were monitored by an F-7000 FL spectrophotometer.

2. Preparation of the solution of [1.1.1]propellane

A solution of *n*-BuLi (48 mL, 120 mmol, 2.0 equiv., 2.5 M in hexane) was added dropwise to a suspension of 1,1-dibromo-2,2-bis(chloromethyl)cyclopropane (60 mmol) in anhydrous dibutyl ether (60 mL) under argon at -78 °C. After the addition was complete, the mixture was allowed to warm to 0 °C and stirred for 2 h before distillation under vacuum. The concentration can be measured by ¹H-NMR with 1,3,5-trimethoxybenzene as an internal standard (typically concentrations are 0.4-0.7 M).

3. General procedure

To a 10 mL seal tube equipped with a magnetic stir bar was added NHC G (12 mg, 0.03 mmol, 0.15 equiv.), DMAP (12 mg, 0.1 mmol, 0.5 equiv.), Ir(dtbbpy)(ppy)₂PF₆ (5 mg, 0.005 mmol, 2.5

mol %), **1** (if solid) (0.28 mmol, 1.4 equiv.), and **3** (if solid) (0.4 mmol, 2.0 equiv.). The tube was sealed, evacuated, and backfilled with argon three times, then MeOH-H₂O = 4:1 (2.0 mL), **1** (if liquid) (0.28 mmol, 1.4 equiv.), **3** (if liquid) (0.4 mmol, 2.0 equiv.), and **2** (0.2 mmol, 1.0 equiv.) were sequentially added. The resulting solution was irradiated by a 40 W Kessil lamp (456 nm, blue light, third gear) with stirring at a distance of 5 cm (with cooling by a fan) at 30 °C for about 12 h. The mixture was diluted with EtOAc (15 mL), then washed with water (10 mL) and brine (10 mL). The organic phase was dried over Na₂SO₄, filtered, and then concentrated under reduced pressure, purified by column chromatography on silica gel (petroleum ether/EtOAc) to afford the desired product **4**.

4. Gram-scale experiment

To a 100 mL three-necked flask equipped with a magnetic stir bar was added NHC **G** (373 mg, 0.9 mmol, 0.15 equiv.), DMAP (367 mg, 3 mmol, 0.5 equiv.), $Ir(dtbpy)(ppy)_2PF_6$ (55 mg, 0.06 mmol, 1 mol %), **1a** (8.4 mmol, 1.4 equiv.) sequentially under argon atmosphere, then MeOH-H₂O = 4:1 (50.0 mL), **3a** (12 mmol, 2.0 equiv.), and **2** (6 mmol, 1.0 equiv.) were sequentially added. The resulting solution was irradiated by two 40 W Kessil lamps (456 nm, blue light, third gear) with stirring at a distance of 5 cm (with cooling by a fan) at 30 °C for about 12 h. The mixture was diluted with EtOAc (30 mL), then washed with water (30 mL) and brine (30 mL). The organic phase was dried over Na₂SO₄, filtered, and then concentrated under reduced pressure, purified by column chromatography on silica gel (petroleum ether/EtOAc) to afford the desired product **4a**.

5. Mechanistic studies

5.1 ESR experiments

Electron spin resonance (ESR) spectra were recorded with a JEOL JES FA200 (X-band). The sample was bubbled with Ar for over 5 min, then a small amount of the sample was transferred to a capillary under Ar, and ESR spectra were recorded under different conditions. ESR conditions: frequency (9.228 GHz), power (1 mW), modulation width (0.1 mT), center field (329 mT), amplitude (2 mT), sweep width (5 mT), sweep time (2 min), time constant (0.03 s).

A mixture (20 uL) of **1a** (140 mM), **2** (100 mM), **3a** (200 mM), PC-I (2.5 mol%), NHC **G** (15 mol%), 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO; 100 mM), and DMAP (50 mM) in MeOH: $H_2O = 4:1$ was transferred to a capillary tube, then the capillary tube was transferred to a quartz tube, the quartz tube was then placed in the ESR test cavity. After the mixture was irradiated with visible light (>420 nm) for 2 min, a composite spectrum was recorded with two sextet signals, one was a Breslow

intermediate **II** radical with g = 2.0054, $A_N = 1.508$ mT, $A_H = 1.948$ mT, the other carbon-centered radical with g = 2.0051, $A_N = 1.526$ mT, $A_H = 2.227$ mT was supposed to be an intermediate of the carbon-centered radical **V** (Figure **S1**).

Figure S1. (Black line) ESR spectra for a mixture of 1a (140 mM), 2 (100 mM), 3a (200 mM), PC-I (2.5 mol%), NHC G (15 mol%), 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO; 100 mM), and DMAP (50 mM) in MeOH: $H_2O = 4:1$. (Red line) Stimulated spectra.

A mixture (20 uL) of **1a** (140 mM), **3a** (200 mM), PC-I (2.5 mol%), NHC G (15 mol%), 5,5dimethyl-1-pyrroline *N*-oxide (DMPO; 100 mM), and DMAP (50 mM) in MeOH: $H_2O = 4:1$ was transferred to a capillary tube, then the capillary tube was transferred to a quartz tube, the quartz tube was then placed in the ESR test cavity. After the mixture was irradiated with visible light (>420 nm) for 2 min, a sextet signal was recorded, with a g = 2.0051, $A_N = 1.529$ mT, $A_H = 2.239$ mT, which referred to be a carbon-centered radical IV (Figure S2).

Figure S2. (Black line) ESR spectra for a mixture of **1a** (140 mM), **3a** (200 mM), PC-I (2.5 mol%), NHC G (15 mol%), 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO; 100 mM), and DMAP (50 mM) in MeOH: $H_2O = 4:1$. (Red line) Stimulated spectra.

A mixture (20 uL) of 1a (140 mM), 2 (100 mM), PC-I (2.5 mol%), NHC G (15 mol%), 5,5-

dimethyl-1-pyrroline *N*-oxide (DMPO; 100 mM), and DMAP (50 mM) in MeOH : $H_2O = 4:1$ was transferred to a capillary tube, then the capillary tube was transferred to a quartz tube, the quartz tube was then placed in the ESR test cavity. After the mixture was irradiated with visible light (>420 nm) for 2 min, a very weak sextet signal was recorded, with a g = 2.0054, $A_N = 1.508$ mT, $A_H = 1.968$ mT, which was coincident with a Breslow intermediate II radical (Figure S3).

Figure S3. (Black line) ESR spectra for a mixture of 1a (140 mM), 2 (100 mM), PC-I (2.5 mol%), NHC G (15 mol%), 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO; 100 mM), and DMAP (50 mM) in MeOH:H₂O = 4:1. (Red line) Stimulated spectra.

5.2 UV-Vis absorption and emission spectra

The UV-Vis absorption spectra of Breslow Intermediate I (Int. I) and $Ir(ppy)_2(dtbbpy)PF_6$ (PC-I) were measured on a SHIMADZU UV-2550 spectrometer under reaction concentration in DMSO. The emission spectra of PC-I (2.5×10^{-4} M in DMSO) upon excitation at 550 nm were recorded (Figure S4, orange dashed line). In addition, the mixture of Int. I (0.14 M) and diazo ester **3a** (0.2 M) did not exhibit a significant bathochromic shift in the absorption, excluding the possibility of the formation of EDA complex (Figure S5).

Figure S4. UV-Vis absorption and emission spectra (UV-Vis absorption spectra of Int. I and PC-I. Emission spectrum of PC-I).

Figure S5. UV-Vis absorption spectra (UV-Vis absorption spectra of Int. I, 3a, and the mixture of Int. I and 3a).

5.3 Stern-Volmer quenching experiments

Emission intensities results were monitored by an F-7000 FL spectrophotometer. All $Ir(ppy)_2(dtbbpy)PF_6$ solutions were excited at 410 nm and the emission intensity was collected at 500-700 nm (Figure S6). In general, $Ir(ppy)_2(dtbbpy)PF_6$ (3×10⁻⁵ M in DMSO) was added to the relative quencher in a 4.5 cm quartz cuvette. The results showed that the Breslow Intermediate I could quench the photoexcited $Ir(ppy)_2(dtbbpy)PF_6$, while diazo ester **3a** was less effective. And the fluorescence intensity of PC-I exhibited linear attenuation with increases in the concentration of Int. I.

Figure S6. Stern-Volmer quenching experiments of Int. I and 3a as the quencher.

6. Characterization of products

Product **4a** was isolated as a yellow oil (38.4 mg, 66%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94–7.88 (m, 2H), 7.43–7.36 (m, 2H), 4.15 (q, *J* = 7.0 Hz, 2H), 2.57 (s, 2H), 2.27 (s, 6H), 1.27 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.79, 170.85, 139.30, 134.79, 130.24, 128.75, 60.40, 54.20, 44.57, 37.05, 36.73, 14.29. HRMS (ESI) m/z: calcd for C₁₆H₁₈ClO₃ [M+H]⁺ 293.0939, found: 293.0948.

Ethyl 2-(3-(4-methylbenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4b)

Product **4b** was isolated as a yellow oil (30.3 mg, 56%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 4.15 (q, *J* = 7.0 Hz, 2H), 2.57 (s, 2H), 2.39 (s, 3H), 2.27 (s, 6H), 1.27 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 196.65, 170.98, 143.61, 134.03, 129.08, 128.99, 60.35, 54.20, 44.63, 37.18, 36.58, 21.59, 14.29. HRMS (ESI) m/z: calcd for C₁₇H₂₁O₃ [M+H]⁺ 273.1485, found: 273.1494.

Ethyl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4c)

Product **4c** was isolated as a yellow oil (41.8 mg, 76%). ¹H NMR (400 MHz, Chloroform-d) δ 8.08– 7.94 (m, 2H), 7.14–7.02 (m, 2H), 4.15 (q, J = 7.0 Hz, 2H), 2.57 (s, 2H), 2.27 (s, 6H), 1.26 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.37, 170.87, 165.51 (d, J = 254.8 Hz), 132.90 (d, J = 3.0 Hz), 131.48 (d, J = 9.2 Hz), 115.52 (d, J = 21.8 Hz), 60.37, 54.19, 44.53, 37.05, 36.68, 14.27. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.20. HRMS (ESI) m/z: calcd for C₁₆H₁₈FO₃ [M+H]⁺ 277.1234, found: 277.1245.

Ethyl 2-(3-benzoylbicyclo[1.1.1]pentan-1-yl)acetate (4d)

Product **4d** was isolated as a yellow oil (30.8 mg, 60%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02– 7.94 (m, 2H), 7.56–.50 (m, 1H), 7.46–7.40 (m, 2H), 4.15 (q, *J* = 7.0 Hz, 2H), 2.57 (s, 2H), 2.29 (s, 6H), 1.27 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 197.06, 170.93, 136.52, 132.80, 128.83, 128.39, 60.37, 54.20, 44.66, 37.15, 36.65, 14.30. HRMS (ESI) m/z: calcd for C₁₆H₁₉O₃ [M+H]⁺ 259.1329, found: 259.1332.

Ethyl 2-(3-(4-cyanobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4e)

Product **4e** was isolated as a white solid (31.5 mg, 56%). M.p.: 43-45 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 4.15 (q, J = 7.0 Hz, 2H), 2.58 (s, 2H), 2.29 (s, 6H), 1.27 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.80, 170.74, 139.52, 132.29, 129.13, 117.86, 116.10, 60.45, 54.17, 44.61, 36.93, 36.90, 14.28. HRMS (ESI) m/z: calcd for C₁₇H₁₈NO₃ [M+H]⁺ 284.1281, found: 284.1260.

Ethyl 2-(3-([1,1'-biphenyl]-4-carbonyl)bicyclo[1.1.1]pentan-1-yl)acetate (4f)

Product **4f** was isolated as a yellow oil (39.9 mg, 60%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 (d, *J* = 7.8 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 7.6 Hz, 2H), 7.50–7.35 (m, 3H), 4.17 (q, *J* = 7.2 Hz, 2H), 2.60 (s, 2H), 2.32 (s, 6H), 1.29 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 196.58, 170.94, 145.52, 139.88, 135.21, 129.44, 128.90, 128.16, 127.20, 127.05, 60.37, 54.23, 44.71, 37.15, 36.67, 14.30. HRMS (ESI) m/z: calcd for C₂₂H₂₃O₃ [M+H]⁺ 335.1642, found: 335.1650.

Ethyl 2-(3-(4-(methylthio)benzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4g)

Product **4g** was isolated as a yellow oil (32.6 mg, 54%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93–7.87 (m, 2H), 7.26–7.21 (m, 2H), 4.16 (q, *J* = 7.0 Hz, 2H), 2.57 (s, 2H), 2.51 (s, 3H), 2.27 (s, 6H), 1.27 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.94, 170.95, 145.70, 132.85, 129.29, 124.94, 60.38, 54.24, 44.58, 37.18, 36.65, 14.77, 14.32. HRMS (ESI) m/z: calcd for C₁₇H₂₁O₃S [M+H]⁺ 305.1206, found: 305.1212.

Ethyl 2-(3-(4-(trifluoromethoxy)benzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4h)

Product **4h** was isolated as a yellow oil (42.2 mg, 62%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06– 8.00 (m, 2H), 7.28–7.23 (m, 2H), 4.15 (q, J = 7.0 Hz, 2H), 2.58 (s, 2H), 2.28 (s, 6H), 1.27 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.47, 170.85, 152.41 (d, J = 1.8 Hz), 134.76, 130.86, 120.30 (q, J = 257.0 Hz), 120.26, 60.42, 54.22, 44.58, 37.06, 36.79, 14.29. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -57.65. HRMS (ESI) m/z: calcd for C₁₇H₁₈FO₄ [M+H]⁺ 343.1152, found: 343.1162.

Ethyl 2-(3-(4-(benzyloxy)benzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4i)

Product **4i** was isolated as a yellow oil (37.7 mg, 52%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02– 7.95 (m, 2H), 7.45–7.30 (m, 5H), 7.02–6.95 (m, 2H), 5.12 (s, 2H), 4.16 (q, J = 7.0 Hz, 2H), 2.57 (s, 2H), 2.27 (s, 6H), 1.28 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.40, 170.97, 162.45, 136.18, 131.19, 129.77, 128.64, 128.17, 127.38, 114.48, 70.09, 60.33, 54.22, 44.51, 37.17, 36.56, 14.28. HRMS (ESI) m/z: calcd for C₂₃H₂₅O₄ [M+H]⁺ 365.1747, found: 365.1753.

Ethyl 2-(3-(4-acetylbenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4j)

Product **4j** was isolated as a white solid (25.6 mg, 43%). M.p.: 68-70 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10–7.93 (m, 4H), 4.15 (q, J = 7.0 Hz, 2H), 2.63 (s, 3H), 2.58 (s, 2H), 2.29 (s, 6H), 1.27 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 197.43, 196.71, 170.88, 139.80, 139.70, 128.93, 128.28, 60.43, 54.13, 44.72, 37.00, 36.78, 26.83, 14.28. HRMS (ESI) m/z: calcd for C₁₈H₂₁O₄ [M+H]⁺ 301.1434, found: 301.1422.

Ethyl 2-(3-(3-bromobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4k)

Product **4k** was isolated as a yellow oil (40.2 mg, 60%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09–8.05 (m, 1H), 7.92–7.85 (m, 1H), 7.68–7.63 (m, 1H), 7.31 (t, *J* = 8.0 Hz, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 2.57 (s, 2H), 2.28 (s, 6H), 1.27 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ

195.72, 170.86, 138.22, 135.67, 131.77, 130.01, 127.35, 122.73, 60.43, 54.22, 44.56, 37.04, 36.77, 14.30. HRMS (ESI) m/z: calcd for C₁₆H₁₈BrO₃ [M+H]⁺ 337.0434, found: 337.0442.

Ethyl 2-(3-(3-methoxybenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (41)

Product **4I** was isolated as a yellow oil (30.0 mg, 52%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 7.6 Hz, 1H), 7.50–7.44 (m, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.08 (dd, *J* = 8.2, 2.6 Hz, 1H), 4.15 (q, *J* = 7.0 Hz, 2H), 3.83 (s, 3H), 2.57 (s, 2H), 2.28 (s, 6H), 1.27 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 196.83, 170.91, 159.65, 137.80, 129.36, 121.56, 119.28, 113.11, 60.37, 55.36, 54.25, 44.69, 37.15, 36.59, 14.30. HRMS (ESI) m/z: calcd for C₁₇H₂₁O₄ [M+H]⁺ 289.1434, found: 289.1439.

Ethyl 2-(3-(2-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4m)

Product **4m** was isolated as a yellow oil (35.8 mg, 65%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63–7.56 (m, 1H), 7.51–7.41 (m, 1H), 7.21–7.15 (m, 1H), 7.13–7.06 (m, 1H), 4.13 (q, J = 7.0 Hz, 2H), 2.54 (s, 2H), 2.17 (s, 6H), 1.25 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 197.46 (d, J=2.0 Hz), 170.90, 160.29 (d, J = 253.8 Hz), 133.55 (d, J = 8.8 Hz), 130.24 (d, J = 3.4 Hz), 126.22 (d, J = 15.8 Hz), 124.19 (d, J = 3.6 Hz), 116.34 (d, J = 22.4 Hz), 60.33, 52.87 (d, J = 3.2 Hz), 45.41, 37.21, 35.89 (d, J = 2.8 Hz), 14.28. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.53. HRMS (ESI) m/z: calcd for C₁₆H₁₈FO₃ [M+H]⁺ 277.1234, found: 277.1244.

Ethyl 2-(3-(3,5-difluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4n)

Product **4n** was isolated as a yellow oil (37.5 mg, 64%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50– 7.41 (m, 2H), 7.02–6.95 (m, 1H), 4.15 (q, J = 7.0 Hz, 2H), 2.58 (s, 2H), 2.28 (s, 6H), 1.27 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.47 (t, J = 2.2 Hz), 170.76, 162.82 (dd, J = 250.8, 11.8 Hz), 139.15 (t, J = 7.6 Hz), 111.72 (dd, J = 25.0, 7.0 Hz), 108.14 (t, J = 25.4 Hz), 60.46, 54.23, 44.52, 36.95, 36.80, 14.29. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -107.97. HRMS (ESI) m/z: calcd for C₁₆H₁₇F₂O₃[M+H]⁺ 295.1140, found: 295.1144.

Ethyl 2-(3-(3,5-dimethylbenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (40)

Product **40** was isolated as a yellow oil (23.2 mg, 41%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59–7.53 (m, 2H), 7.21–7.13 (m, 1H), 4.16 (q, *J* = 7.0 Hz, 2H), 2.57 (s, 2H), 2.35 (s, 6H), 2.27 (s, 6H), 1.28 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 197.55, 171.01, 138.02, 136.74, 134.45, 126.56, 60.36, 54.24, 44.72, 37.19, 36.56, 21.23, 14.29. HRMS (ESI) m/z: calcd for C₁₈H₂₃O₃ [M+H]⁺ 287.1642, found: 287.1643.

Ethyl 2-(3-(quinoline-6-carbonyl)bicyclo[1.1.1]pentan-1-yl)acetate (4p)

Product **4p** was isolated as a yellow oil (30.2 mg, 49%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.05–8.94 (m, 1H), 8.54–8.43 (m, 1H), 8.31–8.20 (m, 2H), 8.13 (d, *J* = 8.8 Hz, 1H), 7.51–7.43 (m, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 2.61 (s, 2H), 2.37 (s, 6H), 1.28 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 196.48, 170.93, 152.54, 149.88, 137.55, 134.41, 130.28, 129.92, 128.29, 127.39, 121.89, 60.43, 54.36, 44.79, 37.08, 36.82, 14.31. HRMS (ESI) m/z: calcd for C₁₉H₂₀NO₃ [M+H]⁺ 310.1438, found: 310.1449.

Ethyl 2-(3-(2-naphthoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4q)

Product **4q** was isolated as a yellow oil (27.0 mg, 44%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.53 (s, 1H), 8.02 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.90-7.83 (m, 2H), 7.62–7.51 (m, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 2.62 (s, 2H), 2.37 (s, 6H), 1.29 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 197.00, 170.98, 135.39, 133.94, 132.40, 130.65, 129.56, 128.41, 128.29, 127.75, 126.69, 124.48, 60.39, 54.39, 44.80, 37.19, 36.72, 14.31. HRMS (ESI) m/z: calcd for C₂₀H₂₁O₃[M+H]⁺ 309.1485, found: 309.1492.

Ethyl 2-(3-(2,3-dihydrobenzo[b][1,4]dioxine-6-carbonyl)bicyclo[1.1.1]pentan-1-yl)acetate (4r)

Product **4r** was isolated as a yellow oil (28.9 mg, 46%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58– 7.49 (m, 2H), 6.88 (d, *J* = 9.0 Hz, 1H), 4.33–4.23 (m, 4H), 4.15 (q, *J* = 7.0 Hz, 2H), 2.56 (s, 2H), 2.25 (s, 6H), 1.27 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.32, 170.98, 147.89, 143.16, 130.32, 123.13, 118.43, 117.10, 64.69, 64.10, 60.36, 54.28, 44.53, 37.22, 36.55, 14.31. HRMS (ESI) m/z: calcd for C₁₈H₂₁O₅[M+H]⁺ 317.1384, found: 317.1385.

Ethyl 2-(3-(1-methyl-1H-indole-3-carbonyl)bicyclo[1.1.1]pentan-1-yl)acetate (4s)

Product **4s** was isolated as a yellow solid (24.7 mg, 40%). M.p.: 92–94 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 10.29 (s, 1H), 8.50–8.27 (m, 1H), 7.32–7.24 (m, 3H), 4.18 (q, *J* = 7.0 Hz, 2H), 3.81 (s, 3H), 2.64 (s, 2H), 2.50 (s, 6H), 1.30 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 185.55, 170.83, 147.02, 137.15, 125.27, 123.71, 123.05, 122.35, 116.73, 108.88, 60.53, 55.34, 39.14, 36.96, 36.70, 31.10, 14.30. HRMS (ESI) m/z: calcd for C₁₉H₂₂NO₃ [M+H]⁺ 312.1594, found: 312.1595.

Ethyl 2-(3-(thiophene-3-carbonyl)bicyclo[1.1.1]pentan-1-yl)acetate (4t)

Product **4t** was isolated as a yellow oil (25.3 mg, 48%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (dd, J = 2.8, 1.2 Hz, 1H), 7.57 (dd, J = 5.0, 1.2 Hz, 1H), 7.29 (dd, J = 5.0, 2.8 Hz, 1H), 4.15 (q, J = 7.0 Hz, 2H), 2.57 (s, 2H), 2.24 (s, 6H), 1.27 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.16, 170.89, 140.89, 132.74, 127.55, 125.84, 60.37, 53.75, 44.53, 37.13, 36.28, 14.29. HRMS (ESI) m/z: calcd for C₁₄H₁₇O₃S [M+H]⁺ 265.0893, found: 265.0906.

Ethyl 2-(3-(1-methyl-3a,7a-dihydro-1H-indazole-3-carbonyl)bicyclo[1.1.1]pentan-1-yl)acetate (4u)

Product **4u** was isolated as a yellow oil (31.2 mg, 50%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.34 (d, *J* = 8.0 Hz, 1H), 7.45–7.38 (m, 2H), 7.34–7.27 (m, 1H), 4.21–4.10 (m, 5H), 2.60 (s, 2H), 2.34 (s, 6H), 1.29 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.12, 171.28, 141.34, 140.46, 126.74, 123.51, 123.48, 122.90, 109.05, 60.30, 53.74, 44.22, 37.53, 36.49, 36.42, 14.33. HRMS (ESI) m/z: calcd for C₁₈H₂₁N₂O₃[M+H]⁺ 313.1547, found: 313.1551.

Ethyl 2-(3-nicotinoylbicyclo[1.1.1]pentan-1-yl)acetate (4v)

Product **4v** was isolated as a yellow oil (26.8 mg, 52%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.22–9.17 (m, 1H), 8.76–8.71 (m, 1H), 8.20 (dt, J = 8.0, 1.8 Hz, 1H), 7.38 (dd, J = 8.0, 4.8 Hz, 1H), 4.14 (q, J = 7.0 Hz, 2H), 2.57 (s, 2H), 2.29 (s, 6H), 1.26 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.88, 170.71, 153.13, 150.13, 135.95, 132.00, 123.55, 60.41, 54.03, 44.54, 37.02, 36.91, 14.27. HRMS (ESI) m/z: calcd for C₁₅H₁₈NO₃ [M+H]⁺ 260.1281, found: 260.1294.

Ethyl 2-(3-(1-methyl-1H-pyrazole-3-carbonyl)bicyclo[1.1.1]pentan-1-yl)acetate (4w)

Product **4w** was isolated as a yellow oil (28.7 mg, 55%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 (d, J = 2.4 Hz, 1H), 6.75 (d, J = 2.4 Hz, 1H), 4.14 (q, J = 7.0 Hz, 2H), 3.94 (s, 3H), 2.54 (s, 2H), 2.24 (s, 6H), 1.26 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.99, 171.13, 150.43, 130.81, 107.74, 60.25, 53.60, 44.02, 39.53, 37.49, 36.43, 14.30. HRMS (ESI) m/z: calcd for C₁₄H₁₉N₂O₃ [M+H]⁺ 263.1390, found: 263.1397.

Adamantan-1-yl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4x)

Product **4x** was isolated as a yellow oil (54.0 mg, 71%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.08–7.95 (m, 2H), 7.10 (t, *J* = 8.0 Hz, 2H), 2.48 (s, 2H), 2.27 (s, 6H), 2.19–2.08 (m, 9H), 1.69–1.63 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.61, 169.99, 165.49 (d, *J* = 254.8 Hz), 132.87 (d, *J* = 3.0 Hz), 131.51 (d, *J* = 9.4 Hz), 115.53 (d, *J* = 21.8 Hz), 80.83, 54.18, 44.57, 41.45, 38.54, 36.92, 36.12, 30.76. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.17. HRMS (ESI) m/z: calcd for C₂₄H₂₈FO₃ [M+H]⁺ 383.2017, found: 383.2021.

Tert-butyl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4y)

Product **4y** was isolated as a yellow oil (40.6 mg, 67%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05–7.96 (m, 2H), 7.14–7.04 (m, 2H), 2.48 (s, 2H), 2.26 (s, 6H), 1.46 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.51, 170.19, 165.51 (d, *J* = 254.8 Hz), 132.94 (d, *J* = 3.0 Hz), 131.48 (d, *J* = 9.2 Hz), 115.52 (d, *J* = 21.8 Hz), 80.66, 54.20, 44.56, 38.44, 36.93, 28.17. ¹⁹F NMR (376 MHz,

Chloroform-*d*) δ -105.23. HRMS (ESI) m/z: calcd for C₁₈H₂₂FO₃ [M+H]⁺ 305.1547, found: 305.1566.

2,4-dimethylpentan-3-yl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4z)

Product **4z** was isolated as a yellow oil (34.5 mg, 50%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11– 7.93 (m, 2H), 7.18–7.01 (m, 2H), 4.62 (t, *J* = 6.2 Hz, 1H), 2.63 (s, 2H), 2.30 (s, 6H), 1.95–1.83 (m, 2H), 0.91–0.82 (m, 12H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.51, 171.06, 165.51 (d, *J* = 254.8 Hz), 132.84 (d, *J* = 3.0 Hz), 131.52 (d, *J* = 9.2 Hz), 115.55 (d, *J* = 21.8 Hz), 82.93, 54.30, 44.75, 37.04, 36.76, 29.26, 19.55, 17.32. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.13. HRMS (ESI) m/z: calcd for C₂₁H₂₈FO₃ [M+H]⁺ 347.2017, found: 347.1999.

Cyclohexyl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4aa)

Product **4aa** was isolated as a yellow oil (50.0 mg, 76%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07–7.95 (m, 2H), 7.16–7.04 (m, 2H), 4.83–4.74 (m, 1H), 2.56 (s, 2H), 2.28 (s, 6H), 1.91–1.82 (m, 2H), 1.76–1.69 (m, 2H), 1.58–1.51 (m, 1H), 1.44–1.23 (m, 5H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.51, 170.40, 165.52 (d, *J* = 254.8 Hz), 132.85 (d, *J* = 3.0 Hz), 131.52 (d, *J* = 9.4 Hz), 115.56 (d, *J* = 22.0 Hz), 72.89, 54.22, 44.56, 37.53, 36.82, 31.75, 25.30, 23.76. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.12. HRMS (ESI) m/z: calcd for C₂₀H₂₄FO₃ [M+H]⁺ 331.1704, found: 331.1678.

Benzyl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4ab)

Product **4ab** was isolated as a yellow oil (43.0 mg, 64%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03–7.94 (m, 2H), 7.40–7.33 (m, 5H), 7.14–7.06 (m, 2H), 5.15 (s, 2H), 2.64 (s, 2H), 2.25 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.32, 170.72, 165.54 (d, J = 254.8 Hz), 135.86, 132.85 (d, J = 3.0 Hz), 131.51 (d, J = 9.2 Hz), 128.58, 128.44, 128.34, 115.53 (d, J = 21.8 Hz), 66.35, 54.21, 44.57, 37.07, 36.69. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.11. HRMS (ESI) m/z: calcd for C₂₁H₂₀FO₃ [M+H]⁺ 339.1391, found: 339.1395. 1-phenylethyl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4ac)

Product **4ac** was isolated as a yellow oil (53.3 mg, 76%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05–7.91 (m, 2H), 7.41–7.28(m, 5H), 7.15–7.04 (m, 2H), 5.93 (q, J = 6.2 Hz, 1H), 2.61 (s, 2H), 2.24 (s, 6H), 1.57 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.32, 170.12, 165.47 (d, J = 254.8 Hz), 141.36, 132.76 (d, J = 3.0 Hz), 131.48 (d, J = 9.2 Hz), 128.47, 127.96, 126.21, 115.50 (d, J = 21.8 Hz), 72.50, 54.17, 44.56, 37.31, 36.70, 22.08. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.08. HRMS (ESI) m/z: calcd for C₂₂H₂₁FNaO₃ [M+Na]⁺ 375.1367, found: 375.1371.

Thiophen-2-ylmethyl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4ad)

Product **4ad** was isolated as a yellow oil (34.1 mg, 52%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03–7.94 (m, 2H), 7.37–7.30 (m, 1H), 7.14–7.06 (m, 3H), 7.03–6.95 (m, 1H), 5.30 (s, 2H), 2.61 (s, 2H), 2.24 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.33, 170.57, 165.51 (d, *J* = 254.8 Hz), 137.78, 132.76 (d, *J* = 2.8 Hz), 131.52 (d, *J* = 9.2 Hz), 128.40, 126.93, 126.83, 115.54 (d, *J* = 21.8 Hz), 60.37, 54.19, 44.57, 37.01, 36.63. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.09. HRMS (ESI) m/z: calcd for C₁₉H₁₈FO₃S [M+H]⁺ 345.0955, found: 345.0954.

Tetrahydrofuran-3-yl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4ae)

Product **4ae** was isolated as a yellow oil (39.8 mg, 63%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.06–7.94 (m, 2H),7.16–7.03 (m, 2H), 5.35–5.24 (m, 1H), 3.95–3.77 (m, 4H), 2.59 (s, 2H), 2.27 (s, 6H), 2.21–2.13 (m, 1H), 2.03–1.96 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.27, 170.68, 165.49 (d, *J* = 254.8 Hz), 132.75 (d, *J* = 2.8 Hz), 131.47 (d, *J* = 9.4 Hz), 115.55 (d, *J* = 21.8 Hz), 74.92, 73.14, 66.94, 54.17, 44.58, 37.00, 36.57, 32.72. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 105.03. HRMS (ESI) m/z: calcd for C₁₈H₂₀FO₄ [M+H]⁺ 319.1340, found: 319.1345.

3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4af)

Product **4af** was isolated as a white solid (68.6 mg, 58%). M.p.: 42-44 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07–7.95 (m, 2H), 7.18–7.03 (m, 2H), 4.41 (td, J = 6.6, 2.4 Hz, 2H), 2.63 (s, 2H), 2.56–2.41 (m, 2H), 2.29 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.30, 170.56, 165.58 (d, J = 254.8 Hz), 132.78 (d, J = 3.0 Hz), 131.52 (d, J = 9.2 Hz), 115.58 (d, J = 21.8 Hz), 56.34, 54.16, 44.60, 36.72, 36.40, 30.53 (t, J = 21.8 Hz). ¹³C-NMR for CF₂CF₂CF₂CF₂CF₂CF₃ could not be assigned. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.49 – -80.97 (m, 3F), -105.05 (s, 1F), -112.56 – -114.70 (m, 2F), -121.24 – -122.12 (m, 2F), -122.24 – -123.22 (m, 2F), -123.30 – -124.69 (m, 2F), -125.92 – -126.32 (m, 2F). HRMS (ESI) m/z: calcd for C₂₂H₁₇F₁₄O₃ [M+H]⁺ 595.0949, found: 595.0954.

2-(trimethylsilyl)ethyl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4ag)

Product **4ag** was isolated as a yellow oil (43.7 mg, 62%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07–7.94 (m, 2H), 7.15–7.02 (m, 2H), 4.21–4.15 (m, 2H), 2.56 (s, 2H), 2.27 (s, 6H), 1.03–0.96 (m, 2H), 0.04 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.41, 171.08, 165.48 (d, J = 254.8 Hz), 132.81 (d, J = 3.2 Hz), 131.49 (d, J = 9.2 Hz), 115.51 (d, J = 21.8 Hz), 62.64, 54.17, 44.57, 37.10, 36.68, 17.45, -1.57. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.12. HRMS (ESI) m/z: calcd for C₁₉H₂₆FO₃Si [M+H]⁺ 349.1630, found: 349.1645.

But-2-yn-1-yl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4ah)

Product **4ah** was isolated as a yellow oil (43.7 mg, 73%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06–7.94 (m, 2H), 7.16–7.02 (m, 2H), 4.65 (s, 2H), 2.61 (s, 2H), 2.28 (s, 6H), 1.84 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.34, 170.30, 165.50 (d, J = 254.8 Hz), 132.79 (d, J = 3.0 Hz), 131.50 (d, J = 9.2 Hz), 115.54 (d, J = 21.8 Hz), 83.25, 73.03, 54.17, 52.72, 44.58, 36.69, 36.53, 3.59. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.08. HRMS (ESI) m/z: calcd for C₁₈H₁₈FO₃ [M+H]⁺ 301.1234, found: 301.1253.

(3R,5S,8R,9S,10S,13S,14S)-10,13-dimethyl-17-oxohexadecahydro-1H-

cyclopenta[a]phenanthren-3-yl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4am)

Product **4am** was isolated as a yellow oil (72.4 mg, 70%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11–7.89 (m, 2H), 7.18–6.98 (m, 2H), 4.79–4.64 (m, 1H), 2.54 (s, 2H), 2.42 (dd, J = 19.4, 8.8 Hz, 1H), 2.26 (s, 6H), 2.08–2.01 (m, 1H), 1.96–1.87 (m, 1H), 1.84–1.70 (m, 4H), 1.65–1.44 (m, 5H), 1.39–1.18 (m, 7H), 1.08–0.93 (m, 2H), 0.84 (s, 6H), 0.75–0.65 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 221.14, 195.43, 170.39, 165.48 (d, J = 254.8 Hz), 132.80 (d, J = 3.0 Hz), 131.48 (d, J = 9.2 Hz), 115.53 (d, J = 21.8 Hz), 73.64, 54.21, 54.18, 51.27, 47.70, 44.60, 44.50, 37.44, 36.76, 36.61, 35.77, 35.58, 34.94, 34.04, 31.44, 30.72, 28.20, 27.52, 21.70, 20.39, 13.74, 12.16. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.04. HRMS (ESI) m/z: calcd for C₃₃H₄₂FO₄ [M+H]⁺ 521.3062, found: 521.3062.

(*E*)-3,7-dimethylocta-2,6-dien-1-yl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4an)

Product **4an** was isolated as a yellow oil (54.3 mg, 71%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06–7.96 (m, 2H), 7.15–7.03 (m, 2H), 5.34 (t, *J* = 6.8 Hz, 1H), 5.07 (t, *J*=7.2 Hz, 1H), 4.61 (d, *J* = 7.2 Hz, 2H), 2.58 (s, 2H), 2.27 (s, 6H), 2.13–2.01 (m, 4H), 1.70 (s, 3H), 1.66 (s, 3H), 1.57 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.39, 170.92, 165.48 (d, *J* = 254.8 Hz), 142.48, 132.82 (d, *J* = 3.0 Hz), 131.81, 131.48 (d, *J* = 9.2 Hz), 123.60, 118.14, 115.51 (d, *J* = 21.8 Hz), 61.31, 54.19, 44.55, 39.46, 37.03, 36.70, 26.24, 25.61, 17.63, 16.44. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 105.14. HRMS (ESI) m/z: calcd for C₂₄H₃₀FO₃ [M+H]⁺ 385.2173, found: 385.2179.

2-((*1R*,5*S*)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)ethyl 2-(3-(4-fluorobenzoyl)bicyclo-[1.1.1]pentan-1-yl)acetate (4ao)

Product **4ao** was isolated as a yellow oil (33.0 mg, 42%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09–7.95 (m, 2H), 7.18–7.03 (m, 2H), 5.34–5.26 (m, 1H), 4.17–4.03 (m, 2H), 2.57 (s, 2H), 2.40–2.33 (m, 1H), 2.32–2.25 (m, 8H), 2.24–2.14 (m, 2H), 2.10–2.02 (m, 2H), 1.26 (s, 3H), 1.14 (d, J = 8.6 Hz, 1H), 0.82 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.46, 170.98, 165.52 (d, J =

254.8 Hz), 143.92, 132.82 (d, J = 3.2 Hz), 131.52 (d, J = 9.2 Hz), 118.81, 115.55 (d, J = 22.0 Hz), 62.70, 54.20, 45.57, 44.60, 40.64, 37.98, 37.00, 36.63, 35.97, 31.58, 31.30, 26.22, 21.08. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.09. HRMS (ESI) m/z: calcd for C₂₅H₃₀FO₃ [M+H]⁺ 397.2173, found: 397.2166.

4-(3-(2-ethoxy-2-oxoethyl)bicyclo[1.1.1]pentane-1-carbonyl)phenyl (*S*)-2-(6-methoxynaphth-alen-2-yl)propanoate (4ap)

With DMSO as the solvent, product **4ap** was isolated as a yellow oil (24.2 mg, 25%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02–7.93 (m, 2H), 7.79–7.71 (m, 3H), 7.51–7.46 (m, 1H), 7.19–7.13 (m, 2H), 7.11–7.01 (m, 2H), 4.19–4.07 (m, 3H), 3.92 (s, 3H), 2.57 (s, 2H), 2.26 (s, 6H), 1.70 (d, *J* = 7.0 Hz, 3H), 1.27 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.79, 172.64, 170.96, 157.80, 154.32, 134.70, 133.95, 133.85, 130.44, 129.28, 128.94, 127.46, 126.15, 125.95, 121.49, 119.20, 105.57, 60.42, 55.31, 54.19, 45.58, 44.58, 37.09, 36.66, 18.40, 14.30. HRMS (ESI) m/z: calcd for C₃₀H₃₁O₆ [M+H]⁺ 487.2115, found: 487.2133.

4-(3-(2-ethoxy-2-oxoethyl)bicyclo[1.1.1]pentane-1-carbonyl)phenyl isobutylphenyl)propanoate (4aq)

(S)-2-(4-

With DMSO as the solvent, product **4aq** was isolated as a yellow oil (38.4 mg, 42%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02–7.94 (m, 2H), 7.31–7.26 (m, 2H), 7.17–7.12 (m, 2H), 7.09–7.04 (m, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.95 (q, *J* = 7.2 Hz, 1H), 2.57 (s, 2H), 2.47 (dd, *J* = 7.2, 2.4 Hz, 2H), 2.27 (s, 6H), 1.91–1.82 (m, 1H), 1.61 (dd, *J* = 7.2, 2.6 Hz, 3H), 1.27 (t, *J* = 5.8 Hz, 3H), 0.91 (dd, *J* = 6.8, 2.6 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.81, 172.68, 170.96, 154.36, 140.98, 136.81, 133.91, 130.43, 129.56, 127.15, 121.49, 60.42, 54.19, 45.25, 45.00, 44.59, 37.09, 36.66, 30.15, 22.36, 18.40, 14.30. HRMS (ESI) m/z: calcd for C₂₉H₃₅O₅ [M+H]⁺ 463.2479, found: 463.2482.

7. Reference

- [1] X. Liu, X. Tian, J. Huang, Y. Qian, X. Xu, Z. Kang, W. Hu, Org. Lett. 2022, 24, 1027-1032.
- [2] A. Shi, K. Sun, X. Chen, L. Qu, Y. Zhao, B. Yu, Org. Lett. 2022, 24, 299-303.
- [3] X. Wang, Y. Sun, X.-Q. Yao, Y. Xu, J. Wang, Macromolecules 2022, 55, 8866-8874.
- [4] H. Guo, S. Zhang, X. Yu, X. Feng, Y. Yamamoto, M. Bao, ACS Catal. 2021, 11, 10789-10795.
- [5] B. Muriel, J. Waser, Angew. Chem. Int. Ed. 2021, 60, 4075-4079.
- [6] I. Piel, M. D. Pawelczyk, K. Hirano, R. Fröhlich, F. Glorius, Eur. J. Org. Chem. 2011, 2011, 5475-5484.
- [7] S. C. Gadekar, V. Dhayalan, A. Nandi, I. L. Zak, M. S. Mizrachi, S. Kozuch, A. Milo, ACS Catal. 2021, 11, 14561-14569.

8. Copies of ¹H, ¹⁹F, and ¹³C NMR spectra of all products.

Ethyl 2-(3-(4-chlorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4a)

Ethyl 2-(3-(4-methylbenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4b)

¹⁹F NMR, 376 MHz, CDCl₃

Ethyl 2-(3-benzoylbicyclo[1.1.1]pentan-1-yl)acetate (4d)

Ethyl 2-(3-(4-cyanobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4e)

Ethyl 2-(3-([1,1'-biphenyl]-4-carbonyl)bicyclo[1.1.1]pentan-1-yl)acetate (4f)

Ethyl 2-(3-(4-(methylthio)benzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4g)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Ethyl 2-(3-(3-bromobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4k)

Ethyl 2-(3-(3-methoxybenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (41)

S33

Ethyl 2-(3-(3,5-difluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4n)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Ethyl 2-(3-(quinoline-6-carbonyl)bicyclo[1.1.1]pentan-1-yl)acetate (4p)

Ethyl 2-(3-(2-naphthoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4q)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

Ethyl 2-(3-(2,3-dihydrobenzo[b][1,4]dioxine-6-carbonyl)bicyclo[1.1.1]pentan-1-yl)acetate (4r)

Ethyl 2-(3-(1-methyl-1H-indole-3-carbonyl)bicyclo[1.1.1]pentan-1-yl)acetate (4s):

Ethyl 2-(3-(thiophene-3-carbonyl)bicyclo[1.1.1]pentan-1-yl)acetate (4t)

110 100 f1 (ppm)

Ethyl 2-(3-(1-methyl-3a,7a-dihydro-1H-indazole-3-carbonyl)bicyclo[1.1.1]pentan-1-yl)acetat-e (4u)

Ethyl 2-(3-nicotinoylbicyclo[1.1.1]pentan-1-yl)acetate (4v)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Ethyl 2-(3-(1-methyl-1H-pyrazole-3-carbonyl)bicyclo[1.1.1]pentan-1-yl)acetate (4w)

110 100 f1 (ppm)

Adamantan-1-yl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4x)

Tert-butyl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4y)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

2,4-dimethylpentan-3-yl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4z)

110 100 f1 (ppm)

Cyclohexyl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4aa)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

1-phenylethyl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4ac)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Thiophen-2-ylmethyl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4ad)

Tetrahydrofuran-3-yl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4ae)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)ac-etate (4af)

¹H NMR, 400 MHz, CDCl₃

2-(trimethylsilyl)ethyl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4ag)

¹³C NMR, 100 MHz, CDCl₃

4ag ¹⁹F NMR, 376 MHz, CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

But-2-yn-1-yl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4ah)

(3R,5S,8R,9S,10S,13S,14S)-10,13-dimethyl-17-oxohexadecahydro-1H-

cyclopenta[a]phenanthren-3-yl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4am)

 ^{13}C NMR, 100 MHz, CDCl_3

--105.04

4am

 $^{19}\mathrm{F}$ NMR, 376 MHz, CDCI_3

(*E*)-3,7-dimethylocta-2,6-dien-1-yl 2-(3-(4-fluorobenzoyl)bicyclo[1.1.1]pentan-1-yl)acetate (4an)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

4-(3-(2-ethoxy-2-oxoethyl)bicyclo[1.1.1]pentane-1-carbonyl)phenyl

methoxynaphthalen-2-yl)propanoate (4ap)

(S)-2-(6-

(S)-2-(4-

