Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Electrochemical electrophilic bromination/spirocyclization of *N*benzyl-acrylamides to brominated 2-azaspiro[4.5]decanes

Zhongyi Zhang,^{a,b} Zhong-Wei Hou,*a Hao Chen,^a Pinhua Li,^b and Lei Wang*a,^{b,c}

^a Advanced Research Institute and College of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China

^b Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China

^c State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

Table of Contents

1.	General Considerations	S2
2.	General Procedure for the Electrosynthesis	S2
3.	Mechanistic Studies	S3
4.	X-Ray Crystallography	S6
5.	Unsuccessful Substrates	
6.	Characterization Data for the Electrolysis Products	S9
7.	Synthetic Applications	
8.	Synthesis of <i>N</i> -Benzylacrylamides	
9.	NMR Spectra for the Obtained Compounds	

1. General Considerations

Unless otherwise noted, chemicals and materials were purchased from commercial suppliers and used without further purification. All ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a 400 MHz Bruker FT-NMR spectrometer. Data were reported as chemical shifts in ppm relative to TMS (0.00 ppm) or DMSO- d_6 (2.50 ppm) for ¹H NMR and CDCl₃ (77.0 ppm) or DMSO- d_6 (40.0 ppm) for ¹³C NMR. The abbreviations used for explaining the multiplicities were as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. The coupling constants, *J*, are reported in Hertz (Hz). High resolution mass spectroscopy data of the product were collected on a Thermofisher Q Exactive Accurate-Mass Q-Orbitrap LC/MS (HESI). X-Ray data were collected on a Bruker SMART APEXII instrument with an IµS Mo microsource (λ = 0.7107 A). XINRUI[®] DJS-292B potentiostat made in China was used as a power supply device. Products were purified by flash chromatography on 200–300 mesh silica gels, SiO₂.

2. General Procedure for the Electrosynthesis

2.1 General Procedure for the Model Reaction: A 20 mL three-necked beaker-type cell (Figure S1A) was charged with *N*-benzyl-*N*-(*tert*-butyl)methacrylamide (**1**, 0.20 mmol), 2-bromoethan-1-ol (**2**, 0.60 mmol), KPF₆ (0.10 mmol). The cell was equipped with a reticulated vitreous carbon (RVC, 100 PPI, 1.2 cm x 0.8 cm x 0.8 cm) anode and a platinum plate (1.0 cm x 1.0 cm x 0.1 mm) cathode. Then MeCN (6.0 mL) and H₂O (1.0 mL) were added (Figure S1B). The electrolysis was carried out at room temperature using a constant current of 10 mA for 2.5 h. The reaction mixture was concentrated under reduced pressure and the residue was chromatographed through silica gel eluting with ethyl acetate/petroleum ether to give the desired product.

2.2 General Procedure for the Gram-Scale Synthesis of 3: The gram-scale electrolysis was conducted in a 100 mL three-necked round-bottomed flask with a piece of RVC (1.2 cm x 2.0 cm x 2.0 cm) as the anode, a Pt plate as the cathode (1.5 cm x 1.5 cm x 0.3 mm), and a constant current of 62 mA for 10 h at room temperature (Figure S1C). The reaction mixture consisted 1 (1.16 g, 5.0 mmol) or 4 (1.31 g, 5.0 mmol), 2-bromoethan-1-ol (2, 1.87 g, 15 mmol), KPF₆ (0.46 g, 2.5 mmol), MeCN (72 mL) and H₂O (12 mL). When the reaction was

complete, the reaction mixture was concentrated under reduced pressure and the residue was chromatographed through silica gel eluting with ethyl acetate/petroleum ether to give the desired product **3** (1.21 g, 74% yield or 1.24 g, 76% yield).

Figure S1. The electrolysis setup [The RVC is fixed on a sharpened graphite rod (Ø 6 mm)].

3. Mechanistic Studies

3.1 Electrophilic Bromination/Spirocyclization of 1 with Br₂

When Br_2 was added to the solution of *N*-benzyl-*N*-(*tert*-butyl)methacrylamide (1) in MeCN/H₂O (6:1) with NaOH (1.5 equiv.), the electrophilic bromination/spirocyclization could be achieved in 46% yield at room temperature for 2.5 h, indicating that the reaction may involve Br_2 as the intermediate.

3.2 Electrochemical Electrophilic Bromination/Spirocyclization of 1 in MeCN/H₂¹⁸O

The ¹⁸O-**3** was formed by electrolyzing **1** and **2** with MeCN/H₂¹⁸O (6:1) as solvent, indicating that the oxygen atom in product **3** was derived from H₂O.

Figure S2. High resolution mass spectroscopy (HRMS) of ¹⁸O-3.

3.3 Electrochemical Oxidation of Benzyl Alcohol 52 to Aldehyde 53

The electrochemical oxidation of benzyl alcohol **52** gave aldehyde **53** in 60% yield, showing that the direct electrooxidation of **56** is feasible to produce product **3** at the anode.

3.4 Cyclic Voltammograms Studies

The cyclic voltammograms were recorded in an electrolyte of nBu_4NBF_4 (0.1 M) in MeCN/H₂O (6:1, 5.0 mL) using a glassy carbon disk working electrode (diameter, 3 mm), a

Pt wire auxiliary electrode and an Ag/AgCl reference electrode. The scan rate was 100 mV/s.

The cyclic voltammograms (CVs) of *n*-Bu₄NBr, *N*-benzyl-*N*-(*tert*-butyl)methacrylamide (1) and *N*-(tert-butyl)-*N*-(4-methoxybenzyl)methacrylamide (4) were recorded in an electrolyte of *n*Bu₄NBF₄ (0.10 M) in MeCN/H₂O (6:1, 5.0 mL) (Figure S3–S5). The oxidation potential of Br⁻ ($E_{p/2} = 1.05$ V vs. Ag/AgCl) was significantly lower than that of the substrate 1 ($E_{p/2} = 1.99$ V vs. Ag/AgCl) and substrate 4 ($E_{p/2} = 1.72$ V vs. Ag/AgCl), indicating the anodic oxidation of Br⁻ were preferentially carried out. The studies of cyclic voltammograms support our proposed mechanism in Scheme 6 of the main text.

Figure S3. Cyclic voltammogram of nBu_4NBr (10 mM) in an electrolyte of nBu_4NBF_4 (0.1 M) in MeCN/H₂O (6:1, 5 mL). $E_{p/2} = 1.05$ V.

Figure S4. Cyclic voltammogram of *N*-benzyl-*N*-(*tert*-butyl)methacrylamide (1, 10 mM) in an electrolyte of nBu_4NBF_4 (0.1 M) in MeCN/H₂O (6:1, 5 mL). $E_{p/2} = 1.99$ V.

Figure S5. Cyclic voltammogram of *N*-(*tert*-butyl)-*N*-(4-methoxybenzyl)methacrylamide (4, 10 mM) in an electrolyte of nBu_4NBF_4 (0.1 M) in MeCN/H₂O (6:1, 5 mL). $E_{p/2} = 1.72$ V.

4. X-Ray Crystallography

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a saturated solution of **3** and **45** in petroleum ether/CH₂Cl₂) in a loosely capped vial.

4.1 X-Ray Single Crystal Diffraction Analysis of Compound 3 (CCDC: 2213723)

Datablock: 1

Bond precision:	C-C = 0.0057 A	Wavelength=0.71073					
Cell:	a=7.079(2)	b=9.363(3)	c=11.864(3)				
	alpha=93.881(5)	beta=97.142(5)	gamma=100.629(4)				
Temperature:	296 K						
	Calculated	Reporte	d				
Volume	763.6(4)	763.5(4))				
Space group	P -1	P -1					
Hall group	-P 1	-P 1					
Moiety formula	C15 H20 Br N O2	?					
Sum formula	C15 H20 Br N O2	C15 H20	Br N O2				
Mr	326.22	326.23					
Dx,g cm-3	1.419	1.419					
Z	2	2					
Mu (mm-1)	2.690	2.690					
F000	336.0	336.0					
F000'	335.56						
h,k,lmax	8,11,14	8,11,14					
Nref	2705	2672					
Tmin, Tmax	0.502,0.524						
Tmin'	0.492						
correction meth	od- Not given						
Data completene	ss= 0.988	Theta(max) = 25.0	000				
R(reflections) = 0.0443(2034) WR2(reflections) = 0.0443(2034)							
S = 0.996	Npar= 1	.76	0.1133(2072)				

4.2 X-Ray Single Crystal Diffraction Analysis of Compound 45 (CCDC: 2213724)

Datablock: a

Bond precision:	C-C = 0.0021 A	A Wavelength=0.71073					
Cell:	a=6.6760(17) alpha=90	b=23.100(6) beta=94.562(4)	c=9.948(3)				
Temperature:	296 K						
	Calculated	Reported					
Volume	1529.3(7)	1529.2(7)					
Space group	P 21/n	P2(1)/n					
Hall group	-P 2yn	?					
Moiety formula	C16 H23 N O3	?					
Sum formula	C16 H23 N O3	C16 H23 N	03				
Mr	277.35	277.35					
Dx,g cm-3	1.205	1.205					
Z	4	4					
Mu (mm-1)	0.083	0.083					
F000	600.0	600.0					
F000'	600.28						
h,k,lmax	7,27,11	7,27,11					
Nref	2686	2683					
Tmin, Tmax	0.971,0.982	0.971,0.98	32				
Tmin'	0.971						
Correction method= # Reported T Limits: Tmin=0.971 Tmax=0.982 AbsCorr = MULTI-SCAN							
Data completenes	s= 0.999	Theta(max) = 25.000					
R(reflections)=	0.0398(2181)		wR2(reflections) = 0 1081(2683)				
S = 1.019	Npar= 182		0.1001(2003)				

5. Unsuccessful Substrates

N-benzyl-acrylamides

Figure S6. Unsuccessful substrates in the reactions.

6. Characterization Data for the Electrolysis Products

4-(Bromomethyl)-2-(*tert***-butyl)-4-methyl-2-azaspiro**[**4.5**]**deca-6,9-diene-3,8-dione** (**3**). White solid (46 mg, 71% yield); m.p. = 103.6–106.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.10 (dd, J = 10.0, 2.8 Hz, 1H), 6.91 (dd, J = 10.4, 2.8 Hz, 1H), 6.46 (dd, J = 10.4, 2.0 Hz, 1H), 6.40 (dd, J = 10.0, 2.0 Hz, 1H), 3.52–3.44 (m, 3H), 3.37 (d, J = 10.4 Hz, 1H), 1.43 (s, 9H), 1.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.9, 173.6, 148.1, 146.7, 131.2, 131.0, 54.9, 52.9, 50.3, 46.6, 37.4, 27.5, 18.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₂₁BrNO₂⁺: 326.0750, Found: 326.0753.

4-(Bromomethyl)-2-(*tert***-butyl)-4,7,9-trimethyl-2-azaspiro**[**4.5**]**deca-6,9-diene-3,8-dione** (**15).** White solid (51 mg, 72% yield); m.p. = 102.7–104.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.80 (s, 1H), 6.62 (s, 1H), 3.46 (s, 2H), 3.42 (d, J = 10.4 Hz, 1H), 3.31 (d, J = 10.4 Hz, 1H), 1.96 (s, 3H), 1.93 (s, 3H), 1.43 (s, 9H), 1.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.2, 174.2, 142.9, 141.6, 137.1 (2C) , 54.7, 52.6, 50.5, 45.9, 37.5, 27.5, 18.5, 16.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₇H₂₅BrNO₂⁺: 354.1063, Found: 354.1062.

4-(Bromomethyl)-2-(*tert***-butyl)-6,10-dichloro-4-methyl-2-azaspiro**[**4.5**]**deca-6,9-diene-3,8-dione (16).** White solid (45 mg, 57% yield); m.p. = 134.4–136.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.66 (d, J = 1.6 Hz, 1H), 6.62 (d, J = 1.6 Hz, 1H), 4.19 (d, J = 11.4 Hz, 1H), 3.73– 3.69 (m, 2H), 3.63 (d, J = 11.4 Hz, 1H), 1.61 (s, 3H), 1.47 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 181.7, 171.9, 153.8, 153.6, 133.1, 131.2, 55.4, 52.3, 49.5, 38.3, 27.4, 23.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₁₉BrCl₂NO₂⁺: 393.9971, Found: 393.9971.

6,10-Dibromo-4-(bromomethyl)-2-(tert-butyl)-4-methyl-2-azaspiro[4.5]deca-6,9-diene-

3,8-dione (17). White solid (36 mg, 37% yield); m.p. = 138.4–140.9 °C; ¹H NMR (600 MHz, CDCl₃) δ 6.97 (d, J = 1.8 Hz, 1H), 6.91 (d, J = 1.8 Hz, 1H), 4.28 (d, J = 11.4 Hz, 1H), 3.76 (d, J = 4.8 Hz, 1H), 3.74 (d, J = 4.8 Hz, 1H), 3.63 (d, J = 11.4 Hz, 1H), 1.65 (s, 3H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 181.0, 171.8, 145.7, 145.1, 137.7, 135.6, 55.5, 54.9, 52.8, 52.4, 38.6, 27.4, 24.1; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₁₉BrNO₂⁺: 481.8960, Found: 481.8961.

4-(Bromomethyl)-2,4-dimethyl-2-azaspiro[**4.5**]deca-6,9-diene-**3,8-dione** (**18**). Colorless oil (11 mg, 19% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.09 (dd, J = 10.4, 3.2 Hz, 1H), 6.90 (dd, J = 10.4, 3.2 Hz, 1H), 6.46 (dd, J = 10.0, 2.0 Hz, 1H), 6.40 (dd, J = 10.0, 2.0 Hz, 1H), 3.52 (s, 2H), 3.41 (d, J = 10.4 Hz, 1H), 3.33 (d, J = 10.4 Hz, 1H), 2.96 (s, 3H), 1.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.9, 173.8, 147.9, 146.4, 131.4, 130.9, 54.2, 52.3, 47.4, 37.1, 30.1, 18.9; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₂H₁₅BrNO₂⁺: 284.0281, Found: 284.0285.

4-(Bromomethyl)-2-(*iso***-propyl)-4-methyl-2-azaspiro**[**4.5**]**deca-6,9-diene-3,8-dione** (**19**). White solid (9 mg, 14% yield); m.p. = 112.4–114.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.07 (dd, J = 10.4, 3.2 Hz, 1H), 6.90 (dd, J = 10.4, 3.2 Hz, 1H), 6.46 (dd, J = 10.4, 2.0 Hz, 1H), 6.40 (dd, J = 10.4, 2.0 Hz, 1H), 4.50–4.39 (m, 1H), 4.53–4.50 (m, 2H), 3.33 (dd, J = 14.8, 10.4 Hz, 2H), 1.33 (s, 3H), 1.20 (d, J = 6.8 Hz, 3H), 1.17 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.9, 172.7, 148.0, 146.4, 131.4, 130.9, 52.6, 47.2, 47.1, 43.3, 37.1, 19.6, 19.5, 18.7; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₄H₁₉BrNO₂⁺: 312.0594, Found: 312.0595.

4-(Bromomethyl)-2-(tert-butyl)-7-chloro-4-methyl-2-azaspiro[4.5]deca-6,9-diene-3,8-

dione (20). White solid (67 mg, 93% yield, d:r = 1.3:1); m.p. = 103.8–105.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.27–7.10 (m, 1H), 7.08–6.93 (m, 1H), 6.55–6.47 (m, 1H), 3.56–3.49 (m, 2H), 3.47–3.36 (m, 2H), 1.44–1.43 (m, 9H), 1.36–1.32 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.9 (2C), 173.2, 173.1, 148.3, 147.0, 143.8, 142.6, 134.9, 134.7, 129.8 (2C), 55.0 (2C), 53.3, 53.1, 49.8 (2C), 49.1, 37.2, 37.1, 27.4, 18.6, 18.4; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₂₀ClBrNO₂⁺: 360.0360, Found: 360.0363.

7-Bromo-4-(bromomethyl)-2-(*tert***-butyl)-4-methyl-2-azaspiro**[**4.5**]**deca-6,9-diene-3,8-dione (21).** White solid (71 mg, 88% yield, d:r = 1.5:1); m.p. = 112.4–114.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.52–7.32 (m, 1H), 7.13–6.91 (m, 1H), 6.55–6.48 (m, 1H), 3.53–3.37 (m, 4H), 1.44–1.43 (m, 9H), 1.36–1.31 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 177.8, 173.2 (2C), 148.2, 148.1, 147.0, 146.9, 129.5, 129.4, 127.0, 126.8, 55.2, 55.1, 53.2, 53.1, 50.1, 49.7 (2C), 37.1, 27.5, 18.8, 18.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₂₀Br₂NO₂⁺: 403.9855, Found: 403.9855.

4-(Bromomethyl)-2-(*tert***-butyl)-4,7-dimethyl-2-azaspiro**[**4.5**]**deca-6,9-diene-3,8-dione** (**22**). Yellow oil (51 mg, 75% yield, d:r = 1.5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.07–6.64 (m, 2H), 6.45–6.36 (m, 1H), 3.51–3.31 (m, 4H), 1.97–1.93 (m, 3H), 1.44–1.43 (m, 9H), 1.31–1.28 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.6, 173.9, 147.9, 146.6, 143.0, 141.8, 137.7, 137.6, 130.7, 130.6, 54.8 (2C), 52.8, 52.6, 50.4, 50.3, 46.6, 46.5, 37.4, 27.5, 18.6, 18.4, 16.2; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₆H₂₃BrNO₂⁺: 340.0907, Found: 340.0912.

6-Bromo-4-(bromomethyl)-2-(tert-butyl)-4-methyl-2-azaspiro[4.5]deca-6,9-diene-3,8-

dione (23). Isomer I: White solid (39 mg, 48% yield); m.p. = 112.4-114.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 10.0 Hz, 1H), 6.71 (s, 1H), 6.44 (d, J = 10.0 Hz, 1H), 3.79 (d, J = 11.2 Hz, 1H), 3.54 (d, J = 12.0 Hz, 2H), 3.23 (d, J = 11.2 Hz, 1H), 1.44 (s, 9H), 1.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 182.8, 172.3, 148.8, 147.5, 134.9, 130.5, 55.7, 54.7, 51.9, 50.6, 38.3, 27.6, 18.9; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₂₀Br₂NO₂⁺: 403.9855, Found: 403.9855. Isomer I': White solid (25 mg, 31% yield); m.p. = 140.5-142.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, J = 10.4 Hz, 1H), 6.88 (s, 1H), 6.43 (d, J = 10.4, 1H), 3.89 (d, J = 11.2 Hz, 1H), 3.60–3.56 (m, 2H), 3.51 (d, J = 11.2 Hz, 1H), 1.50 (s, 3H), 1.45 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 182.7, 173.4, 149.2, 145.8, 136.2, 130.2, 55.2, 52.4, 50.9, 50.4,

36.9, 27.3, 21.6; HRMS (ESI) ([M+H]⁺) Calcd. For $C_{15}H_{20}Br_2NO_2^+$: 403.9855, Found: 403.9855.

4-(Bromomethyl)-2-(*tert***-butyl)-6,10-difluoro-4-methyl-2-azaspiro**[**4.5**]**deca-6,9-diene-3,8-dione (24).** White solid (64 mg, 88% yield); m.p. = 128.2–130.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.03 (s, 1H), 5.99 (s, 1H), 3.82 (d, J = 10.4 Hz, 1H), 3.60 (d, J = 10.4 Hz, 1H), 3.57–3.48 (m, 2H), 1.44 (d, J = 6.0 Hz, 3H), 1.37 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 185.5 (t, $J_{C-F} = 18.2$ Hz), 172.6 (dd, $J_{C-F} = 284.2$, 14.2 Hz), 171.8, 171.3 (dd, $J_{C-F} = 284.2$, 14.2 Hz), 112.2 (d, $J_{C-F} = 14.2$ Hz), 110.6 (d, $J_{C-F} = 12.5$ Hz), 55.3, 52.0 (t, $J_{C-F} = 3.2$ Hz), 50.7 (t, $J_{C-F} = 20.9$ Hz), 45.9 (d, $J_{C-F} = 2.7$ Hz), 37.0 (d, $J_{C-F} = 4.2$ Hz), 27.2, 20.7 (d, $J_{C-F} = 8.7$ Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –91.1, –98.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₁₉BrF₂NO₂⁺: 362.0562, Found: 362.0564.

4-(Bromomethyl)-2-(*tert***-butyl)-4,6,10-trimethyl-2-azaspiro**[**4.5**]**deca-6,9-diene-3,8-dione** (**25**). White solid (22 mg, 31% yield); m.p. = 164.4–166.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.26 (s, 1H), 6.24 (s, 1H), 3.79 (d, J = 10.8 Hz, 1H), 3.53 (t, J = 11.2 Hz, 2H), 3.32 (d, J = 11.2 Hz, 1H), 2.18 (s, 3H), 2.14 (s, 3H), 1.47 (s, 9H), 1.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.5, 173.8, 157.6, 157.3, 132.5, 131.0, 55.1, 52.0, 51.9, 47.5, 38.3, 27.5, 24.0, 23.4, 22.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₇H₂₅BrNO₂⁺: 354.1063, Found: 354.1063.

4-(Bromomethyl)-2-(*tert***-butyl)-7,9-difluoro-4-methyl-2-azaspiro**[**4.5**]**deca-6,9-diene-3,8-dione (26).** White solid (30 mg, 41% yield); m.p. = 120.1-122.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.72 (dd, J = 12.0, 2.8 Hz, 1H), 6.53 (dd, J = 12.0, 2.8 Hz, 1H), 3.56 (dd, J = 10.4, 2.0 Hz, 1H), 3.51 (d, J = 11.6 Hz, 1H), 3.46 (d, J = 11.2 Hz, 1H), 3.41 (d, J = 10.4 Hz, 1H), 1.43 (s, 9H), 1.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.0, 171.0 (t, $J_{C-F} = 24.6$ Hz),

154.5 (dd, $J_{C-F} = 265.6$, 8.3 Hz), 154.1 (dd, $J_{C-F} = 265.6$, 8.3 Hz), 124.6 (d, $J_{C-F} = 16.9$ Hz), 123.4 (d, $J_{C-F} = 14.8$ Hz), 55.2, 53.1, 50.4 (t, $J_{C-F} = 3.0$ Hz), 45.9 (t, $J_{C-F} = 6.0$ Hz), 37.3, 27.5, 18.6; ¹⁹F NMR (376 MHz, CDCl₃) δ –125.2 (t, J = 13.5 Hz, 1F), –126.1(t, J = 13.5 Hz, 1F) ; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₁₉BrNO₂⁺: 362.0562, Found: 362.0565.

4-(Bromomethyl)-2-(*tert***-butyl)-7,9-dichloro-4-methyl-2-azaspiro**[**4.5**]**deca-6,9-diene-3,8-dion (27).** White solid (51 mg, 65% yield); m.p. = 217.1–219.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, J = 2.8 Hz, 1H), 7.07 (d, J = 2.8 Hz, 1H), 3.55 (d, J = 10.8 Hz, 1H), 3.50 (d, J = 11.2 Hz, 1H), 3.47–3.42 (m, 2H), 1.44 (s, 9H), 1.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 172.3, 144.0, 142.8, 133.9, 133.7, 55.3, 53.6, 49.9, 49.7, 37.0, 27.5, 18.7; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₁₉BrCl₂NO2⁺: 393.9971, Found: 393.9972.

7,9-Dibromo-4-(bromomethyl)-2-(*tert***-butyl)-4-methyl-2-azaspiro**[**4.5**]**deca-6,9-diene-3,8-dione (28).** White solid (45 mg, 46% yield); m.p. = 250.3–252.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 2.8 Hz, 1H), 7.34 (d, J = 2.8 Hz, 1H), 3.55–3.43 (m, 4H), 1.44 (s, 9H), 1.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 171.9, 148.4, 147.2, 124.3, 124.2, 55.3, 53.4, 52.4, 49.1, 36.9, 27.5, 18.7; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₁₉Br₃NO₂⁺: 481.8960, Found: 481.8961.

4-(Bromomethyl)-2-(*tert***-butyl)-4,6,7,10-tetramethyl-2-azaspiro**[**4.5**]**deca-6,9-diene-3,8-dione (29).** White solid (24 mg, 33% yield, d:r = 1.2;1); m.p. = 155.6–157.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.25 (s, 1H), 3.90–3.70 (m, 1H), 3.68–3.39 (m, 2H), 3.30–3.25 (m, 1H), 2.13–2.11 (m, 3H), 2.10–1.93 (m, 3H), 1.90–1.74 (m, 3H), 1.48–1.47 (m, 9H), 1.36–1.25 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.1, 185.0, 174.2, 173.9, 156.7, 156.5, 150.6, 149.9,

136.9, 135.3, 131.2, 130.3, 55.1, 55.0, 52.6, 51.7, 51.6, 51.5, 48.1, 47.9, 38.8, 38.7, 27.5, 27.4, 23.8, 23.6, 22.9, 22.5, 21.0, 19.0, 11.9, 11.6; HRMS (ESI) ($[M+H]^+$) Calcd. For $C_{18}H_{27}BrNO_2^+$: 368.1220, Found: 368.1223.

4-(Bromomethyl)-2-butyl-4-methyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione (30). Colorless oil (20 mg, 31% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.01 (dd, J = 10.4, 3.2 Hz, 1H), 6.84 (dd, J = 10.4, 3.2 Hz, 1H), 6.39 (dd, J = 10.0, 2.0 Hz, 1H), 6.33 (dd, J = 10.0, 2.0 Hz, 1H), 3.48–3.42 (m, 2H), 3.36–3.22 (m, 4H), 1.50–1.43 (m, 2H), 1.31–1.24 (m, 5H), 0.89 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 184.9, 173.5, 147.9, 146.5, 131.3, 131.0, 52.5, 52.1, 47.4, 42.8, 37.1, 29.2, 20.1, 18.8, 13.7; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₂₁BrNO₂⁺: 326.0750, Found: 326.0754.

3-Bromo-1-methyl-4-phenyl-1-azaspiro[**4.5**]deca-**3,6,9-triene-2,8-dione (31).**¹ White solid (60 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.36 (m, 5H), 6.55–6.49 (m, 4H), 2.95 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 183.6, 165.7, 151.2, 144.1, 133.4, 130.2, 130.1, 128.7, 127.7, 119.8, 68.2, 26.6.

3-Bromo-4-phenyl-1-oxaspiro[**4.5**]**deca-3,6,9-triene-2,8-dione** (**32**).² White solid (21 mg, 33% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.47 (m, 3H), 7.45–7.40 (m, 2H), 6.71–6.67 (m, 2H), 6.46–6.42 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 183.4, 166.9, 159.7, 141.6, 132.2, 131.3, 129.0, 128.5, 127.4, 112.2, 82.9.

7. Synthetic Applications

7.1 Conversions of 3 to Compounds 33, 34 and 36

4-(Bromomethyl)-4-methyl-2-azaspiro[**4.5**]**deca-6,9-diene-3,8-dione** (**33**). A mixture of **3** (0.1 mmol, 1.0 equiv.) and H₂SO₄ 96% (0.50 mL) was heated at 55 °C for 1 h. Then the reaction was cooled to room temperature, diluted with cold water and extracted with CH₂Cl₂. The organic phase was concentrated and the residue purified by chromatography (CH₂Cl₂/ ethyl acetate = 3:1, v/v) to provide product **33** (19 mg, 70% yield) as a white solid. m.p. = 187.8–190.2 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.37 (s, 1H), 7.34 (dd, *J* = 10.4, 3.2 Hz, 1H), 7.19 (dd, *J* = 10.4, 3.2 Hz, 1H), 6.37 (s, 1H), 6.35 (s, 1H), 3.71 (d, *J* = 11.2 Hz, 1H), 3.57 (d, *J* = 11.2 Hz, 1H), 3.52 (d, *J* = 10.4 Hz, 1H), 3.17 (dd, *J* = 10.4, 1.6 Hz, 1H), 1.33 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 185.1, 175.8, 150.2, 149.4, 130.6, 129.9, 51.5, 50.0, 46.4, 39.3, 18.7; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₁H₁₃BrNO₂⁺: 270.0124, Found: 270.0125.

4-(Bromomethyl)-2-(*tert***-butyl)-8-(methoxyimino)-4-methyl-2-azaspiro[4.5]deca-6,9dien-3-one (34).** Pyridine (1.0 mL) was added to a solution of compound **3** (0.1 mmol, 1.0 equiv) and methoxyamine hydrochloride (0.25 mmol, 2.5 equiv) under a N₂ atmosphere. Then, the mixture was stirred at 100 °C for 12 h. After completion of the reaction, pyridine was removed under reduced pressure and the crude reaction mixture was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10:1, v/v) to provide ketoxime **34** (30 mg, 84% yield) as a white solid. m.p. = 97.3–100.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.04–6.91 (m, 1H), 6.45–6.22 (m, 2H), 6.20–6.04 (m, 1H), 3.94 (s, 3H), 3.66–3.27 (m, 4H), 1.41 (s, 9H), 1.23–1.15 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.4, 174.3, 147.7, 138.6, 138.2, 137.0, 134.3, 133.9, 132.8, 132.7, 125.8, 125.6, 125.2, 124.5, 118.2, 118.1, 117.6, 116.9, 62.1, 54.6 (2C), 53.7, 53.0, 52.9, 52.8, 52.7, 52.6, 52.5, 49.0, 46.4 (2C), 37.5 (2C), 27.6, 18.3, 18.2, 17.3, 17.2; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₂H₁₆BrN₂O₂⁺: 299.0390, Found: 299.0392.

2-(tert-Butyl)-4-methyl-4-((p-tolylthio)methyl)-2-azaspiro[4.5]deca-6,9-diene-3,8-dione

(36). To a solution of 3 (0.1 mmol, 1.0 equiv) in MeCN (1.5 mL), 4-methylthiophenol (0.3 mmol, 3.0 equiv.) and Cs₂CO₃ (0.3 mmol, 3.0 equiv.) was added. The mixture is heated to reflux and stirred overnight. The crude reaction mixture was concentrated and purified by column chromatography on silica gel (petroleum ether / ethyl acetate = 4/1, v/v) to afford the product **36** (34 mg, 92% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.19–7.17 (m, 2H), 7.07–7.04 (m, 3H), 6.92 (dd, J = 10.0, 3.2 Hz, 1H), 6.42–6.36 (m, 2H), 3.44 (d, J = 10.4 Hz, 1H), 3.36 (d, J = 10.4 Hz, 1H), 3.22 (d, J = 12.8 Hz, 1H), 3.03 (d, J = 12.8 Hz, 1H), 2.29 (s, 3H), 1.43 (s, 9H), 1.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.0, 175.2, 148.3, 147.8, 136.5, 133.0, 131.0, 130.9, 130.1, 129.7, 54.7, 54.1, 50.2, 47.0, 41.6, 27.6, 21.0, 18.3; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₂H₂₈NO₂S⁺: 370.1835, Found: 370.1840.

7.2 Tandem Cyclizations of 3 to Compounds 37-51

Synthesis of 37-44 and 48-50

To a solution of **3** (0.1 mmol, 1.0 equiv.) in MeCN (1.5 mL), Nucleophile (0.3 mmol, 3.0 equiv.) and Cs_2CO_3 (0.3 mmol, 3.0 equiv.) was added. The mixture is heated to reflux and stirred overnight. The crude reaction mixture was concentrated and purified by column chromatography on silica gel to afford the products **37–44** and **48–50**.

Synthesis of 45

To a solution of **3** (0.1 mmol, 1.0 equiv.) in MeOH (1.5 mL), NaOMe (0.3 mmol, 3.0 equiv.) was added. The mixture is heated to reflux and stirred 16 h. The crude reaction mixture was concentrated and purified by column chromatography on silica gel to afford the product **45**.

Synthesis of 46, 47 and 51

To a solution of **3** (0.1 mmol, 1.0 equiv.) in dry THF (1.5 mL), the mixture was added NaH (60% in mineral oil, 0.15 mmol, 1.5 equiv.) at 0 °C and stirred 10 minutes. Then, the corresponding alcohol (0.5 mmol, 5.0 equiv.) was added. The mixture is heated to reflux and stirred 16 h. The reaction was quenched with a saturated aqueous solution of NH_4Cl (10 mL) and the aqueous phase was extracted with EtOAc (3 x 5 mL). The combined organic phase was washed with brine (10 mL). The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated under reduced pressure to afford the crude mixture. The crude was purified over silica gel column chromatography to afford **46**, **47** and **51**, respectively.

2-(*tert***-Butyl)-8a-methyl-9-(1***H***-pyrazol-1-yl)-2,3,8,8a-tetrahydro-1***H***-3a,7methanocyclohepta[***c***]pyrrole-1,6(7***H***)-dione (37). White solid (29 mg, 93% yield); m.p. = 141.3-143.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d,** *J* **= 2.0 Hz, 1H), 7.30 (d,** *J* **= 2.0 Hz,**

1H), 6.74 (dd, J = 9.6, 2.0 Hz, 1H), 6.21 (t, J = 2.0 Hz, 1H), 6.13 (dd, J = 9.6, 1.6 Hz, 1H), 4.68 (d, J = 10.8 Hz, 1H), 4.59–4.57 (m, 1H), 3.60 (d, J = 10.8 Hz, 1H), 3.40 (t, J = 6.0 Hz, 1H), 2.85 (dd, J = 14.4, 7.2 Hz, 1H), 1.48 (s, 9H), 1.42 (d, J = 15.2 Hz, 1H), 1.14 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.3, 177.3, 148.6, 139.5, 130.7, 129.8, 105.7, 68.0, 57.7, 54.3, 53.6, 53.5, 48.4, 33.5, 27.7, 20.0; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₈H₂₄N₃O₂⁺: 314.1863, Found: 314.1860.

9-(3-Bromo-1*H***-indazol-1-yl)-2-(***tert***-butyl)-8a-methyl-2,3,8,8a-tetrahydro-1***H***-3a,7methanocyclohepta[***c***]pyrrole-1,6(7***H***)-dione (38). White solid (41 mg, 93% yield); m.p. = 208.6–211.7 °C; ¹H NMR (400 MHz, CDCl₃) \delta 7.61–7.58 (m, 1H), 7.48–7.43 (m, 1H), 7.39–7.36 (m, 1H), 7.26–7.22 (m, 1H), 6.80 (dd,** *J* **= 9.6, 2.0 Hz, 1H), 6.28 (dd,** *J* **= 9.6, 1.6 Hz, 1H), 4.87 (dd,** *J* **= 4.0, 1.6 Hz, 1H), 3.91 (d,** *J* **= 11.2 Hz, 1H), 3.60 (d,** *J* **= 11.2 Hz, 1H), 3.53–3.50 (m, 1H), 2.90 (dd,** *J* **= 14.4, 7.2 Hz, 1H), 1.49–1.46 (m, 10H), 1.15 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) \delta 197.6, 178.0, 147.2, 141.4, 131.5, 127.9, 124.2, 122.0, 121.1, 120.8, 108.8, 67.0, 57.1, 54.3, 53.5, 52.7, 48.4, 33.6, 27.7, 19.8; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₂H₂₅BrN₃O₂+: 442.1125, Found: 442.1126.**

2-(tert-Butyl)-9-(1H-imidazol-1-yl)-8a-methyl-2,3,8,8a-tetrahydro-1H-3a,7-

methanocyclohepta[*c*]pyrrole-1,6(7*H*)-dione (39). White solid (28 mg, 89% yield); m.p. = 172.8–175.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.04 (t, J = 1.2 Hz, 1H), 6.86–6.83 (m, 2H), 6.36 (dd, J = 9.6, 1.6 Hz, 1H), 4.43 (dd, J = 4.0, 2.0 Hz, 1H), 3.72 (d, J = 11.2 Hz, 1H), 3.61 (d, J = 11.2 Hz, 1H), 3.35–3.32 (m, 1H), 2.83 (dd, J = 14.4, 7.2 Hz, 1H), 1.46 (s, 9H), 1.40 (d, J = 14.8 Hz, 1H), 1.15 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.4, 177.0, 148.1, 137.0, 132.3, 129.6, 119.1, 65.3, 57.8, 54.4, 54.3, 52.1, 47.1, 33.3, 27.6, 19.9; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₈H₂₄N₃O₂⁺: 314.1863, Found: 314.1859.

9-(1*H***-Benzo[***d***]imidazol-1-yl)-2-(***tert***-butyl)-8a-methyl-2,3,8,8a-tetrahydro-1***H***-3a,7methanocyclohepta[***c***]pyrrole-1,6(7***H***)-dione (40). White solid (35 mg, 96% yield); m.p. = 309.6-311.9 \ ^{\circ}C; ¹H NMR (400 MHz, CDCl₃) \delta 7.82–7.80 (m, 2H), 7.37–7.30 (m, 3H), 6.97 (dd,** *J* **= 10.0, 2.0 Hz, 1H), 6.50 (dd,** *J* **= 9.6, 1.2 Hz, 1H), 4.82 (dd,** *J* **= 4.0, 1.6 Hz, 1H), 3.67 (d,** *J* **= 10.8 Hz, 1H), 3.56 (d,** *J* **= 10.8 Hz, 1H), 3.48–3.45 (m, 1H), 2.95 (dd,** *J* **= 14.4, 7.2 Hz, 1H), 1.51–1.46 (m, 10H), 1.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) \delta 197.4, 177.6, 148.9, 142.9, 141.3, 134.7, 132.5, 123.5, 123.1, 120.8, 109.1, 64.0, 57.7, 54.6, 53.9, 52.3, 47.4, 33.6, 27.6, 20.0; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₂H₂₆N₃O₂⁺: 364.2020, Found: 364.2022.**

2-(tert-Butyl)-8a-methyl-9-(1H-pyrrol-1-yl)-2,3,8,8a-tetrahydro-1H-3a,7-

methanocyclohepta[*c*]pyrrole-1,6(7*H*)-dione (41). White solid (22 mg, 70% yield); m.p. = 162.3–164.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.79 (dd, J = 10.0, 2.0 Hz, 1H), 6.56 (t, J = 2.4 Hz, 2H), 6.34 (dd, J = 10.0, 1.2 Hz, 1H), 6.16–6.13 (m, 2H), 4.37 (dd, J = 4.0, 2.0 Hz, 1H), 3.82 (d, J = 10.8 Hz, 1H), 3.56 (d, J = 10.8 Hz, 1H), 3.34–3.31 (m, 1H), 2.80 (dd, J = 14.4, 7.2 Hz, 1H), 1.47 (s, 9H), 1.35 (d, J = 14.8 Hz, 1H), 1.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.4, 177.5, 148.3, 132.1, 121.1, 108.9, 67.3, 57.8, 54.5, 54.3, 52.5, 47.5, 33.5, 27.7, 20.0; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₉H₂₅N₂O₂⁺: 313.1911, Found: 313.1908.

2-(*tert*-Butyl)-9-(1*H*-indol-1-yl)-8a-methyl-2,3,8,8a-tetrahydro-1*H*-3a,7methanocyclohepta[c]pyrrole-1,6(7*H*)-dione (42). White solid (30 mg, 83% yield); m.p. = 229.2–231.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 7.24–7.20 (m, 1H), 7.15–7.11 (m, 1H), 6.99 (d, J = 3.2 Hz, 1H), 6.88 (dd, J = 10.0, 2.0 Hz, 1H), 6.50–6.45 (m, 2H), 4.90 (dd, J = 4.0, 2.0 Hz, 1H), 3.66 (d, J = 10.8 Hz, 1H), 3.47 (d, J = 10.8 Hz, 1H), 3.38–3.35 (m, 1H), 2.92 (dd, J = 14.4, 7.2 Hz, 1H), 1.46 (s, 9H), 1.42 (d, J = 14.4 Hz, 1H), 1.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.5, 178.1, 149.5, 137.5, 132.4, 128.0, 126.8, 121.9, 121.2, 120.3, 108.8, 102.7, 64.3, 57.6, 54.5, 54.2, 52.6, 47.6, 33.9, 27.6, 20.0; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₃H₂₇BrN₂O₂⁺: 363.2067, Found: 363.2063.

2-(*tert***-Butyl)-8a-methyl-9-(1***H***-pyrrolo[2,3-***c***]pyridin-1-yl)-2,3,8,8a-tetrahydro-1***H***-3a,7methanocyclohepta[***c***]pyrrole-1,6(7***H***)-dione (43). White solid (35 mg, 96% yield); m.p. = 211.7–213.5 °C; ¹H NMR (400 MHz, CDCl₃) \delta 8.68 (s, 1H), 8.21 (d,** *J* **= 5.6 Hz, 1H), 7.43 (dd,** *J* **= 5.6, 1.2 Hz, 1H), 7.08 (d,** *J* **= 3.2 Hz, 1H), 6.83 (dd,** *J* **= 10.0, 2.0 Hz, 1H), 6.43–6.40 (m, 2H), 4.94 (dd,** *J* **= 4.0, 1.6 Hz, 1H), 3.59 (d,** *J* **= 11.2 Hz, 1H), 3.45 (d,** *J* **= 11.2 Hz, 1H), 3.35–3.31 (m, 1H), 2.88 (dd,** *J* **= 14.4, 7.2 Hz, 1H), 1.41 (s, 9H), 1.37 (d,** *J* **= 14.4 Hz, 1H), 1.08 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) \delta 198.1, 177.8, 149.2, 139.5, 134.7, 132.9, 132.5, 131.9, 130.2, 115.4, 102.3, 64.4, 57.7, 54.7, 54.3, 52.6, 47.5, 33.7, 27.6, 19.9; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₂H₂₆N₃O₂⁺: 364.2020, Found: 364.2017.**

2-(*tert***-Butyl)-9-(3-(2-hydroxyethyl)-1***H***-indol-1-yl)-8a-methyl-2,3,8,8a-tetrahydro-1***H***-3a,7-methanocyclohepta**[*c*]**pyrrole-1,6(**7*H*)-dione (44). White solid (26 mg, 64% yield); m.p. = 212.9–214.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.6 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.18–7.14 (m, 1H), 7.09–7.05 (m, 1H), 6.81 (dd, *J* = 10.0, 1.6 Hz, 1H), 6.79 (s, 1H), 6.40 (dd, *J* = 10.0, 1.6 Hz, 1H), 4.79 (dd, *J* = 4.0, 1.6 Hz, 1H), 3.76 (t, *J* = 6.4 Hz, 2H), 3.58 (d, *J* = 10.8 Hz, 1H), 3.40 (d, *J* = 10.8 Hz, 1H), 3.28–3.25 (m, 1H), 2.88–2.81 (m, 3H), 1.39 (s, 9H), 1.33 (d, *J* = 14.8 Hz, 1H), 1.05 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.7, 178.1, 149.6, 138.0, 132.5, 127.6, 125.0, 122.2, 120.0, 119.4, 112.7, 108.9, 64.3, 62.6, 57.6, 54.5, 54.2, 52.5, 47.6, 33.9, 28.6, 27.6, 20.0; HRMS (ESI) ($[M+H]^+$) Calcd. For $C_{22}H_{25}BrN_3O_2^+$: 442.1125, Found: 442.1126.

2-(tert-Butyl)-9-methoxy-8a-methyl-2,3,8,8a-tetrahydro-1H-3a,7-

methanocyclohepta[*c*]pyrrole-1,6(7*H*)-dione (45). White solid (22 mg, 79% yield); m.p. = 106.4–108.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.77 (dd, *J* = 10.0, 1.8 Hz, 1H), 6.25 (dd, *J* = 10.0, 1.8 Hz, 1H), 3.66 (d, *J* = 10.8 Hz, 1H), 3.60 (dd, *J* = 4.4, 2.0 Hz, 1H), 3.49 (d, *J* = 10.4 Hz, 1H), 3.35 (s, 3H), 3.16–3.12 (m, 1H), 2.58 (dd, *J* = 14.8, 7.2 Hz, 1H), 1.43 (s, 9H), 1.31 (d, *J* = 14.8 Hz, 1H), 1.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 199.8, 177.9, 148.1, 131.5, 88.4, 58.2, 55.4, 54.0, 51.9, 51.7, 47.3, 32.2, 27.5, 19.8; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₆H₂₄NO₃⁺: 278.1751, Found: 278.1749.

2-(*tert***-Butyl)-8a-methyl-9-(2,2,2-trifluoroethoxy)-2,3,8,8a-tetrahydro-1***H***-3a,7methanocyclohepta[***c***]pyrrole-1,6(7***H***)-dione (46). White solid (16 mg, 46% yield); m.p. = 106.4–108.5 °C; ¹H NMR (400 MHz, CDCl₃) \delta 6.77 (dd, J = 10.0, 1.8 Hz, 1H), 6.26 (dd, J = 10.0, 1.8 Hz, 1H), 3.98–3.88 (m, 2H), 3.78–3.68 (m, 2H), 3.50 (d, J = 10.8 Hz, 1H), 3.09–3.05 (m, 1H), 2.59 (dd, J = 14.8, 6.8 Hz, 1H), 1.42 (s, 9H), 1.33 (d, J = 14.8 Hz, 1H), 1.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) \delta 198.8, 177.5, 147.6, 131.5, 123.7 (q, J_{C-F} = 279.9 Hz), 87.8, 67.1 (q, J_{C-F} = 34.4 Hz), 55.2, 54.2, 51.9 (2C), 47.0, 32.1, 27.4, 19.7; ¹⁹F NMR (376 MHz, CDCl₃) \delta –74.2; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₇H₂₃F₃NO₃⁺: 346.1625, Found: 346.1622.**

2-(tert-Butyl)-9-(cyclopropylmethoxy)-8a-methyl-2,3,8,8a-tetrahydro-1H-3a,7-

methanocyclohepta[*c*]pyrrole-1,6(7*H*)-dione (47). White solid (22 mg, 69% yield); m.p. = $58.2-60.9 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 6.63 (dd, J = 9.6, 2.0 Hz, 1H), 6.09 (dd, J = 9.6, 1.6 Hz, 1H), 3.60 (dd, J = 4.4, 2.0 Hz, 1H), 3.53 (d, $J = 10.4 \,$ Hz, 1H), 3.33 (d, $J = 10.4 \,$ Hz, 1H), 3.19–3.07 (m, 2H), 2.94–2.91 (m, 1H), 2.41 (dd, J = 14.8, 7.2 Hz, 1H), 1.26 (s, 9H), 1.14 (d, $J = 14.4 \,$ Hz, 1H), 0.90 (s, 3H), 0.85–0.78 (m, 1H), 0.41–0.31 (m, 2H), 0.04 – -0.04 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 200.1, 178.0, 148.3, 131.5, 86.2, 74.9, 55.3, 54.0, 52.3, 52.0, 47.4, 32.3, 27.5, 19.8, 10.5, 3.3, 2.9; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₉H₂₈NO₃⁺: 318.2064, Found: 318.2069.

9-(But-3-yn-1-yloxy)-2-(tert-butyl)-8a-methyl-2,3,8,8a-tetrahydro-1H-3a,7-

methanocyclohepta[*c*]pyrrole-1,6(7*H*)-dione (48). Colorless oil (26 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 6.77 (dd, J = 9.6, 2.0 Hz, 1H), 6.24 (dd, J = 9.6, 1.6 Hz, 1H), 3.75 (dd, J = 4.4, 2.0 Hz, 1H), 3.72 (d, J = 10.4 Hz, 1H), 3.68–3.64 (m, 1H), 3.51–3.45 (m, 2H), 3.10–3.07 (m, 1H), 2.58 (dd, J = 14.4, 7.2 Hz, 1H), 2.41–2.37 (m, 2H), 1.97 (t, J = 2.8 Hz, 1H), 1.43 (s, 9H), 1.30 (d, J = 14.8 Hz, 1H), 1.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 199.7, 177.9, 148.1, 131.5, 86.8, 80.8, 69.6, 68.2, 55.3, 54.0, 52.2, 51.9, 47.3, 32.3, 27.5, 19.8 (2C); HRMS (ESI) ([M+H]⁺) Calcd. For C₁₉H₂₆NO₃⁺: 316.1907, Found: 316.1914.

9-(Benzyloxy)-2-(tert-butyl)-8a-methyl-2,3,8,8a-tetrahydro-1H-3a,7-

methanocyclohepta[*c*]pyrrole-1,6(7*H*)-dione (49). White solid (30 mg, 85% yield); m.p. = 93.8-95.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.30 (m, 3H), 7.27–7.25 (m, 2H), 6.79 (dd, J = 10.0, 2.0 Hz, 1H), 6.29 (dd, J = 10.0, 1.6 Hz, 1H), 4.67 (d, J = 12.4 Hz, 1H), 4.33 (d, J = 12.4 Hz, 1H), 3.72 (dd, J = 4.4, 2.0 Hz, 1H), 3.52 (d, J = 10.4 Hz, 1H), 3.41 (d, J = 10.4 Hz, 1H), 3.12–3.08 (m, 1H), 2.52 (dd, J = 14.4, 7.2 Hz, 1H), 1.29 (d, J = 14.8 Hz, 1H), 1.23 (s, 9H), 1.03 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 200.0, 177.8, 148.3, 137.1, 131.5, 128.6, 128.2, 128.1, 84.8, 71.7, 55.3, 53.8, 51.8, 47.2, 32.2, 27.2, 19.8; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₂H₂₈NO₃⁺: 354.2064, Found: 354.2068.

2-(*tert***-Butyl)-9-(furan-2-ylmethoxy)-8a-methyl-2,3,8,8a-tetrahydro-1***H***-3a,7methanocyclohepta [***c***]pyrrole-1,6(7***H***)-dione (50). White solid (22 mg, 64% yield); m.p. = 144.9–147.1 °C; ¹H NMR (400 MHz, CDCl₃) \delta 7.34–7.33 (m, 1H), 6.69 (dd,** *J* **= 9.6, 2.0 Hz, 1H), 6.27 (dd,** *J* **= 3.2, 2.0 Hz, 1H), 6.23 (d,** *J* **= 3.2 Hz, 1H), 6.19 (dd,** *J* **= 9.6, 1.6 Hz, 1H), 4.49 (d,** *J* **= 13.6 Hz, 1H), 4.28 (d,** *J* **= 13.6 Hz, 1H), 3.68 (dd,** *J* **= 4.4, 2.0 Hz, 1H), 3.43 (d,** *J* **= 10.4 Hz, 1H), 3.33 (d,** *J* **= 10.4 Hz, 1H), 2.98–2.94 (m, 1H), 2.48 (dd,** *J* **= 14.8, 7.2 Hz, 1H), 1.24 (s, 9H), 1.20 (d,** *J* **= 2.4 Hz, 1H), 0.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) \delta 199.8, 177.8, 150.7, 148.1, 143.2, 131.5, 110.5, 110.2, 84.8, 63.5, 55.2, 53.9, 51.8 (2C), 47.1, 32.3, 27.3, 19.8; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₀H₂₆BrNO₄⁺: 344.1856, Found: 344.1853.**

2-(*tert***-Butyl)-9-(cyclohexyloxy)-8a-methyl-2,3,8,8a-tetrahydro-1***H***-3a,7methanocyclohepta[***c***]pyrrole-1,6(7***H***)-dione (51). White solid (24 mg, 69% yield); m.p. = 119.7–122.3 °C; ¹H NMR (400 MHz, CDCl₃) \delta 6.69 (dd,** *J* **= 10.0, 2.0 Hz, 1H), 6.17 (dd,** *J* **= 10.0, 1.6 Hz, 1H), 3.72 (dd,** *J* **= 4.4, 2.0 Hz, 1H), 3.55 (d,** *J* **= 10.4 Hz, 1H), 3.40 (d,** *J* **= 10.4 Hz, 1H), 3.20–3.14 (m, 1H), 2.96–2.93 (m, 1H), 2.49 (dd,** *J* **= 14.8, 7.2 Hz, 1H), 1.64–1.58 (m, 4H), 1.35 (s, 9H), 1.23–1.10 (m, 7H), 0.98 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) \delta 200.5,** 178.1, 148.3, 131.6, 84.4, 55.2, 54.0, 53.0, 51.9, 47.3, 33.2, 32.3, 31.9, 27.6, 25.5, 24.0, 23.9, 19.8; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₁H₃₂BrNO₃⁺: 346.2377, Found: 346.2375.

8. Synthesis of N-Benzylacrylamides

The substrates 1^3 , 4^4 , 6^4 and 12^3 have been reported.

Step 1: To a solution of benzaldehyde (10 mmol) in methanol (20 mL) was added alkyl amine (1.0 equiv.), and then the resulting solution was stirred for 3 h at room temperature. Next, the mixture was added NaBH₄ (1.2 equiv.) at 0 °C, and then warmed to room temperature and continue to be stirred 1 h. After related work-up and purification by flash chromatography, the *N*-alkylbenzylamine was thereby obtained, which is used for next synthetic step.

Step 2: To a solution of *N*-alkylbenzylamine obtained above and Et_3N (1.5 equiv) in dry CH_2Cl_2 (15 mL) was added methacryloyl chloride (1.2 equiv.) at 0 °C. Then the resulting mixture was warmed to r.t. and continue to stir for overnight. After related work-up, the residue was purified by flash chromatography (petroleum ether/ethyl acetate as the eluent) on silica gel to afford the corresponding *N*-benzylacrylamide.

N-(*tert*-Butyl)-*N*-(4-ethoxybenzyl)methacrylamide (5). Colorless oil (83% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 5.02–4.93 (m, 2H), 4.61 (s, 2H), 4.05–3.99 (m, 2H), 1.93 (s, 3H), 1.43–1.39 (m, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 157.8, 143.1, 131.8, 127.1, 114.4, 113.3, 63.4, 57.5, 50.1, 28.5, 20.8, 14.8; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₇H₂₆NO₂⁺: 276.1958, Found: 276.1961.

N-(*tert*-Butyl)-*N*-(4-*iso*-butoxybenzyl)methacrylamide (7). White solid (61% yield); m.p. = 57.0-59.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H)

2H), 5.02–4.93 (m, 2H), 4.61 (s, 2H), 3.70 (d, J = 6.8 Hz, 2H), 2.11–2.04 (m, 1H), 1.94 (s, J = 1.4 Hz, 3H), 1.42 (s, 9H), 1.02 (d, J = 6.4 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 158.1, 143.0, 131.6, 127.0, 114.3, 113.2, 74.3, 57.4, 50.1, 28.5, 28.2, 20.8, 19.2; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₉H₃₀NO₂⁺: 304.2271, Found: 304.2273.

N-(*tert*-Butyl)-*N*-(4-*iso*-propoxybenzyl)methacrylamide (8). Colorless oil (78% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 5.03–4.93 (m, 2H), 4.60 (s, 2H), 4.56–4.50 (m, 1H), 1.93 (s, 3H), 1.42 (s, 9H), 1.33 (d, J = 6.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 156.7, 143.1, 131.7, 127.2, 115.7, 113.3, 69.8, 57.5, 50.2, 28.5, 22.0, 20.8; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₈H₂₈NO₂⁺: 290.2115, Found: 290.2117.

N-(*tert*-Butyl)-*N*-(4-((*tert*-butyldimethylsilyl)oxy)benzyl)methacrylamide (9). White solid (24% yield); m.p. = 65.0–66.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.87 (d, J = 8.4 Hz, 2H), 6.61 (d, J = 8.8 Hz, 2H), 4.83–4.75 (m, 2H), 4.41 (s, 2H), 1.73 (s, 3H), 1.22 (s, 9H), 0.79 (s, 9H), 0.00 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 154.5, 143.1, 132.6, 127.2, 120.0, 113.4, 57.5, 50.3, 28.6, 25.6, 20.8, 18.1, -4.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₁H₃₆NO₂Si⁺: 362.2510, Found: 362.2511.

N-(*tert*-Butyl)-*N*-(4-(methylthio)benzyl)methacrylamide (10). White solid (89% yield); m.p. = 98.1–100.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 5.01 (s, 1H), 4.93 (s, 1H), 4.63 (s, 2H), 2.48 (s, 3H), 1.93 (s, 3H), 1.42 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 143.0, 137.0, 136.8, 126.6, 113.3, 57.6, 50.3, 28.5, 20.8, 15.8; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₆H₂₄NOS⁺: 278.1573, Found: 278.1572.

N-Benzyl-*N*-(2-methylallyl)acetamide (14). Colorless oil (67% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.27 (m, 3H), 7.26–7.16 (m, 2H), 4.97–4.89 (m, 1H), 4.83–4.73 (m, 1H), 4.58–4.49 (m, 2H), 3.98–3.70 (m, 2H), 2.18–2.14 (m, 3H), 1.70 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 170.9, 140.4, 139.5, 137.5, 136.5, 128.8, 128.5, 128.1, 127.5, 127.2, 126.2, 112.2, 111.3, 52.9, 50.4, 50.2, 48.0, 21.5, 21.3, 20.0 (2C); HRMS (ESI) ([M+H]⁺) Calcd. For C₁₃H₁₈NO⁺: 204.1383, Found: 204.1384.

N-(*tert*-Butyl)-*N*-(3,5-dimethylbenzyl)methacrylamide (S1). White solid (63% yield); m.p. = 90.8–92.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.87 (s, 1H), 6.82 (s, 2H), 5.02 (s, 1H), 4.92 (s, 1H), 4.61 (s, 2H), 2.30 (s, 6H), 1.94 (s, 3H), 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 143.0, 140.0, 138.0, 128.4, 123.8, 113.2, 57.6, 50.6, 28.5, 21.3, 20.8; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₇H₂₆NO⁺: 260.2009, Found: 260.2011.

N-(*tert*-Butyl)-*N*-(2,6-dichlorobenzyl)methacrylamide (S2). White solid (55% yield); m.p. = 74.1–76.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 8.0 Hz, 2H), 7.15 (t, *J* = 8.0 Hz, 1H), 5.22 (s, 1H), 5.20 (s, 1H) 5.01 (s, 2H), 1.95 (s, 3H), 1.37 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 143.4, 135.8, 133.9, 129.2, 128.8, 116.5, 57.6, 48.2, 28.4, 19.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₂₀Cl₂NO⁺: 300.0916, Found: 300.0919.

N-(*tert*-Butyl)-*N*-(2,6-dibromobenzyl)methacrylamide (S3). White solid (61% yield); m.p. = 108.3–110.1 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.53 (d, *J* = 7.8 Hz, 2H), 6.97 (t, *J* = 7.8 Hz, 1H), 5.23–5.21 (m, 2H), 5.00 (s, 2H), 1.95 (s, 3H), 1.38 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 175.8, 143.4, 136.3, 133.4, 129.6, 125.7, 116.8, 58.0, 53.1, 28.7, 19.6; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₂₀Br₂NO⁺: 387.9906, Found: 387.9907.

N-Benzyl-*N*-*iso*-propylmethacrylamide (S4). Colorless oil (58% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.20 (m, 5H), 5.15–5.09 (m, 2H), 4.56 (s, 2H), 4.35 (s, 1H), 2.03–1.98 (m, 3H), 1.13 (d, J = 6.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 141.5, 139.2, 128.3, 126.8, 114.0, 50.1, 42.8, 21.5, 20.7; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₄H₂₀NO⁺: 218.1539, Found: 218.1541.

N-(*tert*-Butyl)-*N*-(3-chloro-4-methoxybenzyl)methacrylamide (S5). White solid (77% yield); m.p. = 80.2-82.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 2.0 Hz, 1H), 7.11 (dd, J = 8.4, 2.0 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 5.01 (s, 1H), 4.94(s, 1H), 4.60 (s, 2H), 3.89 (s, 3H), 1.94 (s, 3H), 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 153.6, 142.8, 133.0, 127.6, 125.1, 122.3, 113.2, 111.8, 57.4, 55.9, 49.5, 28.4, 20.6; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₆H₂₃ClNO₂⁺: 296.1412, Found: 296.1414.

N-(3-Bromo-4-methoxybenzyl)-*N*-(*tert*-butyl)methacrylamide (S6). White solid (72% yield); m.p. = 90.4–92.1 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.38 (d, J = 2.4 Hz, 1H), 7.14 (dd, J = 8.4, 2.4 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 5.00 (s, 1H), 4.94 (s, 1H), 4.59 (s, 2H), 3.89 (s, 3H), 1.93 (s, 3H), 1.43 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 174.5, 154.8, 143.0, 133.6, 130.9, 126.0, 113.4, 111.8, 111.7, 57.6, 56.2, 49.5, 28.6, 20.8; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₆H₂₃BrNO⁺: 340.0907, Found: 340.0910.

N-(*tert*-Butyl)-*N*-(4-methoxy-2-methylbenzyl)methacrylamide (S7). White solid (64% yield); m.p. = 63.7–66.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.01 (dd, J = 8.4, 2.0 Hz, 1H), 6.95 (d, J = 2.0 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 5.03–4.92 (m, 2H), 4.58 (s, 2H), 3.82 (s, 3H), 2.20 (s, 3H), 1.94 (t, J = 1.2 Hz, 3H), 1.42 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 174.6,

156.6, 143.2, 131.5, 128.4, 126.7, 124.4, 113.2, 109.7, 57.5, 55.3, 50.2, 28.6, 20.9, 16.3; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₇H₂₆NO₂⁺: 276.1958, Found: 276.1960.

N-(2-Bromo-4-methoxybenzyl)-*N*-(*tert*-butyl)methacrylamide (S8). White solid (69% yield); m.p. = 97.2–99.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.4 Hz 1H), 7.09 (d, *J* = 2.4 Hz, 1H), 6.89 (dd, *J* = 8.4, 2.4 Hz, 1H), 4.92–4.87 (m, 2H), 4.56 (s, 2H), 3.80 (s, 3H), 1.92 (t, *J* = 1.2 Hz, 3H), 1.44 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 158.9, 142.7, 130.6, 128.5, 121.5, 118.1, 113.2, 113.0, 57.7, 55.5, 50.4, 28.4, 20.8; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₆H₂₃BrNO₂⁺: 340.0907, Found: 340.0910.

N-(*tert*-Butyl)-*N*-(2,6-difluoro-4-methoxybenzyl)methacrylamide (S9). White solid (65% yield); m.p. = 74.8–76.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.44 (s, 1H), 6.42 (s, 1H), 5.17–5.13 (m, 1H), 4.75 (s, 2H), 3.78 (s, 3H), 1.97 (s, 3H), 1.37 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 161.6 (dd, $J_{C-F} = 246.7$, 11.6 Hz),160.2 (t, $J_{C-F} = 14.5$ Hz), 143.4, 115.4, 107.1 (t, $J_{C-F} = 17.0$ Hz), 98.1 (d, $J_{C-F} = 13.2$, 8.3 Hz), 56.8, 55.6, 40.3 (t, $J_{C-F} = 2.9$ Hz), 28.2, 19.8 (t, $J_{C-F} = 1.8$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –112.9, –113.0; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₆H₂₂F₂NO₂⁺: 298.1613, Found: 298.1614.

N-(*tert*-Butyl)-*N*-(4-methoxy-2,6-dimethylbenzyl)methacrylamide (S10). White solid (56% yield); m.p. = 78.2–80.9 °C;¹H NMR (400 MHz, CDCl₃) δ 6.53 (s, 2H), 5.18–5.12 (m, 2H), 4.61 (s, 2H), 3.76 (s, 3H), 2.30 (s, 6H), 1.75 (t, *J* = 1.2 Hz, 3H), 1.38 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 158.1, 144.0, 138.4, 127.7, 116.1, 114.3, 57.7, 55.0, 47.0, 28.4, 21.2, 19.1; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₈H₂₈NO₂⁺: 290.2115, Found: 290.2116.

N-(*tert*-butyl)-*N*-(3,5-difluoro-4-methoxybenzyl)methacrylamide (S11). White solid (70% yield); m.p. = 63.6–66.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.79 (s, 1H), 6.77 (s, 1H), 4.99–4.95 (m, 2H), 4.58 (s, 2H), 3.99 (s, 3H), 1.93 (t, *J* = 1.2 Hz, 3H), 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 155.7 (dd, *J*_{C-F} = 249.2, 6.4 Hz), 142.7, 135.8 (t, *J*_{C-F} = 7.3 Hz), 135.0 (t, *J*_{C-F} = 14.1 Hz), 113.6, 109.7 (dd, *J*_{C-F} = 23.7, 10.1 Hz), 61.9 (t, *J*_{C-F} = 3.2 Hz), 57.8, 49.7, 28.5, 20.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –127.5 (2F); HRMS (ESI) ([M+H]⁺) Calcd. For C₁₆H₂₂F₂NO₂⁺: 298.1613, Found: 298.1615.

N-(*tert*-Butyl)-*N*-(3,5-dichloro-4-methoxybenzyl)methacrylamide (S12). White solid (78% yield); m.p. = 93.0–95.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.15 (s, 2H), 4.99–4.95 (m, 2H), 4.57 (s, 2H), 3.90 (s, 3H), 1.93 (t, *J* = 1.2 Hz, 3H), 1.44 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 151.1, 142.8, 137.8, 129.6, 126.3, 113.6, 60.7, 57.8, 49.5, 28.7, 20.8; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₆H₂₂Cl₂NO₂⁺: 330.1022, Found: 330.1024.

N-(*tert*-Butyl)-*N*-(3,5-dibromo-4-methoxybenzyl)methacrylamide (S13). White solid (69% yield); m.p. = 57.5–60.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (s, 2H), 4.99–4.95 (m, 2H), 4.59 (s, 2H), 3.89 (s, 3H), 1.94 (t, *J* = 1.2 Hz, 3H), 1.44 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 174.4, 152.9, 142.7, 138.9, 130.0, 118.3, 113.5, 60.6, 57.8, 49.2, 28.6, 20.7; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₆H₂₂Br₂NO₂⁺: 418.0012, Found: 418.0014.

N-(*tert*-Butyl)-*N*-(4-methoxy-2,3,6-trimethylbenzyl)methacrylamide (S14). White solid (52% yield); m.p. = 77.5–79.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.55–6.49 (m, 1H), 5.17–5.10 (m, 2H), 4.65 (s, 2H), 3.79–3.78 (m, 3H), 2.37–2.31 (m, 3H), 2.28–2.21 (m, 3H), 2.12–2.11 (m, 3H), 1.73 (t, J = 1.2 Hz, 3H), 1.36–1.19 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 156.2, 156.0, 144.1, 137.0, 136.8, 134.8, 134.5, 129.4, 127.5, 123.2, 122.9, 115.9,

110.7, 110.3, 57.6, 55.5, 55.4, 50.4, 47.4, 40.7, 28.9, 28.5, 26.9, 21.4, 19.9, 19.0, 16.8, 15.4, 11.9, 11.8; HRMS (ESI) ($[M+H]^+$) Calcd. For C₁₉H₃₀NO₂⁺: 304.2271, Found: 304.2271.

References

- 1. K. Yu, X. Kong, J. Yang, G. Li, B. Xu and Q. Chen, J. Org. Chem., 2021, 86, 917–928.
- T. Liu, Y. Li, L. Jiang, J. Wang, K. Jin, R. Zhang and C. Duan, Org. Biomol. Chem., 2020, 18, 1933–1939.
- 3. L. Yuan, S. Jiang, Z. Li, Y. Zhu, J. Yu, L. Li, M. Li, S. Tang and R. Sheng, *Org. Biomol. Chem.*, 2018, **16**, 2406–2410.
- 4. Z. Zhang, X. Tang and W. R. Dolbier, Jr., Org. Lett., 2016, 18, 1048–1051.

9. NMR Spectra for the Obtained Compounds

Compound 19

Compound 23'

Compound 36

