Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Single-Iron, Cobalt, Nickel and Copper-Atom Catalysts for Selective Reduction of Oxygen to H₂O₂

Cuizhu Ye, ^{a,b} Yongfang Zhou, ^{a,b} Hongying Li^d and Yi Shen ^{*a,b,c}

^aSchool of Food Science and Engineering, South China University of Technology,

Guangzhou 510640, China

^bChina-Singapore International Joint Research Institute, Guangzhou Knowledge City,

Guangzhou 510663, China

°Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition

and Human Health (111 Center), Guangzhou, 510640, China

^dInstitute of High-Performance Computing, Agency for Science, Technology and

Research, 138632, Singapore.

*Corresponding author, Email: feyshen@scut.edu.cn

List of Contents:

Chemicals

Characterization

9 tables

25 figures

Experimental section

Chemicals

Anhydrous ethanol was purchased from the Nanjing Chemical Reagent Co., Ltd. (Nanjing, China). Isopropyl alcohol was purchased from Tianjin Fuyu Fine Chemical Co., Ltd. Hydrochloric acid, sulfuric acid, nitric acid and hydrogen peroxide 30% were provided by Guangdong chemical factory. Sodium dodecyl benzene sulfonate (SDBS, C₁₈H₂₉NaO₃S) was purchased from the Shanghai Lingfeng Chemical Reagent Co., Ltd.

Nickel nitrate was purchased from the Tianjin Damao Chemical Reagent Factory (Tianjin, China). Cupric nitrate trihydrate was purchased from Saen Chemical technology Co., Ltd. Iron nitrate nonahydrate, cobalt nitrate hexahydrate, furfural (99%), cyanamide (50% aqueous solution containing 0.25% methyl formate stabilizer), were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. Titanic sulfate (Ti(SO₄)₂, \geq 96%), potassium hydroxide (99.99% electronic grade) and copper nanoparticles (Cu NPs, 99.9% metals basis) were purchased from Shanghai Macklin Biochemical Co., Ltd. Nitrogen and oxygen (purity > 99.99%) were purchased from the Guangzhou Yuejia Gas Co., Ltd. (Guangzhou, China). Nafion solution (20%) was purchased from the Chemours Company FC, LLC. The 18.25 MΩ/cm deionized water was produced by an ultra-pure water system (WP-UP-YJ-40, Sichuan, China).

Characterization

A transmission electron microscope (TEM, FEI Tecnai F30) was used to observe the morphology of the samples. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) was conducted on an alternative microscope (ARM200F JEOL). The metal content in the catalyst was quantified by inductively coupled plasma - optical emission spectrometer (ICP-OES). The crystal structures of the catalysts were revealed by X-ray diffraction (XRD, D8 advance, polycrystalline powder diffraction). Raman spectra was recorded on Renishaw InVia Raman spectrometer with the laser source 532 nm. The Brunauer–Emmett–Teller (BET) surface area and pore size distribution of samples were determined by TriStar II 3020.

Sample	Metal content by ICP (wt. %)
Fe/NCNSs	0.31
Co/NCNSs	0.24
Ni/NCNSs	0.26
Cu/NCNSs	0.34

Table S1 Metal contents in the samples as determined by ICP-AES

_

_

Course los	Г	oisk electroo	le	Ring electrode				
Samples	КОН	HClO ₄	PBS	КОН	HClO ₄	PBS		
Fe/NCNSs	0.72	0.70	0.70	0.69	0.77	0.73		
Co/NCNSs	0.74	0.76	0.75	0.68	0.71	0.77		
Ni/NCNSs	0.77	0.69	0.75	0.77	0.68	0.75		
Cu/NCNSs	0.75	0.76	0.76	0.76	0.82	0.77		
NCNSs	0.74	0.75	0.72	0.70	0.80	0.72		
CuNPs	0.65	0.29	0.31	0.66	0.025	0.12		
GCE	0.63	0.69	0.48	0.72	0.50	0.55		

Table S2 Onset potentials of the catalysts in 0.1 M KOH, $HClO_4$ and PBS solutions

Catalaat	Catalyst loading	J _L or J _{0.1 V} (Disk,	J _L or J _{0.1 V} (Ring,		Potential	Productivity	Stability	Deferrer
Catalyst	$(\mu g/cm^2)$	mA cm ⁻²)	mA cm ⁻²)	H ₂ O ₂ %		(mol/g/L/h)	test	Kelerence
Cu/NCNSs	100	2.5	2.15	96~100%	$0.1 \sim 0.6 \ V$	5.1	20 h	This work
		(0.53 mA)	(0.45 mA)			(204 mmol/g/h)		
Mo ₂ CT _x :Fe	250	~1.7	~1.4	67 ~ 100%	$0.2\sim 0.7~\rm V$	NA	4 h	J. Am. Chem. Soc. 2021, 143,
								5771-57781
CuO _x /G-30	NA	~1.6	NA	76~84%	$0.4\sim 0.7~\rm V$	NA	~8.3 h	Chem. Commun., 2021,
								57, 41182
MCHS-9:1	100	3.0	0.8	56%	$0.4\sim 0.8~{\rm V}$	NA	2500 cycles	ACS Catal. 2020, 10, 7434–7442 ³
Co-N-C	100	3.8	0.13 mA	$60 \sim 70\%$	$0.1\sim 0.5 \ V$	193.1 mmol/g/h	3 h	J. Am. Chem. Soc. 2019, 141,
								12372-123814
FA-15TRZ	232	NA	NA	NA		0.5 mmol/g/h	NA	Catal. Today 2020, 356, 132–140 ⁵
Ni MOF NSs-	NA	0.65 mA	0.175 mA	~ 98%	$0.2\sim 0.6 \ V$	80 mmol/g/h	20000	Angew. Chem. Int. Ed. 2021, 60, 11190-
6							cycles	111956
Mo ₁ /OSG-H	100	2.78	0.2 mA	95%	$0.35\sim 0.75$	NA	8 h	Angew. Chem. Int. Ed. 2020, 59, 9171-
					V			91767
Co-POC-O	100	$\sim 0.57 \text{ mA}$	$\sim 0.35 \text{ mA}$	~ 85.6%	$0.5\sim 0.8 \ V$	$813 \text{ mg } \mathrm{L}^{-1} \mathrm{h}^{-1}$	10 h	Adv. Mater. 2019, 31, 1808173 ⁸
Fe-N-C	100	4	NA	32%	$0.1\sim 0.8~{\rm V}$	NA	1000 cycles	Angew. Chem. Int. Ed. 2017, 56, 8809 –
								88129
S-MC-1	255	2.373	0.065 mA	$70 \sim 80\%$	-0.3 ~ 0.4	NA	NA	Carbon 2015, 95, 949-963 ¹⁰
					V			
MesoC	510	4	2	60~80%	$0.2 \sim 0.7 \ V$	NA	11000	ACS Sustainable Chem. Eng. 2018, 6,
							cycles	311-317 ¹¹
Printex B	810	0.3 mA	0.010 mA	82~92%	$0.1 \sim 1.0 \ V$	NA	NA	Electrocatalysis 2016, 7, 60–69 ¹²

Table S3 Summary of the performance of the electrocatalysts for H_2O_2 production in alkaline media

O-CNTs	200	0.54 mA	0.41 mA	~ 90%	$0.4 \sim 0.7 \ V$	NA	NA	Nat. Catal. 2018, 1, 156–162 ¹³
CNTs	200	0.35 mA	0.14 mA	~ 60%	$0.4 \sim 0.7 \ V$	NA	NA	Nat. Catal. 2018, 1, 156–162 ¹³
BN-C1	510	3.5	2.1	60 ~ 90%	$0.2 \sim 0.8 \text{ V}$	NA	50 h	J. Am. Chem. Soc. 2018, 140,
								7851-785914
Urea-C ₃ N ₄	NA	0.4 mA	0.1 mA	88 ~ 90 %	$0.1 \sim 0.6 \text{ V}$	56.3	~ 24 h	Adv. Mater. Interfaces 2022, 9, 2201325 ¹⁵
6h-Pd/TiC	100	~ 2.3	~ 1.7	82~90%	$0.1\sim 0.7~{\rm V}$	594 mg L^{-1} h ⁻¹	10 h	J. Am. Chem. Soc. 2022, 144,
								2255-226316
In SAs/NSBC	100	0.7 mA	0.208 mA	~ 95%	$0.4 \sim 0.7 \ V$	6.49 mol/g/h	12 h	Angew. Chem. Int. Ed. 2022, 61,
						By PEMFC		e202117347 ¹⁷
COF-366-Co	350	2.5	0.8	< 91%	0.3 V	909 mmol/g/h	3 h	J. Am. Chem. Soc. 2020, 142,
						on GDE		21861-2187118

Note: J_L is the limited current density. NA, this data is not available.

Cotolyst	Catalyst	Onset	J_L or $J_{-0.2V}$	$J_{\rm L}$ or $J_{-0.2\rm V}$	но%	Productivity	Stability	electrolyte	Deference
Catalyst	$loading(\mu g/cm^2)$	potential(V)	(Disk, mA cm ⁻²)	(Ring, mA cm ⁻²)	1120270	(mol/g/L/h)	test		Kelefence
Cu/NCNSs	102	0.76	2.0 (0.39 mA)	0.9 (0.18 mA)	70~81	3.2	20 h	0.1 M HClO ₄	This work
GO-250	NA	0	NA	0.33	> 62.5	NA	2 h	$0.1 \text{ M Na}_2 \text{SO}_4$ and	ChemSusChem 2016, 9, 1194 –
								$H_2SO_4 (pH 3)$	1199 ¹⁹
S-MC	255	~ 0.3	0.45 mA	0.07 mA	> 68	NA	NA	0.5 M H ₂ SO ₄	Carbon 2015, 95, 949e963 ¹⁰
Co-N-C	100	0.83	2.97 (at 0.1 V)	0.18 mA (at 0.1 V)	< 80	90.9	6 h	0.5 M H ₂ SO ₄	J. Am. Chem. Soc. 2019, 141,
						mmol/g/h			12372-123814
Pt-Hg/C	23	NA	3.0	~ 0.6	65~90	NA	8000	0.1 M HClO ₄	Nat. Mater. 2013, 12, 1137-
							cycles		1143 ²⁰
O-CNTs	200	0.28	0.44 mA	0.15 mA	~ 50	NA	NA	0.1 M HClO ₄	Nat. Catal. 2018, 1, 156–162 ¹³
MoTe ₂	10	0.56	2.25	0.13 mA	< 93	NA	~12 h	0.5 M H ₂ SO ₄	National Science Review 2020,
									7, 1360–1366 ²¹
Co ₁ -	1000	0.7	2.1	0.9	40~50	NA	NA	0.1 M HClO ₄	Nat. Mater. 2020, 19, 436-442 ²²
NG(O)									
Note:	1	NA,	this		data		is	not	available.

Table S4 Summary of the performance of the electrocatalysts for H_2O_2 production in acidic media

Catalyst	Catalyst	Onset	$J_{\rm L}$ or $J_{\text{-}0.2\rm V}$	$J_{\rm L}~{\rm or}~J_{-0.2\rm V}$	ЦО%	Productivity	Stability	electrolyte	Deference
Catalyst	$loading(\mu g/cm^2)$	potential(V)	(Disk, mA cm ⁻²)	(Ring, mA cm ⁻²)	H ₂ O ₂ 70	(mol/g/L/h)	test		Kelelelice
Cu/NCNSs	102	0.76	1.64 (0.32 mA)	0.89 (0.18 mA)	70~81	2.2	20 h	0.1 M PBS	This work
						(86.4 mmol/g/h)			
MNC-600	NA	0.71	1.4	0.09 mA	30~85.4	9.6 mmol/g/h	NA	0.1 M K ₂ HCO ₃	ChemElectroChem 2022, 9,
									e202101336 ²³
Co-TPP	NA	~ 0.8	1.0	0.1	43 ~ 79	NA	NA	0.1 M PBS	Angew. Chem. Int. Ed. 2020, 59,
									$4902 - 4907^{24}$
MicroC	510	0.5	3	~ 1.0	$40 \sim 80$	NA	NA	0.1 M PBS	ACS Sustainable Chem. Eng.
									2018, 6, 311-31711
Co ₁ -	10	~ 0.7	2.6	1.25	$60 \sim 70$	NA	NA	0.1 M PBS	Nat. Mater. 2020, 19, 436-442 ²²
NG(O)									
Mo ₁ /OSG-	100	~ 0.6	3	0.13	77	NA	NA	pH 8.7	Angew. Chem. Int. Ed. 2020, 59,
Н									9171–9177
Co-N-C	100	~ 0.6	3.8	0.13	55	89.8	NA	0.1 M K ₂ SO ₄	J. Am. Chem. Soc. 2019, 141,
									12372-123814
Pd _x -NC	162	~ 0.7	3.3	0.35	> 30	NA	NA	0.1 M PBS	ACS Catal. 2022, 12,
									4156-4164 ²⁵

Table S5 Summary of the performance of the electrocatalysts for H_2O_2 production in neutral media

Samulas			KOH			HClO ₄					PBS						
Samples	0.1 V	0.2 V	0.3 V	0.4 V	0.5 V	-0.2 V	-0.1 V	0 V	0.1V	0.2 V	0.3 V	-0.2 V	-0.1 V	0 V	0.1 V	0.2 V	0.3 V
Fe/NCNSs	7.1	4.9	3.1	1.9	1.0	1.08	0.56	0.34	0.24	0.19	0.16	2.47	2.25	1.91	1.30	0.72	0.38
Co/NCNSs	9.4	6.0	3.5	1.9	1.0	2.64	1.74	1.17	0.85	0.66	0.50	-	2.69	2.32	1.76	1.15	0.70
Ni/NCNSs	8.3	6.0	4.3	3.1	2.1	3.03	2.06	1.27	0.80	0.49	0.29	2.90	2.63	2.31	1.83	1.26	0.76
Cu/NCNSs	18.2	11.6	7.1	4.3	2.3	4.09	2.66	1.39	0.75	0.52	0.38	2.87	2.68	2.37	1.82	1.22	0.75
NCNSs	5.0	3.8	2.7	1.6	0.9	2.17	1.40	0.95	0.71	0.53	0.38	2.81	2.57	2.23	1.63	0.98	0.54

Table S6 J_k values of the samples at different potentials in 0.1 M KOH, HClO₄ and PBS solutions

Catalyst	2	H ₂ C	O_2 selectivity (%)		$\mathbf{J}_{\mathbf{k}}$			n		1. (Q/)	м
Catalyst	8	КОН	HClO ₄	PBS	КОН	HClO ₄	PBS	КОН	HClO ₄	PBS	W (70)	IVI
	0.1 V	83.1	80	76.4	7.1	0.24	1.30	2.34	2.40	2.39		
	0.2 V	86.6	78.9	78.8	4.9	0.19	0.72	2.27	2.42	2.30		
Fe/NCNSs	0.3 V	90.2	76.6	80.3	3.1	0.16	0.38	2.19	2.47	2.19	0.31	56.0
	0.4 V	91.3	75.2	81.9	1.9	-	-	2.17	2.50	2.02		
	0.5 V	92.9	71.6	81.6	1.0	-	-	2.14	2.57	1.86		
	0.1 V	88.4	43.7	67.0	9.4	0.85	1.76	2.23	3.12	2.55		
	0.2 V	90.0	43.6	69.2	6.0	0.66	1.15	2.20	3.12	2.47		
Co/NCNSs	0.3 V	91.3	43.8	69.9	3.5	0.50	0.70	2.17	3.12	2.40	0.24	58.9
	0.4 V	91.4	44.8	67.5	1.9	-	-	2.17	3.10	2.35		
	0.5 V	91.4	46.1	65.9	1.0	-	-	2.17	3.08	2.26		
	0.1 V	80.1	42.6	66.9	8.3	0.80	1.83	2.40	3.14	2.59		
	0.2 V	85.8	48.7	68.2	6.0	0.49	1.26	2.28	3.03	2.54		
Ni/NCNSs	0.3 V	88.3	56.5	70.2	4.3	0.29	0.76	2.23	2.87	2.47	0.26	58.7
	0.4 V	88.7	61.3	76.5	3.1	-	-	2.23	2.77	2.25		
	0.5 V	91.4	55.8	82.0	2.1	-	-	2.17	2.88	1.92		
	0.1 V	95.6	80.9	75.8	18.2	0.75	1.82	2.09	2.38	2.48		
Cu/NCNSs	0.2 V	97.7	78.5	76.5	11.6	0.52	1.22	2.05	2.43	2.47		
	0.3 V	98.6	76.7	77.7	7.1	0.38	0.75	2.03	2.47	2.45	0.34	63.5
	0.4 V	98.7	75.5	78.2	4.3	-	-	2.03	2.49	2.44		
	0.5 V	99.7	67.2	82.6	2.3	-	-	2.00	2.65	2.36		

Table S7 Selectivity, J_k , w and M values of the catalysts in acidic, neutral and alkaline media at 1600 rpm on RRDE

Samulas			КОН				HClO ₄		PBS		
Samples	0.1 V	0.2 V	0.3 V	0.4 V	0.5 V	0.1 V	0.2 V	0.3 V	0.1 V	0.2 V	0.3 V
Fe/NCNSs	4.6	3.4	2.3	1.5	0.8	0.15	0.11	0.09	0.76	0.45	0.25
Co/NCNSs	9.3	6.1	3.7	2.0	1.0	0.29	0.23	0.17	1.15	0.80	0.51
Ni/NCNSs	6.3	5.2	3.9	2.8	2.0	0.25	0.18	0.13	1.08	0.77	0.49
Cu/NCNSs	15.8	10.5	6.5	4.0	2.2	0.48	0.32	0.22	1.06	0.72	0.45

Table S8 TOF values of the samples in 0.1 M KOH, $HClO_4$ and PBS solutions

Detentiala	Production in	$KOH (mol g^{-1} L^{-1} h^{-1})$
Potentials	6 h	average
0 V	21.5	3.5
0.2 V	27.2	4.5
0.3 V	24.6	4.1

Table S9 $\rm H_2O_2$ yield rates at 0, 0.2 and 0.3 V in 0.1 M KOH solutions

_

Figure S1 Structural characterization of Co single atoms catalysts. TEM image (a), high-resolutionTEM image (b), SEM image and the corresponding elemental mapping images of carbon, nitrogenandcobalt(c)oftheCo/NCNSs.

Figure S2 N_2 adsorption-desorption isotherm of the Fe/NCNSs (a) and corresponding pore size distribution (b).

Figure S3 N_2 adsorption-desorption isotherm of the Co/NCNSs (a) and corresponding pore size distribution (b).

Figure S4 N_2 adsorption-desorption isotherm of the Ni/NCNSs (a) and corresponding pore size distribution (b).

Figure S5 N_2 adsorption-desorption isotherm of the Cu/NCNSs (a) and corresponding pore size distribution (b).

Figure S6 N_2 adsorption-desorption isotherm of the NCNSs (a) and corresponding pore size distribution (b).

Figure S7 Cyclic voltammetry curves of (a) Fe/NCNSs, (b) Co/NCNSs, (c) Ni/NCNSs, (d) Cu/NCNSs, (e) NCNSs and (f) blank GCE acquired in O₂-saturated and N₂-saturated 0.1 M KOH

at	а	scan	rate	of	50	mV	s ⁻¹ .
		Deall	1000	01	20	111 /	•••

Figure S8 Cyclic voltammetry curves of (a) Fe/NCNSs, (b) Co/NCNSs, (c) Ni/NCNSs, (d)Cu/NCNSs, (e) NCNSs and (f) blank GCE acquired in O_2 -saturated and N_2 -saturated 0.1 M HClO₄atascanrateof50mVs^{-1}.

Figure S9 Cyclic voltammetry curves of (a) Fe/NCNSs, (b) Co/NCNSs, (c) Ni/NCNSs, (d) Cu/NCNSs, (e) NCNSs and (f) blank GCE acquired in O_2 -saturated and N_2 -saturated 0.1 M PBS at a scan rate of 50 mV s⁻¹.

Figure S10 CV curves of Cu/NCNSs, NCNSs and GCE recorded in 0.1 M KOH (a), HClO₄ (b) and

PBS

solutions

(c).

Figure S11 CV curves of Cu NPs recorded in O₂/N₂-saturated 0.1 M KOH (a), 0.1 M HClO₄ (b)

and 0.1 M PBS (c) solutions.

Figure S12 Calibration of the RRDE collection efficiency. (a) potentiodynamic curves recorded on the glassy carbon disk electrode and potentiostatic curves recorded on the platinum ring electrode in 1.0 M KCl + 10 mM K_3 [Fe(CN)₆] at rotation rates between 400 and 2500 rpm. (b) collection efficiency of the RRDE determined by the redox of K_3 [Fe(CN)₆].

Figure S13 Cyclic voltammetry curves of the Fe/NCNSs (a), Co/NCNSs (b), Ni/NCNSs (c),

Cu/NCNSs (d) and NCNSs (e) recorded with different scan rates in 0.1 M KOH solutions.

Figure S14 Cyclic voltammetry curves of Fe/NCNSs (a), Co/NCNSs (b), Ni/NCNSs (c),

Cu/NCNSs (d) and NCNSs (e) recorded with different scan rates in 0.1 M HClO₄ solutions.

Figure S15 Cyclic voltammetry curves of Fe/NCNSs (a), Co/NCNSs (b), Ni/NCNSs (c),

Cu/NCNSs (d) and NCNSs (e) recorded with different scan rates in 0.1 M PBS solutions.

Figure S16 C_{dl} values of the samples in 0.1 M KOH solutions (a), 0.1 M HClO₄ solutions (b) and 0.1 M PBS solutions (c).

Figure S17 Polarization curves of GCE, Cu NPs and Cu/NCNSs recorded from the RRDE in 0.1 MKOH(a),0.1MHClO₄(b)and0.1MPBS(c).

Figure S18 H_2O_2 selectivity and electron transfer number of GCE, Cu NPs and Cu/NCNSs in O_2 -saturated 0.1 M KOH (a), 0.1 M HClO₄ (b) and 0.1 M PBS (c).

Figure S19 Disk polarization curve of Fe/NCNSs recorded in O_2 saturated 0.1 M KOH (a), 0.1M HClO4 solution (b) and 0.1 M PBS (c) at different rotation rates between 400 rpm and 2500rpm, and corresponding K-L plots at different potentials in 0.1 M KOH (d), 0.1 M HClO4 (e)and0.1MPBS (f).

Figure S20 Disk polarization curve of Co/NCNSs recorded in O_2 saturated 0.1 M KOH (**a**), 0.1 M HClO₄ solution (**b**) and 0.1 M PBS (**c**) at different rotation rates between 400 rpm and 2500 rpm, and the corresponding K-L plots at different potentials in 0.1 M KOH (**d**), 0.1 M HClO4

(e) and 0.1 M PBS (f).

Figure S21 Disk polarization curve of Ni/NCNSs recorded in O_2 saturated 0.1 M KOH (a), 0.1M HClO4 solution (b) and 0.1 M PBS (c) at different rotation rates between 400 rpm and 2500rpm, and corresponding K-L plots at different potentials in 0.1 M KOH (d), 0.1 M HClO4 (e)and0.1MPBS (f).

Figure S22 Disk polarization curve of NCNSs recorded in O_2 saturated 0.1 M KOH (a), 0.1 MHClO4 solution (b) and 0.1 M PBS (c) at different rotation rates between 400 rpm and 2500rpm, and corresponding K-L plots at different potentials in 0.1 M KOH (d), 0.1 M HClO4 (e)and0.1MPBS(f).

Figure S23 Tafel plots of Cu/NCNSs on the disk (a) and ring (b) electrodes at a rotating rate of 1600 rpm in the O_2 -satureted KOH, HClO₄ and PBS media.

Figure S24 Polarization curve of Cu/NCNSs recorded in 0.1 M KOH (a), 0.1 M HClO₄ (b) and

0.1 M PBS (c) solutions, and the corresponding selectivity in 0.1 M KOH (d), 0.1 M HClO₄ (e)

and 0.1 M PBS (f).

Figure S25 A typical UV curve of H_2O_2 scanning spectrum (a), and standard curve of H_2O_2 determinedbytitaniumsulfatespectrophotometricmethod(b).

References

- 1 D. A. Kuznetsov, Z. Chen, P. M. Abdala, O. V. Safonova, A. Fedorov and C. R. Müller, J. Am. Chem. Soc., 2021, 143, 5771–5778.
- 2 H. Xiao, B. Li, M. Zhao, Y. Li, T. Hu, J. Jia and H. Wu, Chem. Commun., 2021, 57, 4118-4121.
- 3 Y. Pang, K. Wang, H. Xie, Y. Sun, M.-M. Titirici and G.-L. Chai, ACS Catal., 2020, 10, 7434– 7442.
- Y. Sun, L. Silvioli, N. R. Sahraie, W. Ju, J. Li, A. Zitolo, S. Li, A. Bagger, L. Arnarson, X. Wang, T. Moeller, D. Bernsmeier, J. Rossmeisl, F. Jaouen and P. Strasser, *J. Am. Chem. Soc.*, 2019, 141, 12372–12381.
- 5 E. Chen, M. Bevilacqua, C. Tavagnacco, T. Montini, C.-M. Yang and P. Fornasiero, *Catal. Today*, 2020, **356**, 132–140.
- 6 M. Wang, X. Dong, Z. Meng, Z. Hu, Y. Lin, C. Peng, H. Wang, C. Pao, S. Ding, Y. Li, Q. Shao and X. Huang, *Angew. Chem. Int. Ed.*, 2021, 60, 11190–11195.
- 7 C. Tang, Y. Jiao, B. Shi, J. Liu, Z. Xie, X. Chen, Q. Zhang and S. Qiao, *Angew. Chem. Int. Ed.*, 2020, **59**, 9171–9176.
- 8 B. Li, C. Zhao, J. Liu and Q. Zhang, Adv. Mater., 2019, 31, 1808173.
- 9 C. H. Choi, W. S. Choi, O. Kasian, A. K. Mechler, M. T. Sougrati, S. Brüller, K. Strickland, Q. Jia, S. Mukerjee, K. J. J. Mayrhofer and F. Jaouen, *Angew. Chem. Int. Ed.*, 2017, 56, 8809–8812.
- 10 V. Perazzolo, C. Durante, R. Pilot, A. Paduano, J. Zheng, G. A. Rizzi, A. Martucci, G. Granozzi and A. Gennaro, *Carbon*, 2015, 95, 949–963.
- 11 S. Chen, Z. Chen, S. Siahrostami, T. R. Kim, D. Nordlund, D. Sokaras, S. Nowak, J. W. F. To, D. Higgins, R. Sinclair, J. K. Nørskov, T. F. Jaramillo and Z. Bao, *ACS Sustainable Chem. Eng.*, 2018, 6, 311–317.
- 12 A. Moraes, M. H. M. T. Assumpção, F. C. Simões, V. S. Antonin, M. R. V. Lanza, P. Hammer and M. C. Santos, *Electrocatalysis*, 2016, 7, 60–69.
- 13 Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu, T. F. Jaramillo, J. K. Nørskov and Y. Cui, *Nat. Catal.*, 2018, 1, 156–162.
- 14 S. Chen, Z. Chen, S. Siahrostami, D. Higgins, D. Nordlund, D. Sokaras, T. R. Kim, Y. Liu, X. Yan, E. Nilsson, R. Sinclair, J. K. Nørskov, T. F. Jaramillo and Z. Bao, *J. Am. Chem. Soc.*, 2018, 140, 7851–7859.
- 15 X. Yang, Y. Zeng, W. Alnoush, Y. Hou, D. Higgins and G. Wu, Adv. Mater., 2022, 34, 2107954.
- 16 J. Zhang, J. Ma, T. S. Choksi, D. Zhou, S. Han, Y.-F. Liao, H. B. Yang, D. Liu, Z. Zeng, W. Liu, X. Sun, T. Zhang and B. Liu, J. Am. Chem. Soc., 2022, 144, 2255–2263.
- 17 E. Zhang, L. Tao, J. An, J. Zhang, L. Meng, X. Zheng, Y. Wang, N. Li, S. Du, J. Zhang, D. Wang and Y. Li, *Angew. Chem. Int. Ed.*, 2022, **61**, e202117347.
- 18 C. Liu, H. Li, F. Liu, J. Chen, Z. Yu, Z. Yuan, C. Wang, H. Zheng, G. Henkelman, L. Wei and Y. Chen, J. Am. Chem. Soc., 2020, 142, 21861–21871.
- 19 C.-Y. Chen, C. Tang, H.-F. Wang, C.-M. Chen, X. Zhang, X. Huang and Q. Zhang, *ChemSusChem*, 2016, 9, 1194–1199.
- 20 S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida, B. Wickman, M. Escudero-Escribano, E. A. Paoli, R. Frydendal, T. W. Hansen, I. Chorkendorff, I. E. L. Stephens and J. Rossmeisl, *Nat. Mater.*, 2013, **12**, 1137–1143.
- 21 X. Zhao, Y. Wang, Y. Da, X. Wang, T. Wang, M. Xu, X. He, W. Zhou, Y. Li, J. N. Coleman

and Y. Li, Natl. Sci. Rev., 2020, 7, 1360-1366.

- 22 E. Jung, H. Shin, B.-H. Lee, V. Efremov, S. Lee, H. S. Lee, J. Kim, W. Hooch Antink, S. Park, K.-S. Lee, S.-P. Cho, J. S. Yoo, Y.-E. Sung and T. Hyeon, *Nat. Mater.*, 2020, **19**, 436–442.
- 23 S. Mehta, D. Gupta and T. C. Nagaiah, ChemElectroChem, 2022, 9, e202101336.
- 24 P. T. Smith, Y. Kim, B. P. Benke, K. Kim and C. J. Chang, *Angew. Chem. Int. Ed.*, 2020, **59**, 4902–4907.
- 25 N. Wang, X. Zhao, R. Zhang, S. Yu, Z. H. Levell, C. Wang, S. Ma, P. Zou, L. Han, J. Qin, L. Ma, Y. Liu and H. L. Xin, *ACS Catal.*, 2022, **12**, 4156–4164.