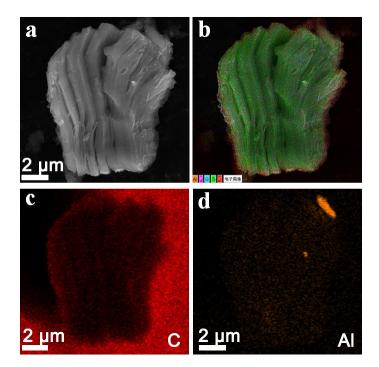
Supporting Information


Supercritical CO₂-assisted Solid-Phase Etching Preparation of

MXenes for High-efficiency Alkaline Hydrogen Evolution

Huajian Feng,^a Qingyong Tian,^a*Junhao Huang,^a Xinwei Cui,^a Jingyun Jiang,^b Yapeng Tian,^a Li

Ye,^b Qun Xu^{a*}

Supplementary Text

Fig. S1. (a-d) SEM image (a), EDS layered image (b) and elemental-mapping images (C and Al elements) (c-d) of the HCl-treated SC CO_2 -Ti₃C₂T_x multilayer MXenes.

*To whom correspondence should be addressed. Tel: +86-27-63886819. E-mail: tiangy@zzu.edu.cnmailto: (Q. Tian) and gunxu@zzu.edu.cn (Q. Xu).

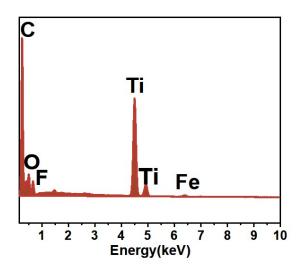


Fig. S2. EDS analysis of the HCl-treated SC CO_2 -Ti₃C₂T_x multilayer MXenes samples.

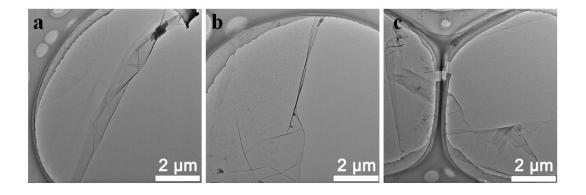
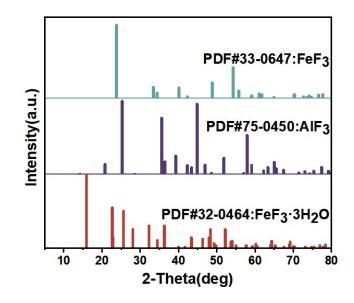
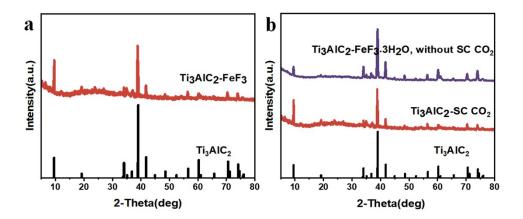
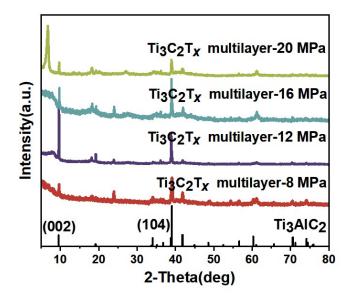


Fig. S3. TEM images of the delaminated 2D SC CO_2 -Ti₃ C_2T_x MXenes flakes.

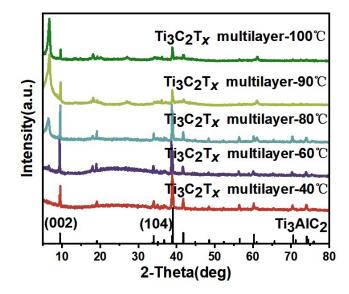

Fig. S4. the standard PDF cards of FeF₃•3H₂O (red line), AlF₃ (purple line) and FeF₃ (blue line).

Fig. S5. (a) XRD patterns of pristine Ti_3AlC_2 MAX phase (black line) and HCl-treated Ti_3AlC_2 -FeF₃ (red line). (b) XRD patterns of pristine Ti_3AlC_2 MAX phase (black line), HCl-treated Ti_3AlC_2 -SC CO₂ (red line) and Ti_3AlC_2 -FeF₃•3H₂O, without SC CO₂ (purple line).

Fig. S6. XRD patterns of pristine Ti_3AlC_2 MAX phase (black line) and HCl-treated SC CO_2 - $Ti_3C_2T_x$ multilayer MXenes samples after etching at the temperature of 90 °C and under 8 MPa (red line), 12 MPa (purple line), 16 MPa (blue line), 20 MPa (yellow line), respectively.

Fig. S7. XRD patterns of pristine Ti_3AlC_2 MAX phase (black line) and HCl-treated SC CO_2 - $Ti_3C_2T_x$ multilayer MXenes samples etching under the pressure of 20 MPa and at 40 °C (red line), 60 °C (purple line), 80 °C (blue line), 90 °C (yellow line), 100 °C (green line), respectively.

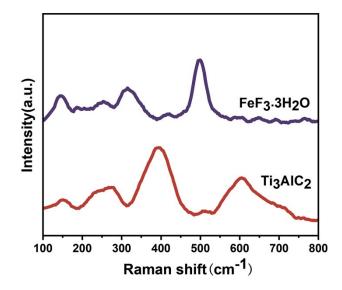


Fig. S8. Raman spectra of Ti₃AlC₂ (red line) and FeF₃•3H₂O (purple line).

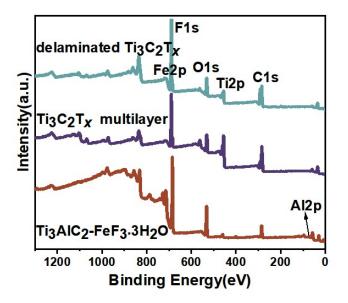


Fig. S9. The global view of the XPS spectra in the as-reacted product, HCl-treated $Ti_3C_2T_x$ MXenes and the delaminated MXenes flakes.

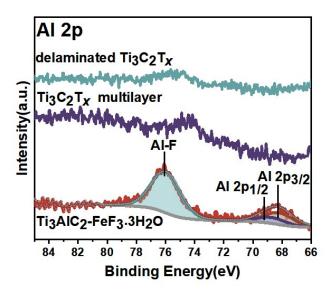


Fig. S10. High-resolution XPS spectra of Al 2p in the as-reacted product, HCl-treated $Ti_3C_2T_x$ MXenes and the delaminated MXenes flakes.

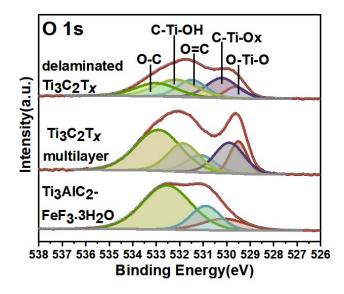


Fig. S11. High-resolution XPS spectra of O 1s in the as-reacted product, HCl-treated $Ti_3C_2T_x$ MXenes and the delaminated MXenes flakes.

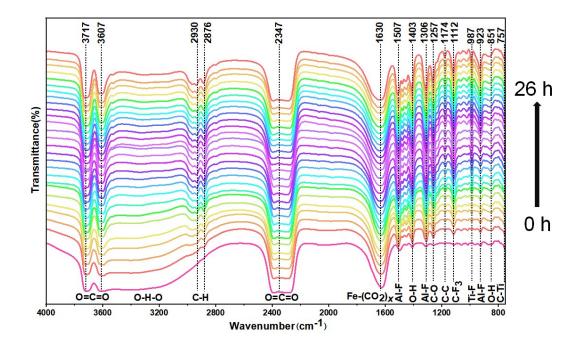


Fig. S12. Time-resolved in situ IR experimental results (20 MPa SC CO₂, 90 °C), collected in the 4000-750 cm⁻¹ region.

Fig. S13. High-resolution XPS spectra of Ti 2p in the SC CO_2 -Ti₃ C_2T_x -Pt.

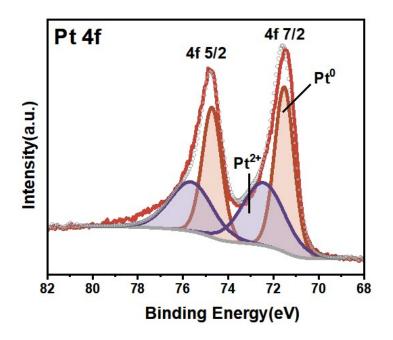


Fig. S14. High-resolution XPS spectra of Pt 4f in the SC CO_2 -Ti₃C₂T_x-Pt.

Fig. S15. TEM image (a) and high-resolution TEM images (b) of the SC CO₂-Ti₃C₂T_x-Pt.

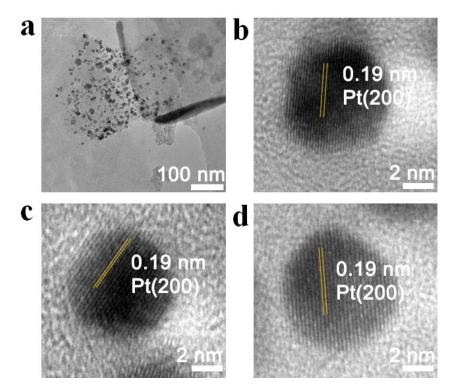
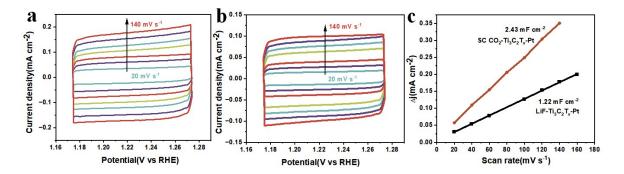



Fig. S16. TEM image (a) and high-resolution TEM images (b, c, d) of the LiF-Ti₃C₂T_x-Pt.

Fig. S17. Cyclic voltammograms performed in 1 M KOH solution in the potential window without the participation of faradaic processes for (a) SC CO₂-Ti₃C₂T_x-Pt and (b) LiF-Ti₃C₂T_x-Pt. (c) Plots of the differences in current density variation against scan rate, where the slope is C_{dl} .

	Electrocatalysts	Overpotential at 10 mA cm ⁻² (mV)	Overpotential at 100 mA cm ⁻² (mV)	Tafel slop (mV dec ⁻¹)	Reference
1	$SC CO_2$ - $Ti_3C_2T_x$ - Pt	29	117	67.22	This work
2	Pt _{SA} -C ₁ N ₁	46	200	36.8	Nat Commun. 2020, 11, 1029
3	Pt/np-Co _{0.85} Se	58	-	35	Nat. Commun. 2017, 10, 1743
4	Ti ₃ C ₂ T _x /Ni ₃ S ₂ /NF	72	-	45	ACS Applied Energy Materials 2019, 2 (9), 6931- 6938
5	Pt NWs/SL-Ni(OH) ₂	~70	-	-	Nat Commun. 2015, 6, 6430
6	Ni ₃ N/Pt	50	110	36.5	Adv. Energy Mater. 2017, 7, 1601390
7	WS ₂ -Pt	~40	-	65	Adv. Mater. 2017, 30, 1704779
8	Pt/MXene	34	185	29.7	Adv. Funct. Mater. 2022, 32, 2110910

Table. S1. Comparison of HER performances for SC CO_2 -Ti₃C₂T_x-Pt with the reported HER catalysts in 1.0 M KOH electrolyte.