Supplementary Information for

Robust Ionic Liquid/Ethanolamine-Superbase Solvents Enable Rapid, Efficient

and Mild Dissolution of Lignocellulosic Biomass

Yang Wang,^a Huan Wang,^b Lan Chen,^a Weitao Wang,^b Zhaohui Yang,^c Zhimin Xue^{*a} and Tiancheng Mu^{*c}

^a Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing,

100083, China.

^b Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical

Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.

^c Department of Chemistry, Renmin University of China, Beijing 100872, China.

*Corresponding author: <u>zmxue@bjfu.edu.cn (Z. Xue)</u>, <u>tcmu@ruc.edu.cn (T. Mu)</u>

Kamlet-Taft LSER method

•

The linear relationship between lignin solubility and KT parameter was determined by fitting a linear solvation energy relationship (LSER) using multiple linear regression according to our previous work and other literature.^{1, 2} In this work, the maximum p-value used was 0.05, and multiple linear regression was expressed by the following equation:

$$\ln S = XYZ_0 + a\alpha + b\beta + c\pi^*$$
(1)

where a, b and c are coefficients of each parameter and XYZ₀ is intercept. Multiple linear regressions were performed on all the different variables [(α , β , π^*), (α , β), (α , π^*), (β , π^*), (α), (β), (π^*)] to determine the coefficients, and correlations were accepted if the variables all proved statistically significant (p<0.05). Otherwise, there is no correlation.

Table S1 Solubilities (g/100 g solvent) of lignocellulose in various neat ILs and EAsuperbase mixtures at 90 °C.

Solvent systems	Solubility ^a
EA-DBN	< 1.0
EA-DBU	< 1.0
EA-TMG	< 1.0
EmimOAc	1.5 (±0.15)
PmimOAc	1.0 (±0.15)
BmimOAc	< 1.0
AmimOAc	< 1.0
EmimCl	< 1.0
PmimCl	< 1.0
BmimCl	< 1.0
AmimCl	< 1.0
^a Values of solubilit	ty were the average of twice
measurements.	

Table S2 Solubilities (g/100 g solvent) of lignocellulose in various IL/EA-superbase systems (1:1) at 90 °C.

Solvent systems	Solubility ^a	Solvent systems	Solubility ^a	Solvent systems	Solubility ^a
EmimOAc/EA-DBN	9.5 (±0.35)	EmimOAc/EA-DBU	8.6 (±0.30)	EmimOAc/EA-TMG	7.0 (±0.25)
PmimOAc/EA-DBN	9.0 (±0.32)	PmimOAc/EA-DBU	8.1 (±0.30)	PmimOAc/EA-TMG	6.6 (±0.22)
BmimOAc/EA-DBN	3.2 (±0.15)	BmimOAc/EA-DBU	2.8 (±0.12)	BmimOAc/EA-TMG	< 1.0
AmimOAc/EA-DBN	3.0 (±0.15)	AmimOAc/EA-DBU	2.2 (±0.10)	AmimOAc/EA-TMG	< 1.0
EmimCl/EA-DBN	8.0 (±0.28)	EmimCl/EA-DBN	_b	EmimCl/EA-TMG	_b
PmimCl/EA-DBN	7.3 (±0.25)	PmimCl/EA-DBU	_b	PmimCl/EA-TMG	1.2 (±0.12)
BmimCl/EA-DBN	4.0 (±0.18)	BmimCl/EA-DBU	3.2 (±0.15)	BmimCl/EA-TMG	< 1.0
AmimCl/EA-DBN	1.8 (±0.15)	AmimCl/EA-DBU	_b	AmimCl/EA-TMG	_b
^a Values of colubility was	ro the overage o	f twice maggirements			

^aValues of solubility were the average of twice measurements. ^bThe solubility of lignocellulose was not detected because the IL and EA-superbase did not form a homogeneous solvent.

Solvent systems	Solubility ^a	Solvent systems	Solubility ^a	Solvent systems	Solubility ^a	Solvent systems	Solubility ^a
EmimOAc/EA	6.5 (±0.22)	EmimOAc/DBN	4.3 (±0.18)	EmimOAc/DBU	_b	EmimOAc/TMG	_b
PmimOAc/EA	6.2 (±0.22)	PmimOAc/DBN	4.0 (±0.15)	PmimOAc/DBU	_b	PmimOAc/TMG	1.0 (±0.10)
BmimOAc/EA	< 1.0	BmimOAc/DBN	1.2 (±0.10)	BmimOAc/DBU	< 1	BmimOAc/TMG	_b
AmimOAc/EA	< 1.0	AmimOAc/DBN	1.0 (±0.10)	AmimOAc/DBU	_b	AmimOAc/TMG	_b
EmimCl/EA	2.0 (±0.10)	EmimCl/DBN	_b	EmimCl/DBU	_b	EmimCl/TMG	_b
PmimCl/EA	1.0 (±0.10)	PmimCl/DBN	_b	PmimCl/DBU	_b	PmimCl/TMG	_b
BmimCl/EA	< 1.0	BmimCl/DBN	3.0 (±0.18)	BmimCl/DBU	_b	BmimCl/TMG	_b
AmimCl/EA	1.0 (±0.10)	AmimCl/DBN	_b	AmimCl/DBU	_b	AmimCl/TMG	_b
^a Values of solubility	y were the aver	age of twice measure	ements.				
^b The solubility of li	gnocellulose w	vas not detected becau	use the IL and th	e superbase did not f	orm a homog	eneous solvent.	

Table S3 Solubilities (g/100 g solvent) of lignocellulose in various IL/EA (1:1) and IL/superbase (1:1) systems at 90 °C.

		Solubility ^a	
Solvent systems	70 °C	80 °C	90 °C
EmimOAc/EA-DBN	4.5 (±0.16)	7.0 (±0.25)	9.5 (±0.35)
PmimOAc/EA-DBN	2.3 (±0.10)	5.5 (±0.2)	9.0 (±0.35)
EmimCl/EA-DBN	3.6 (±0.15)	6.0 (±0.22)	8.0 (±0.3)
PmimCl/EA-DBN	2.5 (±0.1)	5.0 (±0.2)	7.3 (±0.25)
EmimOAc/EA-DBU	4.0 (±0.18)	6.0 (±0.25)	8.6 (±0.35)
EmimOAc/EA-TMG	3.0 (±0.15)	4.8 (±0.2)	7.0 (±0.25)
^a Values of solubility were	the average of tw	vice measurements.	

Table S4 Solubilities (g/100 g solvent) of lignocellulose in different IL/EA-superbasesystems (1:1) at different temperatures.

Molar ratio	Solubility ^a
1:0	1.5 (±0.15)
5:1	4.0 (±0.2)
4:1	$6.0~(\pm 0.28)$
3:1	7.4 (±0.3)
2:1	8.5 (±0.32)
1:1	9.5 (±0.35)
1:2	9.0 (±0.35)
1:3	6.5 (±0.28)
1:4	3.6 (±0.2)
1:5	1.7 (±0.15)
0:1	< 1
^a Values of solubil	ity were the average of twice
measurements.	

Table S5 Solubilities (g/100 g solvent) of lignocellulose in EmimOAc/EA-DBNsystems with varied molar ratios at 90 °C.

Table S6 Chemical composition of sugarcane bagasse before and after pretreatment and the solubilities (g/100 g solvent) of treated lignocellulosic

Samples	Residue	Compos	ition of samples	(wt%)	Lignin	Hemicellulose	Solubi	ility ^a (g/100 g so	olvent)
Samples	(wt%)	Cellulose	Hemicellulose	Lignin	(%)	removal (%)	70 °C	80 °C	90 °C
Raw	-	40.04	26.49	21.94	-	-	4.5 (±0.16)	7.0 (±0.25)	9.5 (±0.35)
HF-lignocellulose ^b	60.5	61.78	6.26	33.67	7.15	85.74	6.4 (±0.20)	8.2 (±0.2)	11.8 (±0.42)
LF-lignocellulose ^c	65.15	58.12	34.80	5.34	84.15	14.41	8.5 (±0.30)	11.2 (±0.38)	15.0 (±0.45)
^a Values of solubility	were the a	verage of tw	vice measuremen	ts.					
^b Sample was obtaine	d by hydro	othermal pre	treatment at 190	°C for 20) min.				
^c Sample was obtaine	d by sodiu	m chlorite p	oretreatment.						

samples in EmimOAc/EA-DBN systems at different temperatures.

 Table S7 Solubilities (g/100 g solvent) of various lignocellulosic biomass in

 EmimOAc/EA-DBN system at 90 °C.

Lignocellulose	ignocellulose Solubility ^a					
Miscanthus giganteus	20.0 (±1.2)					
Sorghum straw	14.6 (±0.8)					
Corncob	10.3 (±0.5)					
Sugarcane bagasse	9.5 (±0.35)					
Moso bamboo	9.2 (±0.4)					
Wheat straw	5.5 (±0.5)					
Rice straw	5 (±0.5)					
Populus tomentosa	3.8 (±0.3)					
Pinus radiata	3.2 (±0.3)					
^a Values of solubility v	were the average of twice					
measurements.						

Solvent systems -	Kamlet-Taft parameters ^a					
Solvent systems	α	β	π^*			
EmimOAc	0.49	1.09	1.06			
PmimOAc	0.46	0.99	1.06			
BmimOAc	0.47	1.01	1.01			
AmimOAc	0.48	0.99	1.08			
EmimCl	_ ^b	_b	_b			
PmimCl	_ ^b	_b	_b			
BmimCl	_ ^b	_b	_b			
AmimCl	0.46	0.83	1.17			
EA-DBN	0.81	1.00	0.91			
EmimOAc/EA-DBN	0.51	1.12	1.00			
PmimOAc/EA-DBN	0.56	1.10	0.96			
BmimOAc/EA-DBN	0.63	1.01	1.04			
AmimOAc/EA-DBN	0.63	0.99	1.04			
EmimCl/EA-DBN	0.52	0.97	1.06			
PmimCl/EA-DBN	0.57	0.97	1.06			
BmimCl/EA-DBN	0.62	0.97	1.02			
AmimCl/EA-DBN	0.68	0.94	1.02			
^a The value of the corre	sponding Kamle	t-Taft parameter was the	he average of twice			
measurements. ^b The ILs	s were solid at roo	om temperature and car	not be tested.			

Table S8 The Kamlet-Taft parameters of IL/EA-DBN (1:1, mol/mol) systems and the parent solvent (neat ILs and EA-DBN).

Table S9 Result of K-T parameters LSER fits for the lignocellulose solubility in

Solvent systems	Parameters	LSER equation
	α	ln S=7.64-10.24α
	0	1 0 0 57 0 070

different of IL/EA-DBN systems.^a

Solvent systems	Parameters	LSER equation	p-values
	α	ln S=7.64-10.24α	XYZ ₀ =0.033, α=0.052
Acetate-based IL/EA-DBN	β	ln S=-8.57+9.27β	XYZ ₀ =0.011, β=0.008
	β-α	ln S=-0.72+5.07(β - α)	XYZ ₀ =0.182, β-α=0.021
	α	ln S=-7.29-9.67α	XYZ ₀ =0.024, α=0.036
Chloride-based IL/EA-	β	ln S=-37.95+41.00β	XYZ ₀ =0.113, β=0.105
DBN	β-α	$\ln S = -1.52 + 8.32(\beta - \alpha)$	XYZ ₀ =0.075, β-α=0.020
^a In this work, a maximum p	value was 0.05	, if values proved statistic	cally significant ($p < 0.05$),
the correlation was accepted.			

Solvent systems		ρ (g·cm ⁻³)		η (mPa·s)		0	o (mS·cm⁻¹	¹)	Λ (S·cm ² ·mo	ol ⁻¹)
Solvent systems	30 °C	50 °C	70 °C	30 °C	50 °C	70 °C	30 °C	50 °C	70 °C	30 °C	50 °C	70 °C
EmimOAc	1.098	1.087	1.074	120.52	52.95	24.50	2.970	4.978	7.776	0.460	0.779	1.232
EmimOAc/EA-DBN	1.063	1.050	1.038	54.03	30.50	18.80	4.401	5.894	7.490	0.491	0.665	0.855
PmimOAc	1.079	1.069	1.057	252.00	120.80	60.45	1.217	2.105	3.695	0.208	0.363	0.644
PmimOAc/EA-DBN	1.055	1.044	1.034	60.10	36.13	25.87	2.723	4.017	5.148	0.318	0.474	0.613
BmimOAc	1.091	1.080	1.068	509.87	266.60	113.00	0.515	0.921	1.712	0.094	0.169	0.318
BmimOAc/EA-DBN	1.062	1.050	1.037	302.90	144.10	77.87	1.118	1.960	3.208	0.142	0.239	0.395
AmimOAc	1.110	1.099	1.087	392.25	205.80	95.95	0.753	1.210	2.356	0.124	0.201	0.395
AmimOAc/EA-DBN	1.070	1.059	1.048	162.60	95.5	55.90	1.549	2.513	3.744	0.177	0.291	0.438
EmimCl	1.111	1.094	1.078	_ ^a	_ ^a	_ ^a	_ ^a	_ ^a	_ ^a	_ ^a	_ ^a	_ ^a
EmimCl/EA-DBN	1.066	1.056	1.044	94.95	54.40	25.00	3.433	4.851	7.294	0.356	0.508	0.773
PmimCl	1.078	1.062	1.046	_ ^a	_ ^a	_ ^a	_ ^a	_ ^a	_ ^a	_ ^a	_ ^a	_ ^a
PmimCl/EA-DBN	1.061	1.050	1.039	112.05	65.07	37.73	2.179	3.536	5.226	0.237	0.388	0.580
BmimCl	1.079	1.063	1.048	_ ^a	_ ^a	_ ^a	_ ^a	_ ^a	_ ^a	_ ^a	_ ^a	_ ^a
BmimCl/EA-DBN	1.055	1.045	1.033	144.65	73.40	40.93	1.733	2.731	4.215	0.197	0.314	0.490
AmimCl	1.127	1.116	1.104	701.00	352.70	182.00	0.601	1.049	1.915	0.085	0.149	0.275
AmimCl/EA-DBN	1.074	1.063	1.051	223.95	131.60	75.77	1.827	2.821	4.553	0.195	0.304	0.497
^a The ILs were solid at t	his tempe	erature and	l cannot be	e tested.								

Table S10 Density (ρ), viscosity (η), conductivity (σ) and molar conductivity (Λ) of IL/EA-DBN systems at different temperatures.

Solvent avetome	% Ionicity				
Solvent systems	30 °C	50 °C	70 °C		
EmimOAc	55.4	41.2	30.2		
EmimOAc/EA-DBN	26.5	20.3	16.1		
PmimOAc	52.4	43.8	38.9		
PmimOAc/EA-DBN	19.1	17.1	15.8		
BmimOAc	47.7	45.1	35.9		
BmimOAc/EA-DBN	43.0	34.4	30.7		
AmimOAc	48.5	41.3	37.9		
AmimOAc/EA-DBN	28.8	27.8	24.5		
EmimCl	_ ^a	_ ^a	_ ^a		
EmimCl/EA-DBN	33.8	27.6	19.3		
PmimCl	_a	_ ^a	_ ^a		
PmimCl/EA-DBN	26.5	25.2	21.9		
BmimCl	_ ^a	_a	_ ^a		
BmimCl/EA-DBN	28.5	23.0	20.1		
AmimCl	59.3	52.6	50.1		
AmimCl/EA-DBN	43.6	40.0	37.6		
The ILs were solid at t	his temperature an	d cannot be tested.			

 Table S11 Ionicity of each investigated solvent systems depending on temperature.

Lable	δc/δ _H (ppm) ^a	δ _C /δ _H (ppm) ^b	Assignments
OMe	55.25/3.77	55.41/3.64	C-H in methoxyls
A_{α}	71.85/5.02	72.69/5.35	C_{α} -H _{α} in β -O-4 substructures
$A_{\beta}(S)$	85.95/4.24	86.33/4.08	C_{β} -H _{β} in β -O-4 substructures linked to S unit
S _{2,6}	103.50/6.88	104.10/6.72	C _{2,6} -H _{2,6} in syringyl units
G ₂	110.81/7.14	111.40/7.00	C ₂ -H ₂ in guaiacyl units
G5	115.20/6.90	115.30/6.77	C5-H5 in guaiacyl units
G_6	119.09/6.92	119.17/6.81	C ₆ -H ₆ in guaiacyl units
H2,6	127.50/7.20	ND	C _{2,6} -H _{2,6} in <i>p</i> -hydroxyphenyl units
$pCA_{2,6}$	129.82/7.56	129.42/7.41	$C_{2,6}$ -H _{2,6} in <i>p</i> -coumarate
pCA_{α}	144.45/7.67	144.93/7.57	C_{α} -H _a in <i>p</i> -coumarate
$pCA_{\beta}+FA_{\beta}$	114.25/6.51	114.75/6.49	C_{β} -H _{β} in <i>p</i> -coumarate and ferulate
FA ₂	110.81/7.45	110.81/7.28	C ₂ -H ₂ in ferulate
FA ₆	123.48/7.08	123.33/7.00	C ₆ -H ₆ in ferulate
C_1	ND	105.51/4.35	C ₁ -H ₁ in cellulose internal unit
C_2	73.10/3.08	73.11/3.15	C ₂ -H ₂ in cellulose internal unit
C3	73.25/3.58	73.30/3.60	C ₃ -H ₃ in cellulose internal unit
C4	80.02/3.53	79.58/3.45	C4-H4 in cellulose internal unit
C5	76.30/3.25	76.35/3.28	C ₅ -H ₅ in cellulose internal unit
C_6	60.12/3.77	59.54/3.76	C ₆ -H ₆ in cellulose internal unit
X_1	101.55/4.44	101.67/4.30	C_1 - H_1 in β -D-xylopyranoside
X_2	73.28/3.41	72.70/3.13	C ₂ -H ₂ in β -D-xylopyranoside
X3	73.77/3.46	73.91/3.34	C ₃ -H ₃ in β-D-xylopyranoside
X_4	74.74/3.67	75.13/3.56	C ₄ -H ₄ in β-D-xylopyranoside
X _{5ax}	63.04/3.32	63.20/3.19	C _{5ax} -H _{5ax} in β-D-xylopyranoside
X _{5eq}	63.04/4.04	63.20/3.90	C _{5eq} -H _{5eq} in β-D-xylopyranoside
X _{NR5}	65.97/3.90	65.54/3.69	C ₅ -H ₅ in β -D-xylopyranoside (non-reducing end)
Ara ₁	ND	107.27/5.47	C ₁ -H ₁ in arabinan
Ara ₂	81.08/4.06	80.24/3.92	C ₂ -H ₂ in arabinan
Ara ₃	78.06/3.83	77.81/3.72	C ₃ -H ₃ in arabinan
Ara ₅	66.72/3.68	ND	C ₅ -H ₅ in arabinan
U_1	ND	97.77/5.14	C_1 -H ₁ in 4-O-methyl- α -D-glucuronic acid (U)
U4	ND	81.56/3.19	C ₄ -H ₄ in 4-O-methyl-α-D-glucuronic acid (U)
U:och3	60.01/3.50	59.55/3.41	C-H in methoxyls of 4-O-methyl- α -D-glucuronic acid
XU_1	98.14/4.86	98.54/4.54	C ₁ -H ₁ in $(1\rightarrow 4)$ - β -D-Xylp-2-O-(4-O-methyl- α -D-GlcpA)
2- <i>O</i> -Ac-β-D-Xylp (2)	73.28/4.72	ND	2-O-acetylated β-D-xylopyranosyl
3- <i>O</i> -Ac-β-D-Xylp (3)	74.74/5.02	ND	3-O-acetylated β-D-xylopyranosyl
2,3- <i>O</i> -Ac-β-D-Xyl <i>p</i> (2)	72.50/4.90	71.75/4.95	2,3-O-acetylated β-D-xylopyranosyl
^a Assignments of sugarcane bagasse			
^b Assignments of regenerated sugarcane bagasse			

bagasse and regenerated sugarcane bagasse.

^bAssignments of regenerated sugarcane bagasse ND, Not detected

Fig. S1 Optical pictures of lignocellulose solution in EmimOAc and EmimOAc/EA-DBN system with different concentration (g/100 g solvent).

Fig. S2 Polarized optical microscopy pictures of the dissolution process of lignocellulose (1%, w/w) in (a) EmimOAc/EA-DBN system and (b) neat EmimOAc at 90 °C.

Fig. S3 Walden plot of neat chloride anion-based ILs and chloride anion-based IL/EA-DBN systems.

Fig. S4 FT-IR spectra of original lignocellulose and the regenerated lignocellulose sample from EmimOAc/EA-DBN system-EA system.

Fig. S5 Scanning electron microscopy (SEM) images of the sugarcane bagasse (a), and the corresponding ball milled sample (b) and regenerated sample (c).

References

1. Q. Liu, X. Zhao, D. Yu, H. Yu, Y. Zhang, Z. Xue and T. Mu, *Green Chem.*, 2019, **21**, 5291-5297.

2. M. A. Ab Rani, A. Brant, L. Crowhurst, A. Dolan, M. Lui, N. H. Hassan, J. P.

Hallett, P. A. Hunt, H. Niedermeyer, J. M. Perez-Arlandis, M. Schrems, T. Welton and R. Wilding, *Phys. Chem. Chem. Phys.*, 2011, **13**, 16831.