# Supporting Information for

# Versatile electrooxidative amino- and oxyselenation of alkenes

Renjie Wang,<sup>#,a</sup> Nana Zhang,<sup>#,a</sup> Yonghong Zhang,<sup>a</sup> Bin Wang,<sup>a</sup> Yu Xia,<sup>a</sup> Kai Sun,<sup>b</sup> Weiwei Jin,<sup>\*,a,c</sup> Xinyong Li<sup>\*,d</sup> and Chenjiang Liu<sup>\*,a</sup>

<sup>a</sup> Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China

E-mail: wwjin0722@163.com; pxylcj@126.com

<sup>b</sup>College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China Email: sunk468@nenu.edu.cn

<sup>c</sup>Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, P. R. China

<sup>d</sup>Asymchem Life Science (Tianjin) Co., Ltd, No.71, 7th Avenue, TEDA Tianjin, 300457, P.R. China Email: lixinyong@asymchem.com.cn

# **Table of Contents**

| 1. General considerations                                      | S2          |
|----------------------------------------------------------------|-------------|
| 2. Experimental procedures                                     | S3          |
| 2.1 General procedure for the synthesis of aryl 1,3-butadienes | S3          |
| 2.2 General procedure for the synthesis of diselenides         | S3          |
| 2.3 Optimization of reaction conditions                        | S3          |
| 2.4 General procedure for amino- and oxyselenation of alkenes  | <b>S</b> 11 |
| 2.5 Unreacted substrates                                       | S13         |
| 2.6 Recycling experiment of electrolyte                        | S13         |
| 2.7 Gram-scale synthesis                                       | S14         |
| 3. Mechanistic studies                                         | S15         |
| 3.1 Radical trapping experiments                               | S15         |
| 3.2 Cyclic voltammetry experiments                             | S20         |
| 3.3 H <sub>2</sub> detection experiments                       | S22         |
| 4. Analytical data                                             | S23         |
| 5. References                                                  | S78         |
| 6. Copies of NMR spectra                                       | S79         |
| 7. X-Ray crystallographic data                                 | S202        |
|                                                                |             |

## 1. General considerations

<sup>1</sup>H, <sup>13</sup>C and <sup>19</sup>F NMR spectra were recorded on Varian Inova-400 or 600 MHz spectrometers. <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts were determined relative to internal standard TMS at  $\delta$  0.0 ppm or CDCl<sub>3</sub> ( $\delta$ (<sup>1</sup>H), 7.26 ppm;  $\delta$ (<sup>13</sup>C), 77.16 ppm) or DMSO-D<sub>6</sub> ( $\delta$ (<sup>1</sup>H), 2.50 ppm;  $\delta$ (<sup>13</sup>C), 39.52 ppm). Chemical shifts ( $\delta$ ) are reported in ppm, and coupling constants (J) are reported in Hertz (Hz). The following abbreviations are used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. The HRMS analysis was obtained on a Agilent 6540 UHD Q-TOF mass spectrometer. The melting point was recorded on BÜCHI (M-560) and uncorrected. Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel 60 F254 plates and viewed by UV light (254 nm). Column chromatographic purification was performed using 200-300 mesh silica gel. Electrochemical reactions were performed on IKA ElectraSyn 2.0 pro. X-ray single crystal diffraction data were collected on a Bruker D8 VENTURE. H<sub>2</sub> detection experiment was conducted on a ES20B-H<sub>2</sub> gas detector (Shenzhen Eyesky Technology Co., Ltd). Cyclic voltammetry (CV) was carried out on a CHI660E electrochemical workstation (CH Instruments, Ins).

All the chemical reagents were purchased from commercial sources and used as received unless otherwise indicated. Aryl 1,3-butadienes<sup>[1]</sup> and diselenides<sup>[2]</sup> were prepared by the reported procedures.

#### 2. Experimental procedures

#### 2.1 General procedure for the synthesis of aryl 1,3-butadienes<sup>[1]</sup>

$$R_{U}^{II} \rightarrow Ph_{3}^{+}PMeBr \rightarrow THF, 0 °C - rt, N_{2} \rightarrow R_{U}^{II}$$

Under nitrogen atmosphere, methyltriphenylphosphonium bromide (3.0 mmol) in THF (20 mL) was added "BuLi (1.2 mL, 2.5 M in THF, 3.0 mmol) slowly at 0 °C in a flame-dried round-bottom flask. After stirring for 20 min, the cinnamaldehyde (2.5 mmol) was added. The reaction mixture was then warmed to room temperature and stirred for another 5-10 hours. After the starting material was consumed completely which was detected by TLC, the reaction mixture was quenched with sat. NH<sub>4</sub>Cl aq. (15 mL) and extracted with ethyl acetate (20 mL  $\times$  3). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated in vacuo and purified by flash chromatography on silica gel with petroleum ether (60-90 °C) to afford the desired 1,3-butadiene products.

#### 2.2 General procedure for the synthesis of diselenides<sup>[2]</sup>



Under nitrogen atmosphere, to a stirred solution of Se (6.0 mmol) powder and aryl iodides (3.0 mmol) in dry DMSO (6.0 mL) was added CuO nanoparticles (10 mol%) followed by KOH (2.0 equiv) at 90 °C. The progress of the reaction was monitored by TLC. After the reaction was complete, the reaction mixture was allowed to cool, which was subjected to column chromatographic separation to give pure diselenides.

## 2.3 Optimization of reaction conditions

## 2.3.1 Optimization of aminoselenation of styrene

Table S1 Screening of electrolytes<sup>a</sup>

| + ()<br>1a | 0<br>NH<br>S<br>0<br>2a | + Se Se Se -                                   | C(+)/Ni(-), I = 10 mA<br>electrolyte, CH <sub>3</sub> CN<br>r.t., 2 h<br>undivided cell | O=S.NO<br>O SePh<br>4a |
|------------|-------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------|
|            | Entry                   | Electrolyte                                    | Yield (%) <sup>b</sup>                                                                  |                        |
|            | 1                       | <sup>n</sup> Bu <sub>4</sub> NBr               | 83                                                                                      | _                      |
|            | 2                       | Me <sub>4</sub> NCl                            | 66                                                                                      |                        |
|            | 3                       | Me <sub>4</sub> NBr                            | 92                                                                                      |                        |
|            | 4                       | Et <sub>4</sub> NBr                            | 92                                                                                      |                        |
|            | 5                       | Me <sub>4</sub> NBF <sub>4</sub>               | 24                                                                                      |                        |
|            | 6                       | <sup>n</sup> Pr <sub>4</sub> NBr               | 86                                                                                      |                        |
|            | 7                       | <sup>n</sup> Bu <sub>4</sub> NI                | n.r.                                                                                    |                        |
|            | 8                       | <sup>n</sup> Bu <sub>4</sub> NClO <sub>4</sub> | trace                                                                                   |                        |
|            | 9                       | <sup>n</sup> Bu <sub>4</sub> NHSO <sub>4</sub> | trace                                                                                   |                        |
|            | 10                      | <sup>n</sup> Bu <sub>4</sub> NBF <sub>4</sub>  | trace                                                                                   |                        |
|            | 11                      | <sup>n</sup> Bu <sub>4</sub> NPF <sub>6</sub>  | trace                                                                                   |                        |
|            |                         |                                                |                                                                                         |                        |

<sup>*a*</sup> Reaction conditions: **1a** (0.3 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), electrolyte (0.2 mmol), CH<sub>3</sub>CN (4.0 mL), C anode (immersed surface area  $8 \times 5 \text{ mm}^2$ ), Ni cathode (immersed surface area  $8 \times 5 \text{ mm}^2$ ), 10 mA, 2 h, r.t., undivided cell. <sup>*b*</sup> Isolated yields. n.r. = no reaction.

# Table S2 Screening of electrodes<sup>a</sup>



<sup>a</sup> Reaction conditions: 1a (0.3 mmol), 2a (0.2 mmol), 3a (0.15 mmol), Et<sub>4</sub>NBr (0.2 mmol), CH<sub>3</sub>CN (4.0 mL), anode (immersed surface area 8 × 5 mm<sup>2</sup>), cathode (immersed surface area 8 × 5 mm<sup>2</sup>), 10 mA, 2 h, r.t., undivided cell. <sup>b</sup> Isolated yields.

# Table S3 Screening of solvents<sup>a</sup>

| +  |       | + Se Se -          | C(+)/Ni(-), I = 10 mA<br>Et <sub>4</sub> NBr, <mark>solvent</mark><br>r.t., 2 h<br>undivided cell | O=S<br>O'N<br>SePh |
|----|-------|--------------------|---------------------------------------------------------------------------------------------------|--------------------|
| 1a | 2a    | 3a                 |                                                                                                   | 4a                 |
|    | Entry | Solvent            | <b>Yield</b> (%) <sup>b</sup>                                                                     |                    |
|    | 1     | CH <sub>3</sub> CN | 92                                                                                                |                    |
|    | 2     | MeOH               | n.r.                                                                                              |                    |
|    | 3     | DMF                | 46                                                                                                |                    |
|    | 4     | DMSO               | n.r.                                                                                              |                    |
|    | 5     | DMA                | trace                                                                                             |                    |
|    |       |                    |                                                                                                   |                    |

<sup>*a*</sup> Reaction conditions: **1a** (0.3 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), Et<sub>4</sub>NBr (0.2 mmol), solvent (4.0 mL), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), Ni cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), 10 mA, 2 h, r.t., undivided cell. <sup>*b*</sup> Isolated yields. DMF = *N*,*N*-dimethylformamide. DMSO = dimethyl sulfoxide. DMA = *N*, *N*-dimethylacetamide.

# 2.3.2 Optimization of aminoselenation of cyclohexene

# Table S4 Screening of electrolytes<sup>a</sup>

| + | 0,0<br>NH +<br>0<br>2a | Se Se C(+)/Ni(-<br>electrol<br>r:<br>undiv<br>3a | b), I = 10 mA<br>$yte, CH_3CN$<br>t., 2 h<br>vided cell<br>5y |
|---|------------------------|--------------------------------------------------|---------------------------------------------------------------|
|   | Entry                  | Electrolyte                                      | Yield (%) <sup>b</sup>                                        |
|   | 1                      | Et <sub>4</sub> NBr                              | 66                                                            |
|   | 2                      | $\mathrm{Bu}_4\mathrm{NBr}$                      | 68                                                            |
|   | 3                      | Cetyltrimethylammonium bromi                     | de 59                                                         |
|   | 4                      | Bu <sub>4</sub> NPF <sub>6</sub>                 | 44                                                            |
|   | 5                      | Bu <sub>4</sub> NI                               | n.r.                                                          |
|   | 6                      | TEABF <sub>4</sub>                               | 35                                                            |
|   | 7                      | KBr                                              | 54                                                            |
|   | 8                      | Bu <sub>4</sub> NCl                              | 23                                                            |
|   | 9                      | NaBr                                             | 53                                                            |
|   | 10                     | TBAClO <sub>4</sub>                              | 28                                                            |
|   | 11                     | Bu <sub>4</sub> NOAc                             | 45                                                            |
|   | 12                     | Bu <sub>4</sub> NBr <sub>3</sub>                 | 43                                                            |
|   | 13                     | [BzM <sub>3</sub> N]Br                           | trace                                                         |
|   | 14                     | HMMImBr                                          | 71                                                            |



<sup>*a*</sup> Reaction conditions: **1y** (0.3 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), electrolyte (0.2 mmol), CH<sub>3</sub>CN (4 mL), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), Ni cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), 10 mA, 2 h, r.t., undivided cell. <sup>*b*</sup> Isolated yields. [BzM<sub>3</sub>N]Br = benzyltrimethylammonium bromide. HMMImBr = 1-hexyl-2,3-dimethylimidazolium bromide. [P<sub>14</sub>]Br = 1-butyl-1-methylpyrrolidinium bromide. [PMIm]Br = 1-methyl-3-propylimidazolium bromide. [P<sub>4444</sub>]Br = tetrabutylphosphonium bromide. VBImBr = 1-butyl-3-vinylimidazolium bromide. BzMImBr = 1-benzyl-3-methylIimidazolium bromide.

Table S5 Screening of quantity of 1y<sup>a</sup>



<sup>*a*</sup> Reaction conditions: **1y** (x mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), VBImBr (0.2 mmol), CH<sub>3</sub>CN (4 mL), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), Ni cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), 10 mA, 2 h, r.t., undivided cell. <sup>*b*</sup> Isolated yields.

# Table S6 Screening of quantity of 3a<sup>a</sup>



| Entry | 3a (mmol) | <b>Yield</b> (%) <sup>b</sup> |
|-------|-----------|-------------------------------|
| 1     | 0.15      | 78                            |
| 2     | 0.1       | 49                            |
| 3     | 0.2       | 70                            |

<sup>*a*</sup> Reaction conditions: **1y** (0.3 mmol), **2a** (0.2 mmol), **3a** (x mmol), VBImBr (0.2 mmol), CH<sub>3</sub>CN (4 mL), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), Ni cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), 10 mA, 2 h, r.t., undivided cell. <sup>*b*</sup> Isolated yields.

# Table S7 Screening of quantity of electrolyte<sup>a</sup>



<sup>*a*</sup> Reaction conditions: **1y** (0.3 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), VBImBr (x mmol), CH<sub>3</sub>CN (4 mL), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), Ni cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), 10 mA, 2 h, r.t., undivided cell. <sup>*b*</sup> Isolated yields.

# Table S8 Screening of solvents<sup>a</sup>



| 11                          | HFIP                                                                                                                                             | 87                             |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 12                          | TFE                                                                                                                                              | 49                             |
| 13                          | CH <sub>3</sub> CN/CH <sub>2</sub> Cl <sub>2</sub> (3:1)                                                                                         | 69                             |
| 14                          | $CH_3CN/HFIP(3:1)$                                                                                                                               | 92                             |
| 15                          | CH <sub>3</sub> CN/CH <sub>3</sub> CH <sub>2</sub> OH (1:3)                                                                                      | 59                             |
|                             |                                                                                                                                                  |                                |
| 16                          | CH <sub>3</sub> CH <sub>2</sub> OH/HFIP (3:1)                                                                                                    | Trace                          |
| 16<br>17                    | CH <sub>3</sub> CH <sub>2</sub> OH/HFIP (3:1)<br>CH <sub>3</sub> CN/TFE(3:1)                                                                     | Trace<br>94                    |
| 16<br>17<br><b>18</b>       | CH <sub>3</sub> CH <sub>2</sub> OH/HFIP (3:1)<br>CH <sub>3</sub> CN/TFE(3:1)<br>CH <sub>3</sub> CN/TFE (1:3)                                     | Trace<br>94<br><b>95</b>       |
| 16<br>17<br><b>18</b><br>19 | CH <sub>3</sub> CH <sub>2</sub> OH/HFIP (3:1)<br>CH <sub>3</sub> CN/TFE(3:1)<br>CH <sub>3</sub> CN/TFE (1:3)<br>CH <sub>3</sub> CN/TFE (0.5:3.5) | Trace<br>94<br><b>95</b><br>76 |

<sup>*a*</sup> Reaction conditions: **1y** (0.3 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), VBImBr (0.2 mmol), solvent (4 mL), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), Ni cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), 10 mA, 2 h, r.t., undivided cell. <sup>*b*</sup> Isolated yields. NMP = 1-methyl-2-pyrrolidinone. HFIP = 1,1,1,3,3,3-Hexafluoro-2-propanol. TFE = 2,2,2-trifluoroethanol.

## Table S9 Screening of constant current<sup>a</sup>



| Entry | Constant current (mA) | Yield (%) <sup>b</sup> |
|-------|-----------------------|------------------------|
| 1     | 10                    | 95                     |
| 2     | without current       | n.r.                   |
| 3     | 5                     | 97                     |
| 4     | 3                     | 80                     |
| 5     | 8                     | 92                     |
| 6     | 15                    | 64                     |

<sup>*a*</sup> Reaction conditions: **1y** (0.3 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), VBImBr (0.2 mmol), CH<sub>3</sub>CN/TFE (4 mL, v:v = 1:3), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), Ni cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), x mA, 2 h, r.t., undivided cell. <sup>*b*</sup> Isolated yields.

## Table S10 Screening of electrodes<sup>a</sup>



| Entry | Electrode | <b>Yield (%)</b> <sup>b</sup> |
|-------|-----------|-------------------------------|
| 1     | C-Ni      | 97                            |
| 2     | C-Cu      | 91                            |
| 3     | C-Fe      | 96                            |
| 4     | C-Zn      | 85                            |
| 5     | C-C       | 99                            |

<sup>*a*</sup> Reaction conditions: **1y** (0.3 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), VBImBr (0.2 mmol), CH<sub>3</sub>CN/TFE (4 mL, v:v = 1:3), anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), 5 mA, 2 h, r.t., undivided cell. <sup>*b*</sup> Isolated yields.

# Table S11 Screening of reaction time<sup>a</sup>



<sup>*a*</sup> Reaction conditions: **1y** (0.3 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), VBImBr (0.2 mmol), CH<sub>3</sub>CN/TFE (4 mL, v:v =1:3), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), C cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), 5 mA, x h, r.t., undivided cell. <sup>*b*</sup> Isolated yields.

## 2.3.3 Optimization of oxyselenation of cyclohexene

# Table S12 Screening of solvents<sup>a</sup>

| 1y + | Соон<br>6а | + Se Se -                   | C(+)/C(-), I = 5 mA<br>VBImBr, solvent<br>r.t., 2.5 h<br>undivided cell<br>SePh<br>7a |  |
|------|------------|-----------------------------|---------------------------------------------------------------------------------------|--|
|      | Entry      | Solvent                     | <b>Yield</b> (%) <sup>b</sup>                                                         |  |
|      | 1          | CH <sub>3</sub> CN          | 21                                                                                    |  |
|      | 2          | DMF                         | trace                                                                                 |  |
|      | 3          | DMA                         | n.r.                                                                                  |  |
|      | 4          | DMSO                        | n.d.                                                                                  |  |
|      | 5          | DCM                         | 23                                                                                    |  |
|      | 6          | DCE                         | trace                                                                                 |  |
|      | 7          | CH <sub>3</sub> CN/TFE(3:1) | 53                                                                                    |  |
|      |            |                             |                                                                                       |  |

| 8  | CH <sub>3</sub> CN/TFE(3.5:0.5) | 57 |
|----|---------------------------------|----|
| 9  | CH <sub>3</sub> CN/TFE(2:2)     | 90 |
| 10 | CH <sub>3</sub> CN/TFE(1:3)     | 73 |

<sup>*a*</sup> Reaction conditions: **1y** (0.2 mmol), **6a** (0.4 mmol), **3a** (0.15 mmol), VBImBr (0.2 mmol), solvent (4 mL), C anode (immersed surface area  $8 \times 5 \text{ mm}^2$ ), C cathode (immersed surface area  $8 \times 5 \text{ mm}^2$ ), 5 mA, 2.5 h, r.t., undivided cell. <sup>*b*</sup> Isolated yields. DCM = dichloromethane. DCE = dichloromethane.

#### Table S13 Screening of electrolytes<sup>a</sup>



<sup>*a*</sup> Reaction conditions: **1y** (0.2 mmol), **6a** (0.4 mmol), **3a** (0.15 mmol), electrolyte (0.2 mmol), CH<sub>3</sub>CN/TFE (4 mL, v:v =2:2), C anode (immersed surface area  $8 \times 5 \text{ mm}^2$ ), C cathode (immersed surface area  $8 \times 5 \text{ mm}^2$ ), 5 mA, 2.5 h, r.t., undivided cell. <sup>*b*</sup> Isolated yields.

Table S14 Screening of constant current<sup>a</sup>



<sup>*a*</sup> Reaction conditions: **1y** (0.2 mmol), **6a** (0.4 mmol), **3a** (0.15 mmol), VBImBr (0.2 mmol), CH<sub>3</sub>CN/TFE (4 mL, v:v =2:2), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), C cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), x mA, 2.5 h, r.t., undivided cell. <sup>*b*</sup> Isolated yields.

#### Table S15 Screening of reaction time<sup>a</sup>

|    | СООН + | Se Se    | C(+)/C(-), I = 5 mA<br>VBImBr, CH <sub>3</sub> CN/TFE<br>r.t., time<br>undivided cell | SePh |
|----|--------|----------|---------------------------------------------------------------------------------------|------|
| 1у | 6a     | 3a       |                                                                                       | 7a   |
|    | Entry  | Time (h) | Yield (%) <sup>b</sup>                                                                | _    |
|    | 1      | 2.5      | 90                                                                                    | -    |
|    | 2      | 2        | 75                                                                                    |      |
|    | 3      | 1.5      | 79                                                                                    |      |

<sup>*a*</sup> Reaction conditions: **1y** (0.2 mmol), **6a** (0.4 mmol), **3a** (0.15 mmol), VBImBr (0.2 mmol), CH<sub>3</sub>CN/TFE (4 mL, v:v = 2:2), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), C cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), 5 mA, x h, r.t., undivided cell. <sup>*b*</sup> Isolated yields.

#### 2.4 General procedure for amino- and oxyselenation of alkenes

2.4.1 General procedure for aminoselenation of activated alkenes (taking 4a as an example)



Under air, a mixture of styrene **1a** (35  $\mu$ L, 0.3 mmol), saccharin **2a** (37.0 mg, 0.2 mmol), diphenyl diselenide **3a** (46.8 mg, 0.15 mmol), Et<sub>4</sub>NBr (42.0 mg, 0.2 mmol) and CH<sub>3</sub>CN (4.0 mL) were added in an oven dried undivided bottle (10 mL). The bottle was equipped with graphite rod as the anode and nickel plate as the cathode. The resulting mixture was stirred and electrolyzed at a constant current mode with a constant current 10 mA at ambient temperature for 2 h. When the reaction was finished, the resulting mixture and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v) to afford the desired product **4a** as a white solid (81.5 mg, 92% yield).

# **2.4.2** General procedure for aminoselenation of unactivated alkenes (taking 5y as an example)



Under air, a mixture of cyclohexene **1y** (30  $\mu$ L, 0.3 mmol), saccharin **2a** (37.0 mg, 0.2 mmol), diphenyl diselenide **3a** (46.8 mg, 0.15 mmol), VBImBr (46.2 mg, 0.2 mmol) and CH<sub>3</sub>CN/TFE (4 mL, v:v = 1:3) were added in an oven dried undivided bottle (10 mL). The bottle was equipped with graphite rod as the anode and the cathode. The resulting mixture was stirred and electrolyzed at a constant current mode with a constant current 5 mA at ambient temperature for 2 h. When the reaction was finished, the resulting mixture and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v) to afford the desired product **5y** as a yellow oil (83.8 mg, 99% yield).

# 2.4.3 General procedure for oxyselenation of unactivated alkenes (taking 7a as an example)



Under air, a mixture of cyclohexene **1y** (20  $\mu$ L, 0.2 mmol), benzoic acid **6a** (48.9 mg, 0.4 mmol), diphenyl diselenide **3a** (46.8 mg, 0.15 mmol), VBImBr (46.2 mg, 0.2 mmol) and CH<sub>3</sub>CN/TFE (4 mL, v:v = 2:2) were added in an oven dried undivided bottle (10 mL). The bottle was equipped with graphite rod as the anode and the cathode. The resulting mixture was stirred and electrolyzed at a constant current mode with a constant current 5 mA at ambient temperature for 2.5 h. When the reaction was finished, the resulting mixture and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v) to afford the desired product **7a** as a yellow oil (64.7 mg, 90% yield).

# **2.5 Unreacted substrates**

# 2.5.1 Unreacted substrates for aminoselenation

Unreacted olefins:

 $\sim$ 



Unreacted nucleophilic reagents:



# 2.5.2 Unreacted substrates for oxyselenation

Unreacted olefins:



Regio selectivity of olefins:





# 2.6 Recycling experiment of VBImBr



It is significant to note that the ionic liquid VBImBr could be easily recycled.

After the reaction was complete, water and ethyl acetate were added, and then the VBImBr was separated in the water layer and reused after drying in vacuo. The VBImBr was utilized repeatedly six times without any loss of activity.

#### 2.7 Gram-scale synthesis

#### 2.7.1 Gram-scale synthesis of 4a at 3 mmol scale



<sup>*a*</sup> Reaction conditions: **1a** (4.5 mmol), **2a** (3 mmol), **3a** (2.25 mmol), Et<sub>4</sub>NBr (3 mmol), CH<sub>3</sub>CN (20 mL), C anode (27 mm  $\times$  15 mm  $\times$  1 mm), Ni cathode (27 mm  $\times$  15 mm  $\times$  1 mm), 20 mA, 22 h, r.t., undivided cell.

# 2.7.2 Gram-scale synthesis of 5a at 3 mmol scale



<sup>*a*</sup> Reaction conditions: **allylbenzene** (4.5 mmol), **2a** (3 mmol), **3a** (2.25 mmol), Et<sub>4</sub>NBr (3 mmol), CH<sub>3</sub>CN (20 mL), C anode (27 mm  $\times$  15 mm  $\times$  1 mm), Ni cathode (27 mm  $\times$  15 mm  $\times$  1 mm), 20 mA, 28 h, r.t., undivided cell.

## 2.7.3 Gram-scale synthesis of 5y at 4 mmol scale



<sup>*a*</sup> Reaction conditions: **1y** (6 mmol), **2a** (4 mmol), **3a** (3 mmol), VBImBr (4 mmol), CH<sub>3</sub>CN/TFE (40 mL, v:v = 1:3), C anode (25 mm × 15 mm × 1 mm), C cathode (25 mm × 15 mm × 1 mm), 16 mA, 16 h, r.t., undivided cell.

## 2.7.4 Gram-scale synthesis of 5y at 30 mmol scale



<sup>*a*</sup> Reaction conditions: **1y** (135 mmol), **2a** (30 mmol), **3a** (15 mmol), VBImBr (30 mmol), CH<sub>3</sub>CN/TFE (260 mL, v:v = 7:6), C anode (45 mm × 25 mm × 1 mm), C cathode (45 mm × 25 mm × 1 mm), 25 mA, 129 h, r.t., undivided cell.

#### 2.7.5 Gram-scale synthesis of 7a at 4 mmol scale



<sup>*a*</sup> Reaction conditions: **1y** (4 mmol), **6a** (8 mmol), **3a** (3 mmol), VBImBr (4 mmol), CH<sub>3</sub>CN/TFE (40 mL, v:v =1:1), C anode (25 mm × 15 mm × 1 mm), C cathode (25 mm × 15 mm × 1 mm), 15 mA, 24 h, r.t., undivided cell.

#### 3. Mechanistic studies

# 3.1 Radical trapping experiments

## 3.1.1 Table S16 of radical trapping experiments of aminoselenation of styrene<sup>a</sup>



<sup>*a*</sup> Reaction conditions: **1a** (0.3 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), Et<sub>4</sub>NBr (0.2 mmol), radical scavenger, CH<sub>3</sub>CN (4.0 mL), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), Ni cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), 10 mA, 2 h, r.t., undivided cell. <sup>*b*</sup> Isolated yields.



WRJ-777-ESI+-(50-750) #1 RT: 0.00 AV: 1 NL: 3.11E7 T: FTMS + p ESI Full ms [50.0000-750.0000]



3.1.2 Table S17 of radical trapping experiments of aminoselenation of cyclohexene<sup>a</sup>



<sup>*a*</sup> Reaction conditions: **1y** (0.3 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), VBImBr (0.2 mmol), radical scavenger, CH<sub>3</sub>CN/TFE (4 mL, v:v = 1:3), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), C cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), 5 mA, 2 h, r.t., undivided cell. <sup>*b*</sup> Isolated yields.



Detected by HRMS of **c'** calcd for  $C_{20}H_{17}$ Se  $[M+H]^+$ : 337.0490; Found: 337.0485.

Detected by HRMS of **d'** calcd for  $C_{12}H_{15}Se^+$ [M]<sup>+</sup>: 239.0334; Found: 239.0329.





# 3.1.3 Table S18 of radical trapping experiments of oxyselenation of cyclohexene<sup>a</sup>

| +  | Соон  | + Se Se                  | C(+)/C(-), I = 5 mA<br>BIMBr, CH <sub>3</sub> CN/TFE<br>adical scavenger<br>r.t., 2.5 h<br>undivided cell | o<br>o<br>SePh |
|----|-------|--------------------------|-----------------------------------------------------------------------------------------------------------|----------------|
| 1у | 6a    | 3a                       |                                                                                                           | 7a             |
|    | Entry | Radical scavenger (mmol) | Yield of 7a (%) <sup>b</sup>                                                                              | -              |
|    | 1     | none                     | 90                                                                                                        | -              |
|    | 2     | BHT (0.4)                | 92                                                                                                        |                |
|    | 3     | activated carbon (0.8)   | 75                                                                                                        |                |
|    | 4     | 1,1-diphenythylene (0.4) | 84                                                                                                        |                |
|    | 5     | TEMPO (0.4)              | trace                                                                                                     | _              |

<sup>*a*</sup> Reaction conditions: **1y** (0.2 mmol), **6a** (0.4 mmol), **7a** (0.15 mmol), VBImBr (0.2 mmol), radical scavenger, CH<sub>3</sub>CN/TFE (4 mL, v:v = 2:2), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), C cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), 5 mA, 2.5 h, r.t., undivided cell. <sup>*b*</sup> Isolated yields.

#### **3.2 Cyclic voltammetry experiments**

## 3.2.1 Cyclic voltammetry experiments for aminoselenation of styrene



**Figure S1** Cyclic voltammograms using Pt disk as work electrode, a glassy carbon disk and Ag/AgCl as counter and reference electrode, respectively, at 100 mV/s scan rate: A: **3a** (0.15 mmol), Et<sub>4</sub>NBr (0.2 mmol), CH<sub>3</sub>CN (4.0 mL); **B: 1a** (0.3 mmol), **3a** (0.15 mmol), Et<sub>4</sub>NBr (0.2 mmol), CH<sub>3</sub>CN (4.0 mL); **C: 2a** (0.2 mmol), Et<sub>4</sub>NBr (0.2 mmol), CH<sub>3</sub>CN (4.0 mL); **D:** Et<sub>4</sub>NBr (0.2 mmol), CH<sub>3</sub>CN (0.2 mmol), CH<sub>3</sub>

## 3.2.2 Cyclic voltammetry experiments for aminoselenation of cyclohexene



**Figure S2** Cyclic voltammograms using Pt disk as work electrode, a glassy carbon disk and Ag/AgCl as counter and reference electrode, respectively, at 100 mV/s scan rate: A: **2a** (0.2 mmol), VBImBr (0.2 mmol), CH<sub>3</sub>CN/TFE (4 mL, v:v = 1:3). **B**: **3a** (0.15 mmol), VBImBr (0.2 mmol), CH<sub>3</sub>CN/TFE (4 mL, v:v = 1:3). **C**: **1y** (0.3 mmol), **3a** (0.15 mmol), VBImBr (0.2 mmol), CH<sub>3</sub>CN/TFE (4 mL, v:v = 1:3). **D**: CH<sub>3</sub>CN/TFE (4 mL, v:v = 1:3).

## 3.2.3 Cyclic voltammetry experiments for oxyselenation of cyclohexene



**Figure S3** Cyclic voltammograms using Pt disk as work electrode, a glassy carbon disk and Ag/AgCl as counter and reference electrode, respectively, at 100 mV/s scan rate: **A**: **6a** (0.4 mmol), VBImBr (0.2 mmol), CH<sub>3</sub>CN/TFE (4 mL, v:v = 2:2). **B**: **3a** (0.15 mmol), VBImBr (0.2 mmol), CH<sub>3</sub>CN/TFE (4 mL, v:v = 2:2). **C**: **1y** (0.2 mmol), **3a** (0.15 mmol), VBImBr (0.2 mmol), CH<sub>3</sub>CN/TFE (4 mL, v:v = 2:2). **D**: CH<sub>3</sub>CN/TFE (4 mL, v:v = 2:2).

#### 3.2.4 Cyclic voltammetrys for various N-centered nucleophiles





**Figure S4** Cyclic voltammograms using Pt disk as work electrode, a glassy carbon disk and Ag/AgCl as counter and reference electrode, respectively, at 100 mV/s scan rate.



# 3.3 H<sub>2</sub> detection experiments

Figure S5 H<sub>2</sub> detection experiment by a H<sub>2</sub> detector at different reaction time

In order to demonstrate the release of  $H_2$  during electrochemical aminoselenation of cyclohexene, the model reaction of cyclohexene (1y), saccharin (2a) and diphenyl diselenide (3a) was monitored by a  $H_2$  detector under standard conditions. Just as shown in Figure S5, as the reaction proceeded, the  $H_2$  was observed clearly and the concentration increased gradually.





Figure S6 H<sub>2</sub> detection experiment by a H<sub>2</sub> detector at different reaction time

In order to demonstrate the release of  $H_2$  during electrochemical oxyselenation of cyclohexene, the model reaction of cyclohexene (**1y**), benzoic acid (**6a**) and diphenyl diselenide (**3a**) was monitored by a  $H_2$  detector under standard conditions. Just as shown in Figure S6, as the reaction proceeded, the  $H_2$  was observed clearly and the concentration increased gradually.

# 4. Analytical data



**2-(1-phenyl-2-(phenylselanyl)ethyl)benzo**[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4a): Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 81.8 mg, 92% yield. White solid. m.p.: 95.8-97.3 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ 7.98 (d, *J* = 7.3 Hz, 1H), 7.88-7.76 (m, 3H), 7.60-7.56 (m, 4H), 7.38-7.33 (m, 3H), 7.27-7.26 (m, 3H), 5.42 (t, *J* = 8.1 Hz, 1H), 4.11 (dd, *J* = 12.9, 8.4 Hz, 1H), 3.84 (dd, *J* = 12.9, 7.7 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.8, 137.4, 136.7, 134.8, 134.4, 133.8, 129.3, 129.1, 128.9, 128.7, 128.6, 127.7, 127.2, 125.2, 120.8, 57.9, 29.1.



2-(2-(phenylselanyl)-1-(*p*-tolyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1dioxide (4b): Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 73.5 mg, 76% yield. Colorless oil. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz) δ 7.97-7.95 (m, 1H), 7.85-7.74 (m, 3H), 7.57-7.55 (m, 2H), 7.47 (d, *J* = 8.1 Hz, 2H), 7.26-7.24 (m, 3H), 7.16 (d, *J* = 8.1 Hz, 2H), 5.38 (t, *J* = 8.1 Hz, 1H), 4.06 (dd, *J* = 12.8, 8.3 Hz, 1H), 3.83 (dd, *J* = 12.8, 7.9 Hz, 1H), 2.33 (s, 3H); <sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz) δ 158.8, 138.8, 137.5, 134.8, 134.3, 133.8, 133.6, 129.4, 129.3, 129.2, 128.6, 127.7, 127.2, 125.2, 120.8, 57.6, 29.1, 21.3.



**2-(1-(4-(***tert***-butyl)phenyl)-2-(phenylselanyl)ethyl)benzo[***d***]isothiazol-3(2***H***)one 1,1-dioxide (4c): Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 88 mg, 88% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) \delta 7.97-7.94 (m, 1H), 7.86-7.72 (m, 3H), 7.59-7.56 (m, 2H), 7.54-7.52 (m, 2H), 7.41-7.36 (m, 2H), 7.27-7.24 (m, 3H), 5.41 (t,** *J* **= 7.5 Hz, 1H), 4.14 (dd,** *J* **= 13.0, 8.8 Hz, 1H), 3.83 (dd,** *J* **= 12.9, 7.4 Hz, 1H), 1.31 (s, 9H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) \delta 158.8, 151.7, 137.4, 134.8, 134.3, 133.9, 133.8, 129.2, 129.2, 128.3, 127.7, 127.3, 125.6, 125.2, 120.9, 57.8, 34.7, 31.4, 29.3.** 



**2-(1-(4-methoxyphenyl)-2-(phenylselanyl)ethyl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1-dioxide (4d)**: Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 62.1 mg, 66% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.95 (d, *J* = 7.5 Hz, 1H), 7.84-7.73 (m, 3H), 7.56-7.49 (m, 4H), 7.25-7.23 (m, 3H), 6.86 (d, *J* = 8.7 Hz, 2H), 5.36 (t, *J* = 8.1 Hz, 1H), 4.03 (dd, *J* = 12.8, 8.1 Hz, 1H), 3.82 (dd, *J* = 12.8, 8.1 Hz, 1H), 3.78 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.9, 158.8, 137.5, 134.8, 134.4, 133.8, 130.1, 129.3, 129.2, 128.6, 127.7, 127.3, 125.2, 120.8, 114.0, 57.5, 55.4, 29.3.



**2-(1-(4-(***tert***-butoxy)phenyl)-2-(phenylselanyl)ethyl)benzo[***d***]isothiazol-3(2***H***)-one 1,1-dioxide (4e): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 85.3 mg, 83% yield. White solid. m.p.: 136.6-138.6 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 7.98-7.96 (m, 1H), 7.87-7.76 (m, 3H), 7.56-7.54 (m, 2H), 7.46-7.46 (m, 2H), 7.26-7.23 (m, 3H), 6.95-6.92 (m, 2H), 5.36 (t, J = 8.0 Hz, 1H), 4.08 (dd, J = 12.8, 8.7 Hz, 1H), 3.77 (dd, J = 12.8, 7.5 Hz, 1H), 1.33 (s, 9H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 158.8, 156.0, 137.5, 134.8, 134.4, 133.9, 131.3, 129.4, 129.3, 129.2, 127.7, 127.3, 125.3, 123.8, 120.9, 78.8, 57.6, 29.4, 29.0. HRMS (ESI-Orbitrap) m/z calcd for C<sub>25</sub>H<sub>25</sub>NO<sub>4</sub>SSeNa [M+Na]<sup>+</sup>: 538.0562; found: 538.0562.** 



**2-(1-([1,1'-biphenyl]-4-yl)-2-(phenylselanyl)ethyl)benzo**[*d*]isothiazol-3(2*H*)one **1,1-dioxide (4f)**: Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 96.1 mg, 93% yield. White solid. m.p.: 126.2-128.1 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.99-7.97 (m, 1H), 7.88-7.75 (m, 3H), 7.67-7.65 (m, 2H), 7.60-7.57 (m, 6H), 7.45-7.41 (m, 2H), 7.37-7.33 (m, 1H), 7.27-7.26 (m, 3H), 5.45 (t, *J* = 8.1 Hz, 1H), 4.13 (dd, *J* = 12.9, 8.3 Hz, 1H), 3.89 (dd, *J* = 12.9, 7.9 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.9, 141.7, 140.6, 137.5, 135.7, 134.9, 134.4, 133.9, 129.3, 129.1, 129.1, 128.9, 127.8, 127.6, 127.4, 127.2, 125.3, 120.9, 57.7, 29.1.



**2-(1-(4-chlorophenyl)-2-(phenylselanyl)ethyl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1-dioxide (4g)**: Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 82.7 mg, 87% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.97-7.95 (m, 1H), 7.87-7.75 (m, 3H), 7.55-7.49 (m, 4H), 7.32-7.24 (m, 5H), 5.35 (t, *J* = 8.1 Hz, 1H), 4.03 (dd, *J* = 12.9, 7.9 Hz, 1H), 3.81 (dd, *J* = 12.9, 8.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.8, 137.4, 135.1, 135.0, 134.8, 134.5, 133.9, 130.2, 129.4, 128.8, 128.8, 127.9, 127.1, 125.3, 120.9, 57.2, 28.8.



**2-(1-(4-bromophenyl)-2-(phenylselanyl)ethyl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1-dioxide (4h)**: Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 84.5 mg, 81% yield. White solid. m.p.: 99.3-105.5 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.98-7.96 (m, 1H), 7.87-7.76 (m, 3H), 7.57-7.54 (m, 2H), 7.35-7.24 (m, 6H), 7.03-6.98 (m, 1H), 5.35 (t, *J* = 8.1 Hz, 1H), 4.05 (dd, *J* = 13.0, 8.2 Hz, 1H), 3.79 (dd, *J* = 13.0, 7.9 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.7, 137.3, 135.6, 134.9, 134.4, 133.9, 131.8, 130.5, 129.3, 128.7, 127.8, 127.0, 125.3, 123.0, 120.9, 57.2, 28.7.



2-(2-(phenylselanyl)-1-(4-(trifluoromethyl)phenyl)ethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (4i): Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 54.2 mg, 53% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.98 (d, J = 7.4 Hz, 1H), 7.89-7.77 (m, 3H), 7.68 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.54-7.51 (m, 2H), 7.29-7.22 (m, 3H), 5.40 (t, J = 8.1 Hz, 1H), 4.05 (dd, J = 13.0, 7.8 Hz, 1H), 3.84 (dd, J = 13.0, 8.3 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.8, 140.6, 137.4, 135.1, 134.5, 134.0, 130.9 (q,  $J_{CF}$  = 32.4 Hz), 129.4, 129.2, 128.6, 128.0, 127.0, 125.6 (q,  $J_{CF}$  = 3.7 Hz), 125.4, 124.0 (q,  $J_{CF}$  = 270.7 Hz), 121.0, 57.4, 28.6; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 376 MHz)  $\delta$  -62.7.



4-(1-(1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)-2-

(phenylselanyl)ethyl)benzoic acid (4j): Known compound<sup>[3]</sup>. (Eluent: dichloromethane/methyl alcohol = 20:1, v/v). 59.4 mg, 61% yield. White solid. m.p.: 200.3-201.0 °C. <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz)  $\delta$  13.00 (s, 1H), 8.27 (d, J = 7.6 Hz, 1H), 8.07-7.92 (m, 5H), 7.66 (d, J = 8.4 Hz, 2H), 7.52-7.49 (m, 2H), 7.26-7.24 (m, 3H), 5.46 (t, J = 8.0 Hz, 1H), 4.06 (dd, J = 12.8, 9.0 Hz, 1H), 3.92 (dd, J = 12.8, 7.2 Hz, 1H); <sup>13</sup>C NMR (DMSO- $d_6$ , 100 MHz)  $\delta$  167.0, 158.5, 141.7, 136.4, 136.1, 135.4, 132.3, 130.8, 129.5, 129.3, 128.9, 128.3, 127.2, 125.9, 125.3, 121.5, 56.0, 27.9.



4-(1-(1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)-2-

(phenylselanyl)ethyl)phenyl acetate (4k): Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 4:1, v/v). 81.9 mg, 82% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.95-7.93 (m, 1H), 7.85-7.73 (m, 3H), 7.61-7.54 (m, 4H), 7.27-7.23 (m, 3H), 7.09-7.05 (m, 2H), 5.36 (t, *J* = 8.0 Hz, 1H), 4.10 (dd, *J* = 13.0, 8.6 Hz,

1H), 3.78 (dd, J = 13.0, 7.6 Hz, 1H), 2.27 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  169.3, 158.8, 150.9, 137.4, 134.9, 134.4, 134.4, 134.0, 130.0, 129.3, 128.9, 127.8, 127.2, 125.3, 121.8, 120.9, 57.4, 29.1, 21.3.



2-(1-(3-(chloromethyl)phenyl)-2-(phenylselanyl)ethyl)benzo[d]isothiazol-

**3(2***H***)-one 1,1-dioxide (4I)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 74.1 mg, 75% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.97-7.95 (m, 1H), 7.87-7.75 (m, 3H), 7.57-7.53 (m, 4H), 7.37-7.35 (m, 2H), 7.27-7.24 (m, 3H), 5.38 (t, *J* = 8.1 Hz, 1H), 4.56 (s, 2H), 4.06 (dd, *J* = 12.9, 8.24 Hz, 1H), 3.81 (dd, *J* = 12.9, 7.9 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.8, 138.0, 137.4, 136.9, 134.9, 134.4, 133.9, 129.4, 129.3, 129.2, 129.1, 128.9, 128.9, 127.8, 127.1, 125.3, 120.9, 57.5, 45.8, 29.0; HRMS (ESI-Orbitrap) m/z calcd for C<sub>22</sub>H<sub>18</sub>ClNO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 513.9753; found: 513.9750.



**2-(1-(3-fluorophenyl)-2-(phenylselanyl)ethyl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1-dioxide (4m)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 70.6 mg, 77% yield. White solid. m.p.: 112-113 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.97-7.95 (m, 1H), 7.87-7.75 (m, 3H), 7.55-7.52 (m, 2H), 7.45 (s, 4H), 7.26-7.22 (m, 2H), 5.33 (t, *J* = 8.1 Hz, 1H), 4.02 (dd, *J* = 12.9, 7.9 Hz, 1H), 3.81 (dd, *J* = 12.9, 8.3 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  164.0, 160.2 (d, *J*<sub>CF</sub> = 271.0 Hz), 139.2 (d, *J*<sub>CF</sub> = 7.2 Hz), 137.4, 135.0, 134.5, 134.0, 130.2 (d, *J*<sub>CF</sub> = 8.1 Hz), 129.4, 128.8, 127.9, 127.1, 125.4, 124.4 (d, *J*<sub>CF</sub> = 2.9 Hz), 120.9, 116.0 (d, *J*<sub>CF</sub> = 8.0 Hz), 115.8 (d, *J*<sub>CF</sub> = 9.0 Hz), 57.3, 28.9; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 376 MHz) δ -112.0; HRMS (ESI-Orbitrap) m/z calcd for C<sub>21</sub>H<sub>17</sub>FNO<sub>3</sub>SSe [M+H]<sup>+</sup>: 462.0073; found: 462.0077.



**2-(1-(2-chlorophenyl)-2-(phenylselanyl)ethyl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1-dioxide (4n)**: Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 70.3 mg, 74% yield. White solid. m.p.: 167.6-170.5 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.06-8.03 (m, 1H), 7.83-7.75 (m, 4H), 7.62-7.60 (m, 2H), 7.40-7.38 (m, 1H), 7.32-7.25 (m, 5H), 6.01 (t, *J* = 8.1 Hz, 1H), 4.01 (dd, *J* = 13.0, 8.4 Hz, 1H), 3.75 (dd, *J* = 13.0, 7.8 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.1, 137.7, 135.0, 134.4, 134.4, 134.2, 133.9, 130.2, 130.0, 129.4, 129.3, 128.9, 127.9, 127.3, 127.0, 125.4, 120.8, 54.2, 29.2.



**2-(1-(2,5-dimethylphenyl)-2-(phenylselanyl)ethyl)benzo**[*d*]isothiazol-3(2*H*)one 1,1-dioxide (4o): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 61.4 mg, 65 % yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.05-8.02 (m, 1H), 7.83-7.77 (m, 3H), 7.57-7.55 (m, 2H), 7.52 (s, 1H), 7.27-7.23 (m, 3H), 7.04 (s, 2H), 5.71 (t, *J* = 8.0 Hz, 1H), 4.04 (dd, *J* = 12.9, 8.2 Hz, 1H), 3.72 (dd, *J* = 12.9, 7.8 Hz, 1H), 2.31 (s, 3H), 2.22 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.2, 137.8, 135.9, 134.9, 134.3, 134.2, 134.0, 133.9, 130.7, 129.7, 129.4, 129.2, 128.6, 127.8, 127.1, 125.4, 120.7, 54.3, 30.1, 21.4, 19.0. HRMS (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>21</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 494.0300; found: 494.0303.



# 2-(1-(benzo[d][1,3]dioxol-5-yl)-2-(phenylselanyl)ethyl)benzo[d]isothiazol-

**3(2***H***)-one 1,1-dioxide (4p)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 81.7 mg, 84% yield. White solid. m.p. 127.4-128.6 °C: <sup>1</sup>H **NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.98-7.96 (m, 1H), 7.87-7.76 (m, 3H), 7.56-7.53 (m, 2H), 7.27-7.24 (m, 3H), 7.09 (d, *J* = 1.8 Hz, 1H), 7.03 (dd, *J* = 8.1, 1.8 Hz, 1H), 6.76 (d, *J* = 8.1 Hz, 1H), 5.94-5.93 (m, 2H), 5.31 (t, *J* = 8.1 Hz, 1H), 3.99 (dd, *J* = 12.8, 8.0 Hz, 1H), 3.79 (dd, *J* = 12.9, 8.2 Hz, 1H); <sup>13</sup>C **NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.8, 148.0, 147.9, 137.4, 134.9, 134.4, 133.8, 130.4, 129.3, 129.0, 127.8, 127.2, 125.3, 122.7, 120.9, 109.1, 108.2, 101.4, 57.9, 29.3; **HRMS** (ESI-Orbitrap) m/z calcd for C<sub>22</sub>H<sub>17</sub>NO<sub>5</sub>SSeNa [M+Na]<sup>+</sup>: 509.9885; found: 509.9887.



**2-(1-(naphthalen-2-yl)-2-(phenylselanyl)ethyl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1-dioxide (4q)**: Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 92.2 mg, 94% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.03 (d, 1H), 7.97-7.94 (m, 1H), 7.85-7.69 (m, 7H), 7.59-7.57 (m, 2H), 7.49-7.47 (m, 2H), 7.26-7.24 (m, 3H), 5.59 (t, *J* = 8.1 Hz, 1H), 4.19 (dd, *J* = 12.9, 8.2 Hz, 1H), 3.97 (dd, *J* = 12.9, 8.0 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.9, 137.4, 134.8, 134.4, 134.1, 133.9, 133.4, 133.1, 129.3, 129.1, 128.5, 128.4, 128.2, 127.8, 127.7, 127.2, 126.7, 126.4, 126.1, 125.3, 120.9, 58.0, 29.1.



**2-(2-(phenylselanyl)-1-(thiophen-2-yl)ethyl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1-dioxide (4r)**: Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 75.2 mg, 84% yield. White solid. m.p.: 89.2-90.4 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.99-7.97 (m, 1H), 7.88-7.77 (m, 3H), 7.59-7.56 (m, 2H), 7.28 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.27-7.23 (m, 4H), 6.97 (dd, *J* = 5.1, 3.6 Hz, 1H), 5.62 (t, *J* = 7.9 Hz, 1H), 4.07 (dd, *J* = 13.0, 8.6 Hz, 1H), 3.81 (dd, *J* = 13.0, 7.4 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.6, 139.3, 137.5, 134.9, 134.4, 134.0, 129.3, 128.9, 128.2, 127.9, 127.1, 126.8, 126.5, 125.3, 120.9, 52.8, 30.5.



**2-(1-ferrocenyl-2-(phenylselanyl)ethyl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1dioxide (4s)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 50.7 mg, 45% yield. Yellow solid. m.p.:152.0-152.2 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.95-7.93 (s, 1H), 7.85-7.74 (m, 5H), 7.31-7.29 (m, 3H), 5.34 (dd, *J* = 11.9, 8.8 Hz, 1H), 4.4 (d, *J* = 1.0 Hz, 1H), 4.4 (d, *J* = 1.1 Hz, 1H), 4.19-4.13 (m, 3H), 4.0 (s, 5H), 3.8 (dd, *J* = 13.3, 10.1 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.7, 137.7, 135.2, 134.7, 134.2, 129.4, 129.3, 128.2, 127.3, 125.2, 120.8, 84.8, 69.1, 69.0, 68.7, 68.2, 67.7, 54.6, 29.8. HRMS (ESI-Orbitrap) m/z calcd for C<sub>25</sub>H<sub>22</sub>FeNO<sub>3</sub>SSe [M+H]<sup>+</sup>: 551.9830; found: 551.9810.



**2-(2-(phenylselanyl)-2,3-dihydro-1***H***-inden-1-yl)benzo**[*d*]isothiazol-3(2*H*)one **1,1-dioxide (4t)**: Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 4:1, v/v). 71.1 mg, 78% yield. White solid. m.p.: 133.9-134.7 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.98-7.96 (m, 1H), 7.90-7.77 (m, 3H), 7.71-7.68 (m, 2H), 7.33-7.18 (m, 7H), 5.75 (d, *J* = 7.0 Hz, 1H), 4.67 (q, *J* = 8.0 Hz, 1H), 3.71 (dd, *J* = 16.3, 8.0 Hz, 1H), 3.10 (dd, *J* = 16.4, 7.3 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.6, 142.1, 137.7, 137.2, 136.1, 134.9, 134.4, 129.2, 129.1, 128.4, 127.3, 127.2, 125.3, 124.7, 124.6, 121.0, 63.6, 42.5, 38.9.



**2-(2-phenyl-1-(phenylselanyl)propan-2-yl)benzo**[*d*]isothiazol-3(2*H*)-one 1,1dioxide (4u): Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 63.7 mg, 70% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.89-7.87 (m, 3H), 7.83-7.79 (m, 1H), 7.70-7.69 (m, 2H), 7.54-7.52 (m, 2H), 7.50-7.47 (m, 2H), 7.35-7.24 (m, 3H), 7.11-7.05 (m, 3H), 4.55 (d, *J* = 12.1 Hz, 1H), 3.89 (d, *J* = 12.1 Hz, 1H), 2.23 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.9, 143.8, 137.9, 134.8, 134.0, 134.0, 129.6, 128.8, 128.6, 127.6, 127.4, 126.4, 125.5, 125.0, 120.3, 68.0, 37.6, 25.7.



**2-(1-phenyl-2-(phenylselanyl)propyl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1dioxide (4v)**: Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 83.5 mg, 87% yield. White solid. m.p. 143.8-144.5 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.98-7.96 (m, 1H), 7.84-7.74 (m, 3H), 7.65-7.62 (m, 2H), 7.43-7.41 (m, 2H), 7.34-7.28 (m, 4H), 7.26-7.21 (m, 2H), 5.05 (d, *J* = 11.7 Hz, 1H), 4.69-4.61 (m, 1H), 1.56 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.7, 137.2, 136.5, 136.5, 134.8, 134.4, 129.7, 129.0, 128.9, 128.4, 127.5, 127.1, 125.2, 120.9, 63.4, 37.7, 20.7.



(*E*)-2-(4-phenyl-1-(phenylselanyl)but-3-en-2-yl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4w): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 78.7 mg, 84% yield, Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.01-7.99 (m, 1H), 7.87-7.79 (m, 3H), 7.61-7.57 (m, 2H), 7.38-7.36 (m, 2H), 7.33-7.23 (m, 6H), 6.72 (d, *J* = 15.8 Hz, 1H), 6.57 (dd, *J* = 15.7, 8.4 Hz, 1H), 5.03 (q, *J* = 8.2 Hz, 1H), 3.75 (dd, *J* = 12.8, 7.4 Hz, 1H), 3.58 (dd, *J* = 12.8, 8.4 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.6, 137.7, 135.8, 135.5, 134.9, 134.4, 133.7, 129.3, 129.0, 128.6, 128.4, 127.6, 127.3, 127.0, 125.3, 124.1, 120.9, 56.9, 29.9. HRMS (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>19</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 492.0143; found: 492.0143.



(*E*)-2-(1-(phenylselanyl)-4-(*p*-tolyl)but-3-en-2-yl)benzo[*d*]isothiazol-3(2*H*)one 1,1-dioxide (4x): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 76.7 mg, 79% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.02-7.99 (m, 1H), 7.89-7.79 (m, 3H), 7.60-7.58 (m, 2H), 7.28-7.26 (m, 5H), 7.11 (d, J = 8.0 Hz, 2H), 6.68 (d, J = 15.8 Hz, 1H), 6.51 (dd, J = 15.8, 8.5 Hz, 1H), 5.02 (q, J = 8.2 Hz, 1H), 3.75 (dd, J = 12.8, 7.5 Hz, 1H), 3.57 (dd, J = 12.7, 8.2 Hz, 1H), 2.33 (s, 3H); <sup>13</sup>C **NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.6, 138.3, 137.7, 135.4, 134.8, 134.3, 133.6, 133.0, 129.3, 129.3, 129.1, 127.6, 127.3, 126.9, 125.2, 123.0, 120.8, 57.0, 30.0, 21.3; **HRMS** (ESI-Orbitrap) m/z calcd for C<sub>24</sub>H<sub>22</sub>NO<sub>3</sub>SSe [M+H]<sup>+</sup>: 484.0480; found: 484.0480.



(*E*)-2-(4-(4-chlorophenyl)-1-(phenylselanyl)but-3-en-2-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (4y): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 91.1 mg, 91% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.01-7.99 (m, 1H), 7.89-7.78 (m, 3H), 7.58-7.56 (m, 2H), 7.26-7.25 (m, 7H), 8.65 (d, *J* = 15.8 Hz, 1H), 6.51 (dd, *J* = 15.8, 8.3 Hz, 1H), 5.00 (q, *J* = 7.6 Hz, 1H), 3.71 (dd, *J* = 12.8, 7.2 Hz, 1H), 3.57 (dd, *J* = 12.8, 8.5 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.6, 137.7, 134.9, 134.4, 134.3, 134.2, 134.1, 133.7, 129.3, 128.9, 128.8, 128.2, 127.7, 127.2, 125.3, 124.8, 120.9, 56.7, 29.7; HRMS (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>19</sub>CINO<sub>3</sub>SSe [M+H]<sup>+</sup>: 503.9934; found: 503.9935.



(*E*)-2-(4-(4-bromophenyl)-1-(phenylselanyl)but-3-en-2-yl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4z): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 100.9 mg, 92% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.02-8.00 (m, 1H), 7.90-7.79 (m, 3H), 7.58-7.56 (m, 2H), 7.42-7.40 (m, 2H), 7.27-7.25 (m, 3H), 7.21-7.19 (m, 2H), 6.63 (d, *J* = 15.8 Hz, 1H), 6.53 (dd, *J* = 15.8, 8.2 Hz, 1H), 4.99 (q, J = 8.2 Hz, 1H), 3.71 (dd, J = 12.8, 7.2 Hz, 1H), 3.57 (dd, J = 12.8, 8.5 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.6, 137.6, 134.9, 134.7, 134.4, 134.2, 133.6, 131.7, 129.3, 128.9, 128.5, 127.7, 127.2, 125.3, 124.9, 122.3, 120.9, 56.7, 29.7; HRMS (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>18</sub>BrNO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 569.9248; found: 569.9251.



(*E*)-2-(4-(3-chlorophenyl)-1-(phenylselanyl)but-3-en-2-yl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4a'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 97.0 mg, 96% yield. white solid. m.p.: 150.9-153.5 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.00-7.98 (m, 1H), 7.88-7.77 (m, 3H), 7.57-7.55 (m, 2H), 7.30 (s, 1H), 7.26-7.24 (m, 3H), 7.20-7.19 (m, 3H), 6.62 (d, *J* = 15.8 Hz, 1H), 6.52 (dd, *J* = 15.8, 8.1 Hz, 1H), 4.98 (q, *J* = 7.5 Hz, 1H), 3.70 (dd, *J* = 12.8, 7.1 Hz, 1H), 3.56 (dd, *J* = 12.8, 8.6 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.6, 137.7, 134.9, 134.6, 134.5, 134.1, 133.7, 129.9, 129.4, 128.9, 128.3, 127.7, 127.2, 126.8, 125.7, 125.3, 125.3, 120.9, 56.6, 29.6; HRMS (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>19</sub>ClNO<sub>3</sub>SSe [M+H]<sup>+</sup>: 503.9934; found: 503.9935.



(E)-2-(4-(2-methoxyphenyl)-1-(phenylselanyl)but-3-en-2-

**yl)benzo**[*d*]**isothiazol-3**(2*H*)**-one 1,1-dioxide** (4b'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 86.6 mg, 87% yield. white solid. m.p.: 130.8-131.6 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 8.01-7.99 (m, 1H), 7.88-7.77 (m, 3H), 7.60-7.57 (m, 2H), 7.39 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.26-7.20 (m, 4H), 7.04 (d, *J* = 16.0 Hz, 1H), 6.90-6.83 (m, 2H), 6.59 (dd, *J* = 15.9, 8.6 Hz, 1H), 5.05 (q, *J* = 7.9 Hz, 1H),

3.82 (s, 3H), 3.75 (dd, J = 12.8, 7.8 Hz, 1H), 3.55 (dd, J = 12.8, 8.0 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.6, 157.1, 137.8, 134.8, 134.3, 133.7, 130.4, 129.5, 129.3, 129.2, 127.6, 127.5, 127.3, 125.2, 124.8, 124.4, 120.8, 120.7, 111.0, 57.5, 55.6, 30.2; HRMS (ESI-Orbitrap) m/z calcd for C<sub>24</sub>H<sub>21</sub>NO<sub>4</sub>SSeNa [M+Na]<sup>+</sup>: 522.0249; found: 522.0248.



(*E*)-2-(4-(2-nitrophenyl)-1-(phenylselanyl)but-3-en-2-yl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (4c'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 66.6 mg, 65% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.94-7.92 (m, 1H), 7.89-7.86 (m, 1H), 7.81-7.71 (m, 3H), 7.53-7.49 (m, 2H), 7.48-7.41 (m, 2H), 7.34-7.30 (m, 1H), 7.20-7.12 (m, 4H), 6.42 (dd, *J* = 15.6, 8.2 Hz, 1H), 4.98 (q, *J* = 8.2 Hz, 1H), 3.62 (dd, *J* = 12.8, 7.4 Hz, 1H), 3.51 (dd, *J* = 12.8, 8.7 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 158.6, 147.7, 137.7, 135.0, 134.5, 133.8, 133.4, 132.0, 131.1, 129.4, 129.3, 128.9, 128.6, 127.8, 127.2, 125.4, 124.7, 120.9, 56.1, 29.4; HRMS (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>18</sub>N<sub>2</sub>O<sub>5</sub>SSeNa [M+Na]<sup>+</sup>: 536.9994; found: 537.0002.



(Z)-2-(3-bromo-4-phenyl-1-(phenylselanyl)but-3-en-2-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (4d'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 66.2 mg, 60% yield. White solid. m.p.:153.4-154.6 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.07-8.05 (m, 1H), 7.90-7.80 (m, 3H), 7.64-7.62 (m, 2H), 7.59-7.57 (m, 2H), 7.38-7.28 (m, 6H), 7.25-7.24 (m, 1H), 5.34 (t, J = 7.7 Hz, 1H),
3.93 (dd, J = 13.0, 8.6 Hz, 1H), 3.78 (dd, J = 13.0, 7.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.9, 137.7, 135.1, 134.9, 134.5, 134.3, 133.0, 129.4, 129.3, 128.8, 128.7, 128.3, 128.1, 126.8, 125.6, 121.0, 120.8, 62.2, 28.9; HRMS (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>18</sub>BrNO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 569.9248; found: 569.9251.



**2-(1-phenyl-3-(phenylselanyl)propan-2-yl)benzo**[*d*]isothiazol-3(2*H*)-one 1,1dioxide (5a): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 71.8 mg, 79% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.05-8.03 (m, 1H), 7.92-7.80 (m, 3H), 7.56-7.53 (m, 2H), 7.31-7.20 (m, 8H), 4.10-3.98 (m, 3H), 3.19 (dd, J = 14.8, 5.2 Hz, 1H), 2.89 (dd, J = 14.7, 8.8 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$ 159.3, 138.6, 137.6, 135.1, 135.0, 134.5, 129.3, 129.2, 128.5, 128.1, 127.7, 127.2, 126.8, 125.4, 121.1, 44.3, 43.2, 38.9; HRMS (ESI-Orbitrap) m/z calcd for C<sub>22</sub>H<sub>19</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 480.0143; found: 480.0146.



**2-(1-(4-methoxyphenyl)-3-(phenylselanyl)propan-2-yl)benzo**[*d*]isothiazol-**3(***2H***)-one 1,1-dioxide (5b)**: New compound. (Eluent: petroleum ether (60-90 °C) / EtOAc = 6:1, v/v). 66.5 mg, 68% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ 8.04-8.02 (m, 1H), 7.92-7.79 (m, 3H), 7.56-7.54 (m, 2H), 7.27-7.25 (m, 3H), 7.17-7.15 (m, 2H), 6.84-6.81 (m, 2H), 4.11-3.95 (m, 3H), 3.78 (s, 3H), 3.12 (dd, *J* = 14.7, 5.2 Hz, 1H), 2.84 (dd, *J* = 14.6, 8.4 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.2, 158.4, 137.6, 135.0, 134.5, 130.5, 130.2, 129.2, 128.1, 128.0, 127.8, 127.2, 125.4, 121.0, 113.9, 55.3, 44.2, 43.5, 38.0; HRMS (ESI) m/z Calcd for C<sub>23</sub>H<sub>22</sub>NO<sub>4</sub>SSe [M+H]<sup>+</sup>: 488.0429; Found: 488.0417.



**2-(1-(4-fluorophenyl)-3-(phenylselanyl)propan-2-yl)benzo**[*d*]isothiazol-**3(2***H***)-one 1,1-dioxide (5c): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 53.7 mg, 56% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 8.05-8.03 (m, 1H), 7.93-7.81 (m, 3H), 7.54-7.51 (m, 2H), 7.29-7.24 (m, 3H), 7.21-7.17 (m, 2H), 7.00-6.93 (m, 2H), 4.12-4.02(m, 2H), 3.98-3.91 (m, 1H), 3.16 (dd, J = 14.7, 5.2 Hz, 1H), 2.84 (dd, J = 14.7, 9.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 161.8 (d, J = 243.0 Hz), 159.3, 137.6, 135.1, 134.6, 134.2 (d, J = 3.4 Hz), 130.7 (d, J = 7.9 Hz), 129.3, 128.2, 127.4 (d, J = 38.7 Hz), 125.5, 121.1, 115.4, 115.2, 44.3, 43.4, 38.0; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 376 MHz) δ -116.3; HRMS (ESI) m/z Calcd for C\_{22}H\_{18}FNO\_3SSeNa [M+Na]<sup>+</sup>: 498.0049; Found: 498.0050.** 



**2-(1-(phenylselanyl)-3-(***o***-tolyl)propan-2-yl)benzo[***d***]isothiazol-3(2***H***)-one 1,1dioxide (5d): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 50.9 mg, 54% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 8.06-8.04 (m, 1H), 7.92-7.80 (m, 3H), 7.55-7.52 (m, 2H), 7.27-7.21 (m, 4H), 7.15-7.12 (m, 3H), 4.11-4.01 (m, 3H), 3.18 (dd, J = 14.8, 5.0 Hz, 1H), 2.97-2.91 (m, 1H), 2.24 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 159.3, 137.6, 136.8, 136.4, 135.0, 134.5, 133.0, 130.6, 129.8, 129.2, 128.0, 127.9, 127.2, 126.9, 126.0, 125.4, 121.1, 44.5, 42.4, 36.7, 19.6; HRMS (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>21</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 494.0300; found: 494.0298.** 



2-(1-(benzylselanyl)-3-(3,4-dimethoxyphenyl)propan-2-

yl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (5e): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 64.4 mg, 61% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.07-8.05 (m, 1H), 7.94-7.81 (m, 3H), 7.26-7.19 (m, 5H), 6.75-6.71 (m, 3H), 4.12-3.97 (m, 2H), 3.83 (s, 6H), 3.78-3.76 (m, 2H), 3.52 (m, 1H), 3.06 (dd, *J* = 14.3, 5.1 Hz, 1H), 2.79 (dd, *J* = 14.2, 8.7 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.3, 148.8, 147.7, 138.8, 137.7, 135.0, 134.5, 131.1, 129.1, 128.6, 127.3, 126.9, 125.5, 121.4, 121.0, 112.4, 111.0, 55.9, 55.9, 44.1, 40.3, 38.9, 27.7; HRMS (ESI-Orbitrap) m/z calcd for C<sub>25</sub>H<sub>25</sub>NO<sub>5</sub>SSeNa [M+Na]<sup>+</sup>: 554.0511; found: 554.0502.



**2-(1-(perfluorophenyl)-3-(phenylselanyl)propan-2-yl)benzo**[*d*]isothiazol-**3(2***H***)-one 1,1-dioxide (5f): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 48.2 mg, 44% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 8.08-8.06 (m, 1H), 7.95-7.83 (m, 3H), 7.52-7.49 (m, 2H), 7.28-7.24 (m, 3H), 4.17 (dd, J = 18.8, 10.2 Hz, 1H), 4.03-4.94 (m, 2H), 3.30-3.27 (m, 1H), 3.05 (dd, J = 14.4, 9.3 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 159.3, 146.3, 144.3, 137.6, 136.5, 135.2, 134.7, 134.5, 129.6, 129.4, 128.3, 127.3, 127.1, 125.6, 121.3, 44.2, 41.0, 26.9; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 376 MHz) δ -64.3, -78.5, -84.7; HRMS (ESI) m/z Calcd for C\_{22}H\_{14}F\_5NO\_3SSeNa [M+Na]^+: 569.9672; Found: 569.9673.** 



**2-(1-(naphthalen-1-yl)-3-(phenylselanyl)propan-2-yl)benzo**[*d*]isothiazol-**3(2***H***)-one 1,1-dioxide (5g): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 4:1, v/v). 52.4 mg, 48% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) \delta 8.10-8.07 (m, 1H), 7.96-7.93 (m, 1H), 7.90-7.82 (m, 4H), 7.77 (d,** *J* **= 8.2 Hz, 1H), 7.55-7.41 (m, 6H), 7.30-7.22 (m, 3H), 4.34-4.26 (m, 1H), 4.17-4.15 (m, 2H), 3.70 (dd,** *J* **= 14.8, 6.0 Hz, 1H), 3.40 (dd,** *J* **= 14.8, 9.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) \delta 159.4, 137.6, 135.1, 135.0, 134.6, 134.5, 134.0, 131.9, 129.2, 129.0, 128.0, 127.8, 127.8, 127.5, 127.2, 126.2, 125.7, 125.5, 125.4, 123.5, 121.1, 44.5, 42.5, 36.7; HRMS (ESI) m/z Calcd for C<sub>26</sub>H<sub>21</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 530.0300; Found: 530.0300.** 



**2-(4-phenyl-1-(phenylselanyl)butan-2-yl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1dioxide (5h)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 45.5 mg, 48% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.04-8.02 (m, 1H), 7.91-7.80 (m, 3H), 7.67-7.64 (m, 2H), 7.33-7.30 (m, 3H), 7.26-7.22 (m, 2H), 7.18-7.14 (m, 3H), 4.11-4.00 (m, 2H), 3.76-3.69 (m, 1H), 3.10-3.03 (m, 1H), 2.79-2.71 (m, 1H), 2.18-2.09 (m, 1H), 1.92-1.83 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.2, 141.3, 137.6, 135.1, 135.0, 134.5, 129.4, 128.6, 128.5, 128.2, 127.5, 127.2, 126.1, 125.4, 121.1, 44.4, 41.9, 33.8, 33.7; HRMS (ESI) m/z Calcd for C<sub>23</sub>H<sub>21</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 494.0300; Found: 494.0303.



## 2-(1-phenoxy-3-(phenylselanyl)propan-2-yl)benzo[d]isothiazol-3(2H)-one

**1,1-dioxide (5i)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 55.7 mg, 59% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.05-8.03 (m, 1H), 7.92-7.80 (m, 3H), 7.70-7.68 (m, 2H), 7.33-7.24 (m, 5H), 6.95 (t, *J* = 7.4 Hz, 1H), 6.87-6.85 (m, 2H), 4.40-4.24 (m, 3H), 4.16 (dd, *J* = 14.8, 6.7 Hz, 1H), 4.11-4.04 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.3, 158.4, 137.6, 135.0, 134.9, 134.5, 129.5, 129.4, 128.3, 127.5, 127.2, 125.4, 121.3, 121.1, 114.8, 68.7, 41.3, 40.9; HRMS (ESI) m/z Calcd for C<sub>22</sub>H<sub>19</sub>NO<sub>4</sub>SSeNa [M+Na]<sup>+</sup>: 496.0092; Found: 496.0091.



**2-(1,1-dioxido-3-oxobenzo**[*d*]isothiazol-2(3*H*)-yl)-3-(phenylselanyl)propyl **2**phenoxyacetate (5j): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 4:1, v/v). 48.9 mg, 46% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.01-8.00 (m, 1H), 7.89-7.76 (m, 3H), 7.63-7.61 (m, 2H), 7.31-7.23 (m, 5H), 6.96 (t, *J* = 7.4 Hz, 1H), 6.89-6.87 (m, 2H), 4.63-4.52 (m, 3H), 4.39 (dd, *J* = 11.8, 5.8 Hz, 1H), 4.13-4.00 (m, 2H), 3.92-3.85 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  168.7, 159.2, 157.8, 137.5, 135.1, 134.6, 129.7, 129.6, 128.6, 127.1, 126.8, 125.5, 121.8, 121.2, 114.8, 65.5, 65.0, 40.8, 39.5; HRMS (ESI) m/z Calcd for C<sub>24</sub>H<sub>21</sub>NO<sub>6</sub>SSeNa [M+Na]<sup>+</sup>: 554.0147; Found: 554.0146.



**2-(1,1-dioxido-3-oxobenzo**[*d*]isothiazol-2(3*H*)-yl)-3-(phenylselanyl)propyl phenyl carbonate (5k): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 35.8 mg, 35% yield. purple oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.07-8.05 (m, 1H), 7.94-7.80 (m, 3H), 7.70-7.67 (m, 2H), 7.39-7.30 (m, 5H), 7.25-7.21 (m, 1H), 7.18-7.15 (m, 2H), 4.61 (dd, *J* = 11.6, 4.4 Hz, 1H), 4.46 (dd, *J* = 11.6, 6.5 Hz, 1H), 4.21 (dd, *J* = 15.0, 9.4 Hz, 1H), 4.61 (dd, *J* = 14.9, 6.3 Hz, 1H), 4.03-4.36 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.3, 153.4, 151.2, 137.6, 135.2, 135.2, 135.1, 134.6, 129.6, 129.6, 128.7, 127.2, 126.7, 126.2, 125.5, 121.2, 68.8, 40.9, 39.4; HRMS (ESI) m/z Calcd for C<sub>23</sub>H<sub>19</sub>NO<sub>6</sub>SSeNa [M+Na]<sup>+</sup>: 539.9991; Found: 539.9990.



3-(1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)-N-phenyl-4-

(phenylselanyl)butanamide (5l): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 3:1, v/v). 52.7 mg, 53% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.01-7.99 (m, 1H), 7.88-7.67 (m, 6H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.32-7.25 (m, 5H), 7.06 (t, *J* = 7.3 Hz, 1H), 4.10 (s, 3H), 2.93-2.89 (m, 1H), 2.73 (dd, *J* = 15.1, 5.6 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  168.0, 159.6, 137.8, 137.4, 135.2, 135.0, 134.7, 129.5, 129.0, 128.4, 127.8, 127.0, 125.5, 124.4, 121.2, 119.1, 43.9, 40.5, 36.8; HRMS (ESI) m/z Calcd for C<sub>23</sub>H<sub>20</sub>N<sub>2</sub>O<sub>4</sub>SSeNa [M+Na]<sup>+</sup>: 523.0201; Found: 523.0203.



**3-(1,1-dioxido-3-oxobenzo**[*d*]isothiazol-2(3*H*)-yl)-4-(phenylselanyl)-*N*-(quinolin-8-yl)butanamide (5m): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 4:1, v/v). 79.4 mg, 72% yield. White solid. m.p.: 145.5-148.6 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  9.85 (s, 1H), 8.80 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.75 (dd, *J* = 5.6, 3.4 Hz, 1H), 8.15 (dd, *J* = 8.3, 1.7 Hz, 1H), 8.01-7.99 (m, 1H), 7.88-7.72 (m, 5H), 7.50-7.43 (m, 3H), 7.32-7.29 (m, 3H), 4.26-4.15 (m, 3H), 3.16 (dd, *J* = 15.9, 4.6 Hz, 1H), 2.91 (dd, *J* = 16.0, 7.7 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  168.5, 159.4, 148.2, 138.4, 137.6, 136.5, 135.5, 135.0, 134.5, 134.3, 129.5, 128.4, 128.0, 127.5, 127.4, 127.2, 125.4, 121.7, 121.1, 116.9, 44.1, 41.0, 37.0; HRMS (ESI) m/z Calcd for C<sub>26</sub>H<sub>22</sub>N<sub>3</sub>O<sub>4</sub>SSe [M+H]<sup>+</sup>: 552.0491; Found: 552.0490.



4-(benzylselanyl)-3-(1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)-N-

(quinolin-8-yl)butanamide (5n): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 48.8 mg, 43% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  9.79 (s, 1H), 8.77-8.74 (m, 2H), 8.13-8.11 (m, 1H), 8.00-7.99 (m, 1H), 7.86-7.77 (m, 3H), 7.47-7.36 (m, 5H), 7.25 (m, 2H), 7.17-7.16 (m, 1H), 4.18-4.02 (m, 4H), 3.86-3.85 (m, 1H), 3.12-3.08 (m, 1H), 2.92-2.87 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  168.6, 159.3, 148.2, 139.0, 138.4, 137.6, 136.4, 134.9, 134.4, 134.4, 129.1, 128.7, 128.0, 127.4, 127.2, 127.0, 125.4, 121.7, 121.6, 121.1, 116.7, 44.0, 41.8, 34.5, 28.9; HRMS (ESI-Orbitrap) m/z calcd for C<sub>27</sub>H<sub>24</sub>N<sub>3</sub>O<sub>4</sub>SSe [M+H]<sup>+</sup>: 566.0647; found: 566.0639.



2-(2-(1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)-3-

(phenylselanyl)propyl)isoindoline-1,3-dione (50): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 2:1, v/v). 59.2 mg, 56% yield. White solid. m.p. 153.4-158.4 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.08-8.05 (m, 1H), 7.93-7.83 (m, 3H), 7.82-7.77 (m, 2H), 7.74-7.69 (m, 2H), 7.63-7.60 (m, 2H), 7.24-7.19 (m, 3H), 4.25-4.94 (m, 5H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  168.2, 159.3, 137.6, 135.1, 134.9, 134.6, 134.1, 131.9, 129.4, 128.2, 127.2, 126.8, 125.5, 123.5, 121.2, 42.2, 40.9, 40.4; HRMS (ESI) m/z Calcd for C<sub>24</sub>H<sub>18</sub>N<sub>2</sub>O<sub>5</sub>SSeNa [M+Na]<sup>+</sup>: 548.9994; Found: 548.9996.



**2-(1-phenyl-3-(***p***-tolylselanyl)propan-2-yl)benzo**[*d*]**isothiazol-3(***2H***)-one 1,1-dioxide (5p):** New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 53.6 mg, 57% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.05-8.03 (m, 1H), 7.92-7.80 (m, 3H), 7.45-7.43 (m, 2H), 7.31-7.20 (m, 5H), 7.09-7.07 (m, 2H), 4.06-4.04 (m, 2H), 3.99-3.92 (m, 1H), 3.15 (dd, *J* = 14.6, 5.4 Hz, 1H), 2.87 (dd, *J* = 14.6, 8.9 Hz, 1H), 3.32 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.3, 138.7, 138.3, 137.7, 135.6, 135.0, 134.5, 130.1, 129.2, 128.5, 127.3, 126.8, 125.4, 123.7, 121.1, 44.4, 43.0, 38.9, 21.3; HRMS (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>21</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 494.0300; found: 492.0304.



4-(1-((4-(*tert*-butyl)phenyl)selanyl)-3-phenylpropan-2-yl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (5q): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 77 mg, 75% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.05-8.03 (m, 1H), 7.92-7.80 (m, 3H), 7.49-7.45 (m, 2H), 7.31-7.19 (m, 7H), 4.09-4.07 (m, 2H), 4.03-3.95 (m, 1H), 3.17 (dd, *J* = 14.7, 5.4 Hz, 1H), 2.90 (dd, *J* = 14.7, 8.9 Hz, 1H), 1.30 (s, 9H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.3, 151.3, 138.7, 137.6, 135.0, 134.5, 129.2, 128.5, 127.3, 126.7, 126.4, 125.4, 124.0, 121.1, 44.5, 42.8, 39.0, 34.7, 31.4; HRMS (ESI-Orbitrap) m/z calcd for C<sub>26</sub>H<sub>27</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 536.0769; found: 536.0765.



**2-(1-((4-methoxyphenyl)selanyl)-3-phenylpropan-2-yl)benzo**[*d*]isothiazol-**3(2***H***)-one 1,1-dioxide (5r): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 55.6 mg, 57% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) \delta 8.05-8.02 (m, 1H), 7.92-7.80 (m, 3H), 7.50-7.47 (m, 2H), 7.31-7.20 (m, 5H), 6.83-6.79 (m, 2H), 4.08-4.98 (m, 2H), 3.92-3.84 (m, 1H), 3.79 (s, 3H), 3.11 (dd,** *J* **= 14.6, 5.6 Hz, 1H), 2.86 (dd,** *J* **= 14.6, 9.0 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) \delta 160.1, 159.3, 138.8, 137.9, 137.6, 135.0, 134.5, 129.2, 128.5, 127.3, 126.7, 125.4, 121.1, 117.2, 114.9, 55.4, 44.4, 43.2, 38.9; HRMS (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>21</sub>NO<sub>4</sub>SSeNa [M+Na]<sup>+</sup>: 510.0249; found: 510.0248.** 



## 2-(1-((4-fluorophenyl)selanyl)-3-phenylpropan-2-yl)benzo[d]isothiazol-

**3(2***H***)-one 1,1-dioxide (5s):** New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 38 mg, 35% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.05-8.03 (m, 1H), 7.93-7.81 (m, 3H), 7.51-7.48 (m, 2H), 7.31-7.21 (m, 5H), 6.96-6.92 (m, 2H), 4.05-4.03 (m, 2H), 3.97-3.89 (m, 1H), 3.15 (dd, *J* = 14.7, 5.5 Hz, 1H), 2.88 (dd, *J* = 14.6, 9.0 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  163.0 (d, *J<sub>CF</sub>* = 246.6 Hz), 159.3, 138.5, 137.7 (d, *J<sub>CF</sub>* = 8.0 Hz), 137.6, 134.8 (d, *J<sub>CF</sub>* = 48.8 Hz), 129.2, 128.6, 127.2, 126.9, 125.5, 122.2, 121.1, 116.6, 116.3, 44.3, 43.9, 39.1; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -113.2; HRMS (ESI-Orbitrap) m/z calcd for C<sub>22</sub>H<sub>18</sub>FNO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 498.0049; found: 498.0050.



**2-(1-((4-chlorophenyl)selanyl)-3-phenylpropan-2-yl)benzo**[*d*]isothiazol-3(2*H*)one 1,1-dioxide (5t): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 49.2 mg, 50% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.05-8.03 (m, 1H), 7.93-7.81 (m, 3H), 7.45-7.41 (m, 2H), 7.31-7.18 (m, 7H), 4.10-4.95 (m, 3H), 3.18 (dd, *J* = 14.7, 5.3 Hz, 1H), 2.88 (dd, *J* = 14.8, 8.5 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.3, 138.3, 137.6, 136.4, 135.1, 134.6, 134.4, 129.4, 129.2, 128.6, 127.2, 126.9, 126.0, 125.5, 121.1, 44.3, 43.8, 39.1; HRMS (ESI-Orbitrap) m/z calcd for C<sub>22</sub>H<sub>18</sub>CINO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 513.9753; found: 513.9746.



**2-(1-((4-bromophenyl)selanyl)-3-phenylpropan-2-yl)benzo**[*d*]isothiazol-3(2*H*)one 1,1-dioxide (5u): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 51 mg, 51% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.04 (d, *J* = 7.0 Hz, 1H), 7.93-7.82 (m, 3H), 7.38-7.27 (m, 6H), 7.24-7.21 (m, 3H), 4.07-3.96 (m, 3H), 3.18 (dd, *J* = 14.7, 5.1 Hz, 1H), 2.88 (dd, *J* = 14.9, 8.9 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.3, 138.3, 137.6, 136.6, 135.1, 134.6, 132.3, 129.2, 128.6, 127.2, 126.9, 126.8, 125.5, 122.5, 121.1, 44.3, 43.8, 39.1; HRMS (ESI-Orbitrap) m/z calcd for C<sub>22</sub>H<sub>19</sub>BrNO<sub>3</sub>SSe [M+H]<sup>+</sup>: 535.9429; found: 535.9418.



**2-(1-phenyl-3-(***o***-tolylselanyl)propan-2-yl)benzo[***d***]isothiazol-3(2***H***)-one 1,1dioxide (5v): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 47 mg, 50% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) \delta 8.05-8.03 (m, 1H), 7.92-7.80 (m, 3H), 7.56 (d,** *J* **= 7.4 Hz, 1H), 7.30-7.14 (m, 7H), 7.11-7.07 (m, 1H), 4.16-4.97 (m, 3H), 3.27 (dd,** *J* **= 14.5, 4.6 Hz, 1H), 2.88 (dd,** *J* **= 14.6, 8.8 Hz, 1H), 2.36 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) \delta 159.3, 141.0, 138.6, 137.7, 135.0, 134.5, 134.5, 130.3, 129.5, 129.2, 128.5, 128.0, 127.3, 126.8, 126.7, 125.5, 121.1, 44.4, 42.5, 38.9, 22.8. HRMS (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>21</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 494.0300; found: 492.0311.** 



2-(1-(naphthalen-2-ylselanyl)-3-phenylpropan-2-yl)benzo[d]isothiazol-

**3(2***H***)-one 1,1-dioxide (5w)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 40.0 mg, 39% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.02 (s, 1H), 7.98 (d, *J* = 7.3 Hz, 1H), 7.89 (d, *J* = 7.4 Hz, 1H), 7.84-7.74 (m, 4H), 7.71 (d, *J* = 8.6 Hz, 1H), 7.57 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.49-7.44 (m, 2H), 7.32-7.21 (m, 5H), 4.18-4.11 (m, 3H), 3.23 (dd, *J* = 14.1, 4.6 Hz, 1H), 3.96 (dd, *J* = 14.4, 8.1 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.3, 138.5, 137.6, 135.0, 134.5, 134.0, 133.9, 132.6, 131.7, 129.4, 129.2, 128.8, 128.6, 127.8, 127.6, 127.2, 126.9, 126.5, 126.4, 125.4, 121.0, 44.5, 43.1, 39.0; HRMS (ESI) m/z Calcd for C<sub>26</sub>H<sub>21</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 530.0300; Found: 530.0306.



**2-(1-(benzylselanyl)-3-phenylpropan-2-yl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1**dioxide (5x): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 63.3 mg, 67% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.06-8.04 (m, 1H), 7.93-7.80 (m, 3H), 7.24-7.14 (m, 10H), 4.09-3.98 (m, 2H), 3.71 (s, 2H), 3.54-3.52 (m, 1H), 3.12-3.14 (m, 1H), 2.83-2.77 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.2, 138.7, 137.7, 135.0, 134.5, 129.3, 129.1, 128.6, 128.4, 127.3, 126.9, 126.6, 125.5, 121.1, 44.3, 40.5, 39.5, 27.8; HRMS (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>22</sub>NO<sub>3</sub>SSe [M+H]<sup>+</sup>: 472.0480; found: 472.0474.



**2-(2-(phenylselanyl)cyclohexyl)benzo**[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (5y): Known compound<sup>[4]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 83.8 mg, 99% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 7.96-7.95 (m, 1H), 7.88-7.76 (m, 3H), 7.58-7.56 (m, 2H), 7.19-7.13 (m, 3H), 4.11 (s, 2H), 2.30-2.16 (m, 3H), 1.90-1.87 (m, 1H), 1.71-1.66 (m, 1H), 1.52-1.32 (m, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 158.9, 137.3, 136.1, 134.7, 134.2, 128.8, 127.9, 127.7, 127.3, 125.3, 120.7, 58.7, 34.9, 31.9, 29.7, 25.8.



**2-(2-(***p***-tolylselanyl)cyclohexyl)benzo[***d***]isothiazol-3(2***H***)-one 1,1-dioxide (5z): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 46.6 mg, 54% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) \delta 7.96-7.94 (m, 1H), 7.88-7.76 (m, 3H), 7.47-7.44 (m, 2H), 6.95 (d,** *J* **= 7.8 Hz, 2H), 4.06 (s, 2H), 2.25 (s, 6H), 1.88-1.86 (m, 1H), 1.71-1.68 (m, 1H), 1.46-1.33 (m, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) \delta 158.9, 137.9, 137.4, 136.4, 134.6, 134.1, 129.6, 127.4, 125.2, 123.9, 120.7, 58.9, 34.8, 31.9, 26.7, 25.8, 21.2; HRMS (ESI-Orbitrap) m/z calcd for C<sub>20</sub>H<sub>21</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>:458.0300; found: 458.0297.** 



**2-(2-((4-(***tert***-butyl)phenyl)selanyl)cyclohexyl)benzo[***d***]isothiazol-3(2***H***)-one <b>1,1-dioxide (5a')**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 15:1, v/v). 87.9 mg, 92% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 7.96-7.95 (m, 1H), 7.89-7.76 (m, 3H), 7.50-7.48 (m, 2H), 7.19-7.16 (m, 2H), 4.07 (s, 2H), 2.29-2.15 (m, 3H), 1.89-1.87 (m, 1H), 1.72-1.70 (m, 1H), 1.49-1.33 (m, 3H), 1.26 (s, 9H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 158.9, 151.0, 137.4, 135.9, 134.6, 134.2, 127.4, 125.9, 125.2, 124.1, 120.8, 58.9, 35.0, 34.6, 31.9, 31.4, 26.7, 25.8; HRMS (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>27</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>:500.0769; found: 500.0764.



**2-(2-((4-methoxyphenyl)selanyl)cyclohexyl)benzo**[*d*]isothiazol-3(2*H*)-one 1,1dioxide (5b'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 57.4 mg, 64% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.97-7.95 (m, 1H), 7.89-7.76 (m, 3H), 7.52-7.48 (m, 2H), 6.69 (d, *J* = 8.0 Hz, 2H), 4.14-3.99 (m, 2H), 3.73 (s, 3H), 2.24-2.14 (m, 3H), 1.86-1.85 (m, 1H), 1.70-1.65 (m, 1H), 1.41-1.31 (m, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.8, 158.9, 138.3, 137.4, 134.6, 134.2, 127.4, 125.2, 120.7, 117.6, 114.4, 58.9, 55.2, 43.8, 34.6, 31.9, 26.6, 25.8; HRMS (ESI-Orbitrap) m/z calcd for C<sub>20</sub>H<sub>21</sub>NO<sub>4</sub>SSeNa [M+Na]<sup>+</sup>:474.0249; found: 474.0252.



**2-(2-((4-fluorophenyl)selanyl)cyclohexyl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1dioxide (5c')**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 50.0 mg, 61% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 7.97-7.95 (m, 1H), 7.89-7.78 (m, 3H), 7.56-7.53 (m, 2H), 6.82 (t, *J* = 8.4 Hz, 2H), 4.05 (s, 2H), 2.25-2.14 (m, 3H), 1.89-1.87 (m, 1H), 1.73-1.70 (m, 1H), 1.47-1.33 (m, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 162.9 (d,  $J_{CF}$  = 264 Hz), 158.9, 138.4 (d,  $J_{CF}$  = 8 Hz), 137.4, 134.7, 134.3, 127.3, 125.2, 122.2, 120.8, 115.9 (d,  $J_{CF}$  = 21 Hz), 58.9, 34.7, 31.9, 26.7, 25.8; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 376 MHz) δ -36.1; HRMS (ESI-Orbitrap) m/z calcd for C<sub>19</sub>H<sub>18</sub>NO<sub>3</sub>FSSeNa [M+Na]<sup>+</sup>:462.0049; found: 462.0066.



**2-(2-((4-chlorophenyl)selanyl)cyclohexyl)benzo[d]isothiazol-3(2***H***)-one <b>1,1dioxide (5d')**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 15:1, v/v). 47.8 mg, 53% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.93-7.91 (m, 1H), 7.88-7.77 (m, 3H), 7.49-7.47 (m, 2H), 7.05 (d, *J* = 8.0 Hz, 2H), 4.11 (s, 2H), 2.27-2.14 (m, 3H), 1.90-1.88 (m, 1H), 1.74-1.72 (m, 1H), 1.48-1.35 (m, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.9, 137.5, 137.3, 134.7, 134.3, 134.2, 128.9, 127.2, 126.0, 125.2, 120.8, 59.0, 34.7, 31.9, 26.7, 25.7; HRMS (ESI-Orbitrap) m/z calcd for C<sub>19</sub>H<sub>19</sub>ClNO<sub>3</sub>SSeNa [M+H]<sup>+</sup>:455.9895; found: 455.9903.



**2-(2-(***o***-tolylselanyl)cyclohexyl)benzo[***d***]isothiazol-3(2***H***)-one 1,1-dioxide (5e'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 53.2 mg, 61% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) \delta 7.96-7.94 (m, 1H), 7.89-7.76 (m, 3H), 7.56 (dd,** *J* **= 7.7, 6.6 Hz, 1H), 7.14-7.05 (m, 2H), 6.91 (t,** *J* **= 7.3 Hz, 1H), 4.18 (s, 2H), 2.40 (s, 3H), 2.29-2.16 (m, 3H), 1.93-1.88 (m, 1H), 1.73-1.69 (m, 1H), 1.62-1.52 (m, 1H), 1.45-1.25 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) \delta 158.9, 141.9, 137.4, 136.0, 134.7, 134.2, 129.9, 129.3, 128.0, 127.3, 126.2, 125.2, 120.8, 58.6, 34.9, 31.9, 26.7, 25.9, 23.2; HRMS (ESI-Orbitrap) m/z calcd for C<sub>20</sub>H<sub>21</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>:458.0300; found: 458.0307.** 



**2-(2-(thiophen-2-ylselanyl)cyclohexyl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1dioxide (5f')**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 15:1, v/v). 44.6 mg, 52% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.06-8.04 (m, 1H), 7.92-7.81 (m, 3H), 7.37 (d, *J* = 5.2 Hz, 1H), 7.27-7.26 (m, 1H), 6.95-6.93 (m, 1H), 4.16 (s, 1H), 3.91 (s, 1H), 2.28-2.16 (m, 3H), 1.87-1.84 (m, 1H), 1.72-1.60 (m, 1H), 1.40-1.25 (m, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.9, 138.1, 137.5, 134.8, 134.4, 131.9, 128.2, 127.4, 125.4, 120.8, 120.6, 58.3, 34.5, 31.9, 26.6, 25.7; HRMS (ESI-Orbitrap) m/z calcd for C<sub>17</sub>H<sub>17</sub>NO<sub>3</sub>S<sub>2</sub>SeNa [M+Na]<sup>+</sup>:449.9707; found: 449.9708.



**2-(2-(methylselanyl)cyclohexyl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1-dioxide** (5g'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 69.8 mg, 97% yield. White solid. m.p.: 112.5-113.8 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.05-8.03 (m, 1H), 7.89-7.78 (m, 3H), 4.08 (s, 1H), 3.66 (s, 1H), 2.36-2.21 (m, 3H), 1.92 (s, 4H), 1.79-1.78 (m, 1H), 1.69-1.59 (m, 1H), 1.48-1.40 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.9, 137.5, 134.7, 134.2, 127.3, 125.3, 120.8, 57.7, 39.9, 34.7, 31.7, 26.7, 26.0, 1.57; HRMS (ESI-Orbitrap) m/z calcd for C<sub>14</sub>H<sub>17</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>:381.9987; found: 381.9986.



**2-(2-(benzylselanyl)cyclohexyl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1-dioxide** (5h'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 81.8 mg, 94% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 8.05-8.03 (m, 1H), 7.89-7.78 (m, 3H), 7.28-7.15 (m, 5H), 4.14 (s, 1H), 3.89-3.77 (m, 2H), 3.73 (s, 1H), 2.27-2.22 (m, 3H), 1.93-1.90 (m, 1H), 1.75-1.62 (m, 2H), 1.43-1.34 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 158.9, 138.8, 137.4, 134.7, 134.3, 129.1, 128.4, 127.3, 126.7, 125.2, 120.8, 58.0, 35.8, 31.8, 26.8, 26.1, 25.9; HRMS (ESI-Orbitrap) m/z calcd for  $C_{20}H_{21}NO_3SSeNa [M+Na]^+:458.0300$ ; found: 458.0306.



**2-(2-(phenylselanyl)cyclopentyl)benzo**[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (5i'): Known compound<sup>[4]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 81.0 mg, 99% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 7.97-7.95 (m, 1H), 7.86-7.78 (m, 3H), 7.62-7.59 (m, 2H), 7.18-7.16 (m, 3H), 4.53-4.46 (m, 1H), 4.34-4.27 (m, 1H), 2.34-2.27 (m, 2H), 2.16-2.12 (m, 1H), 1.93-1.90 (m, 1H), 1.77-1.69 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 158.8, 137.5, 135.8, 134.7, 134.2, 128.9, 127.9, 127.6, 127.2, 125.1, 120.7, 60.0, 42.0, 32.3, 28.8, 22.7.



**2-(4-hydroxy-2-(phenylselanyl)cyclopentyl)benzo**[*d*]isothiazol-3(2*H*)-one 1,1dioxide (5j'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 3:1, v/v). d.r. = 8:1, 60.8 mg, 72% yield. White solid. m.p.: 108.6-109.9 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.97-7.95 (m, 1H), 7.87-7.77 (m, 3H), 7.62-7.60 (m, 2H), 7.24-7.17 (m, 3H), 4.81 (dd, *J* = 18.1, 9.2 Hz, 1H), 4.53-4.48 (m, 1H), 4.27 (dd, *J* = 17.8, 8.8 Hz, 1H), 2.76-2.69 (m, 1H), 2.60-2.53 (m, 1H), 2.15-2.09 (m, 1H), 1.85 (s, 1H), 1.82-1.75 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.5, 158.9, 137.5, 137.2, 136.7, 136.0, 135.1, 134.8, 134.6, 134.4, 129.1, 129.1, 128.5, 128.2, 127.4, 127.2, 126.3, 125.3, 125.2, 121.1, 120.8, 71.1, 70.4, 58.0, 57.1, 42.9, 42.1, 40.0, 39.9, 39.7, 38.8; HRMS (ESI-Orbitrap) m/z calcd for C<sub>18</sub>H<sub>17</sub>NO<sub>4</sub>SSeNa [M+Na]<sup>+</sup>: 445.9936; found:445.9929.



**2-(2-(phenylselanyl)cycloheptyl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1-dioxide** (5k'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 77.0 mg, 89% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.00-7.98 (m, 1H),  $\delta$  7.89-7.76 (m, 3H),  $\delta$  7.57-7.55 (m, 2H),  $\delta$  7.20-7.17 (m, 3H),  $\delta$  4.40-4.29 (m, 2H),  $\delta$  2.41-2.33 (m, 1H),  $\delta$  2.24-2.18 (m, 1H),  $\delta$  2.14-2.07 (m, 1H),  $\delta$  1.94-1.89 (m, 1H),  $\delta$  1.84-1.68 (m, 2H),  $\delta$  1.65-1.53 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.8, 137.4, 135.4, 134.7, 134.2, 128.9, 127.7, 127.3, 125.2, 120.7, 61.2, 46.8, 33.1, 32.9, 27.6, 25.5, 25.4; HRMS (ESI-Orbitrap) m/z calcd for C<sub>20</sub>H<sub>22</sub>NO<sub>3</sub>SSe [M+H]<sup>+</sup>:436.0480; found:436.0466.



**2-(1-(phenylselanyl)heptan-2-yl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1-dioxide** (5l'): Known compound<sup>[4]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 57.6 mg, 68% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.04-8.02 (m, 1H), 7.91-7.80 (m, 3H), 7.65-7.63 (m, 2H), 7.30-7.27 (m, 3H), 4.05-3.95 (m, 2H), 3.75-3.67 (m, 1H), 1.84-1.76 (m, 1H), 1.71-1.52 (m, 2H), 1.49-1.24 (m, 3H), 0.88 (t, *J* = 7.3 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.3, 137.7, 135.0, 134.5, 129.3, 128.0, 127.8, 127.3, 125.4, 121.1, 44.6, 42.4, 31.8, 29.7, 22.5, 14.1.



2-(1-(phenylselanyl)nonan-2-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide

(5m'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 64.9 mg, 72% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.05-8.02 (m, 1H), 7.91-7.80 (m, 3H), 7.65-7.63 (m, 2H), 7.30-7.28 (m, 3H), 4.05-3.95 (m, 2H), 3.75-3.68 (m, 1H), 1.81-1.75 (m, 1H), 1.70-1.40 (m, 3H), 1.33-1.23 (m, 6H), 0.87-0.84 (m, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.3, 137.7, 135.0, 135.0, 134.5, 129.3, 128.0, 127.9, 127.3, 125.4, 121.1, 44.6, 42.5, 32.2, 31.8, 29.1, 27.6, 22.7, 14.2; HRMS (ESI-Orbitrap) m/z calcd for C<sub>21</sub>H<sub>25</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 474.0613; found:474.0613.



**2-(4-methyl-1-(phenylselanyl)pentan-2-yl)benzo**[*d*]isothiazol-3(2*H*)-one 1,1dioxide (5n'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 53.3 mg, 63% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.04-8.02 (m, 1H), 7.91-7.80 (m, 3H), 7.66-7.63 (m, 2H), 7.31-7.28 (m, 3H), 4.06-3.92 (m, 2H), 3.78-3.70 (m, 1H), 2.05-1.96 (m, 1H), 1.59-1.46 (m, 2H), 0.90 (dd, *J* = 15.3, 6.7 Hz, 6H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.2, 137.6, 135.2, 134.9, 134.5, 129.3, 128.1, 127.5, 127.3, 125.4, 121.0, 45.1, 41.2, 40.4, 26.3, 23.4, 21.3; HRMS (ESI-Orbitrap) m/z calcd for C<sub>19</sub>H<sub>21</sub>NO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 446.0300; found: 446.0299.



**2-(4-chloro-1-(phenylselanyl)butan-2-yl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1dioxide (50')**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 73.6 mg, 86% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.05-8.03 (m, 1H), 7.92-7.81 (m, 3H), 7.66-7.64 (m, 2H), 7.33-7.29 (m, 3H), 4.12 (dd, *J* = 14.6, 5.6 Hz, 1H), 3.95 (dd, *J* = 14.6, 9.9 Hz, 1H), 3.87-3.78 (m, 3H), 2.29-2.20 (m, 1H), 1.991.90 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 159.3, 137.6, 135.5, 135.1, 134.6, 129.5, 128.6, 127.2, 126.7, 125.5, 121.2, 44.4, 42.8, 39.5, 34.9; HRMS (ESI-Orbitrap) m/z calcd for C<sub>17</sub>H<sub>16</sub>ClNO<sub>3</sub>SSeK [M+K]<sup>+</sup>: 467.9336; found: 467.9332.



**2-(4-bromo-1-(phenylselanyl)butan-2-yl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1dioxide (5p')**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 81.1 mg, 86% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.05-8.03 (m, 1H), 7.92-7.80 (m, 3H), 7.67-7.65 (m, 2H), 7.34-7.31 (m, 3H), 4.11 (dd, *J* = 14.6, 5.6 Hz, 1H), 3.95 (dd, *J* = 14.6, 9.9 Hz, 1H), 3.86-3.78 (m, 1H), 3.70-3.60 (m, 2H), 2.35-2.26 (m, 1H), 2.07-1.98 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.3, 137.5, 135.5, 135.1, 134.6, 129.5, 128.5, 127.1, 126.5, 125.5, 121.2, 44.3, 40.7, 34.9, 31.1; HRMS (ESI-Orbitrap) m/z calcd for C<sub>17</sub>H<sub>16</sub>BrNO<sub>3</sub>SSeNa [M+Na]<sup>+</sup>: 495.9092; found: 495.9089.



**2-(6-bromo-1-(phenylselanyl)hexan-2-yl)benzo**[*d*]isothiazol-3(2*H*)-one **1,1dioxide (5q')**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 80.5 mg, 80% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.05-8.03 (m, 1H), 7.92-7.80 (m, 3H), 7.66-7.63 (m, 2H), 7.32-7.30 (m, 3H), 4.07-3.94 (m, 2H), 3.71-3.65 (m, 1H), 3.40-3.35 (m, 2H), 1.87-1.79 (m, 4H), 1.63-1.55 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  159.3, 137.6, 135.1, 135.0, 134.5, 129.4, 128.2, 127.4, 127.2, 125.4, 121.1, 44.5, 42.0, 33.5, 32.4, 31.1, 26.2; HRMS (ESI-Orbitrap) m/z calcd for C<sub>19</sub>H<sub>21</sub>BrNO<sub>3</sub>SSe [M+H]<sup>+</sup>: 501.9585; found: 501.9590.



N-(1-phenyl-3-(phenylselanyl)propan-2-yl)-N-

(phenylsulfonyl)benzenesulfonamide (5r'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 45.1 mg, 39% yield. Colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.87-7.85 (m, 4H), 7.65-7.61 (m, 2H), 7.50-7.46 (m, 6H), 7.35-7.22 (m, 6H), 7.03-7.00 (m, 2H), 7.07-7.96 (m, 2H), 3.83-3.76 (m, 1H), 3.13 (dd, J = 14.7, 5.0 Hz, 1H), 2.68 (dd, J = 14.8, 10.5 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  139.3, 139.1, 135.2, 134.1, 129.3, 129.2, 129.1, 128.6, 128.5, 128.1, 126.7, 53.6, 45.0, 38.5; HRMS (ESI) m/z Calcd for C<sub>27</sub>H<sub>25</sub>NO<sub>4</sub>S<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 594.0282; Found: 594.0274.



**2-(2-(phenylselanyl)cyclohexyl)benzo**[*d*]isothiazol-3(2*H*)-one (5s'): New compound. (Eluent: petroleum ether (60-90 C)/EtOAc = 10:1, v/v). 22.3 mg, 29% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.05 (d, *J* = 7.8 Hz, 1H), 7.59-7.49 (m, 4H), 7.40-7.37 (m, 1H), 7.21-7.13 (m, 3H), 4.67 (s, 1H), 3.33 (s, 1H), 2.27-2.24 (m, 1H), 2.12-2.09 (m, 1H), 1.86-1.82 (m, 1H), 1.78-1.71 (m, 2H), 1.60-1.48 (m, 1H), 1.45-1.25 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  165.3, 140.2, 136.3, 131.7, 128.8, 128.0, 127.2, 126.9, 125.4, 125.2, 120.5, 57.2, 47.7, 34.6, 34.1, 26.8, 25.4; HRMS (ESI-Orbitrap) m/z calcd for C<sub>19</sub>H<sub>19</sub>NOSSeNa [M+Na]<sup>+</sup>:412.0245; found: 412.0240.



1-(2-(phenylselanyl)cyclohexyl)-1*H*-benzo[*d*][1,2,3]triazole (5t'): Known compound<sup>[5]</sup>. (Eluent: petroleum ether (60-90 C)/EtOAc = 10:1, v/v). 18.9 mg, 27%

yield. White solid. m.p.: 106.3-107.9 °C. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz) δ 7.98-7.95 (m, 1H), 7.52-7.50 (m, 1H), 7.47-7.43 (m, 1H), 7.34-7.30 (m, 1H), 7.16-7.08 (m, 3H), 7.04-7.01 (m, 2H), 4.65 (td, *J* = 11.5, 4.4 Hz, 1H), 3.93 (ddd, *J* = 13.1, 10.3, 4.1 Hz, 1H), 2.47-2.44 (m, 1H), 2.34-2.24 (m, 1H), 2.18-2.15 (m, 1H), 1.99-1.98 (m, 1H), 1.88-1.86 (m, 1H), 1.76-1.65 (m, 1H), 1.59-1.46 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 145.9, 135.3, 133.0, 128.7, 127.9, 127.0, 123.7, 120.1, 109.8, 63.8, 47.3, 34.5, 34.1, 26.8, 25.4.



**2-(phenylselanyl)cyclohexyl benzoate (7a)**: Known compound<sup>[6]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 64.7 mg, 90 % yield. Yellow oil. <sup>1</sup>H **NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.98-7.95 (m, 2H), 7.58-7.52 (m, 3H), 7.43-7.38 (m, 2H), 7.28-7.20 (m, 3H), 5.09 (td, *J* = 9.0, 4.0 Hz, 1H), 3.40 (ddd, *J* = 11.1, 8.2, 4.2 Hz, 1H), 2.27-2.21 (m, 2H), 1.81-1.67 (m, 2H), 1.64-1.35 (m, 4H); <sup>13</sup>C **NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  166.0, 135.4, 133.0, 130.7, 129.9, 129.1, 128.7, 128.5, 127.8, 76.1, 46.4, 32.4, 31.7, 25.9, 23.7.



**2-(phenylselanyl)cyclohexyl 4-methylbenzoate (7b)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 70.4 mg, 94 % yield. Orange-red oil liquid . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.87 (d, *J* = 8.2 Hz, 2H), 7.59-7.57 (m, 2H), 7.26-7.20 (m, 5H), 5.07 (td, *J* = 8.9, 3.9 Hz, 1H), 3.40 (td, *J* = 10.1, 4.2 Hz, 1H), 2.41 (s, 3H), 2.25-2.22 (m, 2H), 1.79-1.69 (m, 2H), 1.66-1.34 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  165.9, 143.5, 135.3, 129.8, 129.0, 129.0, 128.6, 127.9, 127.7, 75.6, 46.3, 32.3, 31.5, 25.7, 23.6, 21.7; HRMS (ESI-Orbitrap) m/z calcd for C<sub>20</sub>H<sub>22</sub>O<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 397.0683; Found: 397.0686.



**2-(phenylselanyl)cyclohexyl 4-ethylbenzoate (7c)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 70.8 mg, 92 % yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.91-7.88 (m, 2H), 7.60-7.56 (m 2H), 7.26-7.21 (m, 5H), 5.08 (td, *J* = 8.9, 3.9 Hz, 1H), 3.40 (ddd, *J* = 11.2, 8.1, 4.2 Hz, 1H), 5.41 (q, *J* = 7.6 Hz, 2H), 2.26-2.21 (m, 2H), 1.80-1.66 (m, 2H), 1.64-1.35 (m, 4H), 1.26 (t, *J* = 7.6 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  165.9, 149.7, 135.3, 129.9, 129.0, 128.6, 128.1, 127.9, 127.7, 75.6, 46.3, 32.3, 31.5, 29.1, 25.7, 23.6, 15.4; HRMS (ESI-Orbitrap) m/z calcd for C<sub>21</sub>H<sub>24</sub>O<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 411.0839; Found: 411.0844.



**2-(phenylselanyl)cyclohexyl 4-(tert-butyl)benzoate (7d)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 75.8 mg, 91 % yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.94-7.91 (m, 2H), 7.59-7.57 (m, 2H), 7.45-7.42 (m, 2H), 7.27-7.21 (m, 3H), 5.08 (td, *J* = 8.9, 4.0 Hz, 1H), 3.40 (ddd, *J* = 11.2, 8.1, 4.1 Hz, 1H), 2.26-2.21 (m, 2H), 1.79-1.68 (m, 2H), 1.63-1.40 (m, 4H), 1.35 (s, 9H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  165.9, 156.5, 135.4, 129.7, 129.0, 128.5, 127.8, 127.7, 125.3, 75.5, 46.3, 35.1, 32.3, 31.5, 31.2, 25.7, 23.6; HRMS (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>28</sub>O<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 439.1152; Found: 439.1149.



**2-(phenylselanyl)cyclohexyl 4-methoxybenzoate (7e)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 30:1, v/v). 67.7 mg, 87 % yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.93-7.90 (m, 2H), 7.59-7.56 (m, 2H), 7.26-7.20 (m, 3H), 6.90-6.86 (m, 2H), 5.05 (td, J = 8.9, 4.0 Hz, 1H), 3.85 (s, 3H), 3.39

(ddd, J = 11.2, 8.2, 4.2 Hz, 1H), 2.24-2.20 (m, 2H), 1.78-1.68 (m, 2H), 1.65-1.34 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  165.5, 163.3, 135.3, 131.8, 129.0, 128.6, 127.6, 123.0, 113.6, 75.6, 55.5, 46.4, 32.3, 31.6, 25.7, 23.6; HRMS (ESI-Orbitrap) m/z calcd for C<sub>20</sub>H<sub>22</sub>O<sub>3</sub>SeNa [M+Na]<sup>+</sup>: 413.0632; Found: 413.0635.



**2-(phenylselanyl)cyclohexyl 4-(methylthio)benzoate (7f)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 66.0 mg, 81 % yield. Orange-red oil liquid. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.86-7.83 (m, 2H), 7.57-7.55 (m, 2H), 7.26-7.20 (m, 5H), 5.06 (td, *J* = 9.0, 3.9 Hz, 1H), 3.38 (ddd, *J* = 11.2, 8.3, 4.1 Hz, 1H), 2.51 (s, 3H), 2.25-2.20 (m, 2H), 1.78-1.68 (m, 2H), 1.65-1.35 (m, 4H); <sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  165.6, 145.3, 135.3, 130.1, 129.0, 128.6, 127.7, 126.7, 124.9, 75.8, 46.3, 32.3, 31.6, 25.7, 23.4, 15.0; **HRMS** (ESI-Orbitrap) m/z calcd for C<sub>20</sub>H<sub>22</sub>O<sub>2</sub>SSeNa [M+Na]<sup>+</sup>: 429.0403; Found: 429.0399.



**2-(phenylselanyl)cyclohexyl 4-fluorobenzoate (7g)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 73.0 mg, 97 % yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.96-7.91 (m, 2H), 7.56-7.54 (m, 2H), 7.27-7.19 (m, 3H), 7.08-7.03 (m, 2H), 5.07 (td, *J* = 9.1, 4.0 Hz, 1H), 3.38 (ddd, *J* = 11.5, 8.4, 4.1 Hz, 1H), 2.26-2.20 (m, 2H), 1.80-1.69 (m, 2H), 1.66-1.33 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  165.8 (d, *J*<sub>CF</sub> = 252 Hz), 164.9, 135.2, 132.3 (d, *J*<sub>CF</sub> = 10 Hz), 129.0, 128.6, 127.7, 126.8 (d, *J*<sub>CF</sub> = 3 Hz), 115.4 (d, *J*<sub>CF</sub> = 22 Hz), 76.4, 46.3, 32.4, 31.7, 25.8, 23.7; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 376 MHz)  $\delta$  -31.6; HRMS (ESI-Orbitrap) m/z calcd for C<sub>19</sub>H<sub>19</sub>FO<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 401.0432; Found: 401.0430.



**2-(phenylselanyl)cyclohexyl 4-chlorobenzoate (7h)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 66.4 mg, 84 % yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.87-7.83 (m, 2H), 7.57-7.54 (m, 2H), 7.26-7.20 (m, 5H), 7.38-7.34 (m, 2H), 7.28-7.20 (m, 3H), 5.07 (td, *J* = 9.1, 3.9 Hz, 1H), 3.38 (ddd, *J* = 11.3, 8.6, 4.1 Hz, 1H), 2.27-2.20 (m, 2H), 1.80-1.69 (m, 2H), 1.65-1.34 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  165.0, 139.3, 135.2, 131.2, 129.1, 129.0, 128.7, 128.6, 127.7, 76.6, 46.3, 32.4, 31.8, 25.9, 23.7; HRMS (ESI-Orbitrap) m/z calcd for C<sub>19</sub>H<sub>19</sub>ClO<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 417.0136; Found: 417.0140.



**2-(phenylselanyl)cyclohexyl 4-bromobenzoate (7i)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 69.4 mg, 79 % yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.79-7.76 (m, 2H), 7.55-7.51 (m, 4H), 7.26-7.19 (m, 3H), 5.06 (td, *J* = 9.1, 4.0 Hz, 1H), 3.37 (ddd, *J* = 11.4, 8.6, 4.1 Hz, 1H), 2.26-2.19 (m, 2H), 1.79-1.69 (m, 2H), 1.94-1.33 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  165.1, 135.2, 131.6, 131.3, 129.5, 125.1, 128.6, 128.0, 127.7, 76.6, 46.2, 32.4, 31.7, 25.8, 23.7; HRMS (ESI-Orbitrap) m/z calcd for C<sub>19</sub>H<sub>19</sub>BrNaO<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 460.9631; Found: 460.9638.



**2-(phenylselanyl)cyclohexyl 4-iodobenzoate (7j)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 68.8 mg, 71 % yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.76-7.73 (m, 2H), 7.64-7.60 (m, 2H), 7.55-7.53 (m, 2H), 7.28-7.19 (m, 3H), 5.06 (td, J = 9.2, 4.0 Hz, 1H), 3.37 (ddd, J = 11.3,

8.6, 4.1 Hz, 1H), 2.26-2.19 (m, 2H), 1.79-1.69 (m, 2H), 1.64-1.33 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  165.4, 137.7, 135.2, 131.2, 130.0, 129.1, 128.5, 127.7, 100.7, 76.5, 46.2, 32.4, 31.7, 25.8, 23.7; **HRMS** (ESI-Orbitrap) m/z calcd for C<sub>19</sub>H<sub>19</sub>IO<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 508.9493; Found: 508.9495.



**2-(phenylselanyl)cyclohexyl 4-(trifluoromethyl)benzoate** (7k): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 61.3 mg, 72% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 8.03-8.01 (m, 2H), 7.66-7.64 (m, 2H), 7.55-7.53 (m, 2H), 7.24-7.18 (m, 3H), 5.10 (td, J = 9.3, 4.0 Hz, 1H), 3.40 (ddd, J = 11.4, 8.8, 4.1 Hz, 1H), 2.28-2.21 (m, 2H), 1.81-1.71 (m, 2H), 1.65-1.35 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 164.7, 135.2, 134.9, 134.3 (q,  $J_{CF} = 32$  Hz), 133.8, 130.2, 129.1, 128.5, 127.8, 125.3 (q,  $J_{CF} = 3$  Hz), 123.8 (q,  $J_{CF} = 271$  Hz), 77.0, 46.2, 32.4, 31.8, 25.9, 23.7; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 376 MHz) δ -63.1; HRMS (ESI-Orbitrap) m/z calcd for C<sub>20</sub>H<sub>19</sub>F<sub>3</sub>O<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 451.0400; Found: 451.0397.



**2-(phenylselanyl)cyclohexyl 4-cyanobenzoate (7l)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 30:1, v/v). 66.9 mg, 85% yield. White solid. m.p.: 54.9-55.7 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.98-7.95 (m, 2H), 7.68-7.65 (m, 2H), 7.53-7.51 (m, 2H), 7.26-7.17 (m, 3H), 5.09 (td, *J* = 9.4, 4.0 Hz, 1H), 3.38 (ddd, *J* = 1.5, 8.9, 4.1 Hz, 1H), 2.27-2.19 (m, 2H), 1.81-1.70 (m, 2H), 1.63-1.36 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  164.2, 135.1, 134.3, 132.1, 130.2, 129.1, 128.5, 127.7, 118.2, 116.2, 77.5, 46.1, 32.3, 31.9, 25.9, 23.7; HRMS (ESI-Orbitrap) m/z calcd for C<sub>20</sub>H<sub>19</sub>NO<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 408.0479; Found: 408.0480.



**2-(phenylselanyl)cyclohexyl 4-nitrobenzoate (7m)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 30:1, v/v). 57.6 mg, 72 % yield. White solid. m.p.: 71.6-72.3 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.22-8.20 (m, 2H), 8.04-8.02 (m, 2H), 7.54-7.51 (m, 2H), 7.24-7.18 (m, 3H), 5.10 (td, *J* = 9.3, 4.1 Hz, 1H), 3.39 (ddd, *J* = 11.5, 8.9, 4.1 Hz, 1H), 2.29-2.21 (m, 2H), 1.82-1.72 (m, 2H), 1.65-1.37 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  164.0, 150.5, 135.9, 135.1, 130.8, 129.1, 128.5, 127.8, 123.4, 77.7, 46.1, 32.4, 31.9, 25.9, 23.8; HRMS (ESI-Orbitrap) m/z calcd for C<sub>19</sub>H<sub>19</sub>NO<sub>4</sub>SeNa [M+Na]<sup>+</sup>: 428.0377; Found: 428.0380.



**2-(phenylselanyl)cyclohexyl 3-chlorobenzoate (7n)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 64.5 mg, 82 % yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.87-7.81 (m, 2H), 7.57-7.53 (m, 2H), 7.51-7.48 (m, 1H), 7.33 (t, *J* =15.8 Hz, 1H), 7.26-7.18 (m, 3H), 5.09 (td, *J* = 9.2, 4.0 Hz, 1H), 3.38 (ddd, *J* = 11.3, 8.7, 4.1 Hz, 1H), 2.29-2.18 (m, 2H), 1.81-1.70 (m, 2H), 1.65-1.33 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  164.1, 135.2, 134.4, 132.9, 132.3, 129.8, 129.6, 129.0, 128.5, 127.9, 127.8, 76.8, 46.2, 32.4, 31.8, 25.9, 23.7; HRMS (ESI-Orbitrap) m/z calcd for C<sub>19</sub>H<sub>19</sub>ClO<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 417.0136; Found: 417.0140.



**2-(phenylselanyl)cyclohexyl 2-chlorobenzoate (70)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 74.0 mg, 94 % yield. Orange-red oil

liquid. <sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.77 (dd, J = 7.7, 1.6 Hz, 1H), 7.61-7.57 (m, 2H), 7.45-7.37 (m, 2H), 7.29-7.21 (m, 4H), 5.11 (td, J = 9.1, 4.1 Hz, 1H), 3.37 (ddd, J = 11.1, 8.2, 4.1 Hz, 1H), 2.29-2.19 (m, 2H), 1.81-1.65 (m, 2H), 1.63-1.32 (m, 4H); <sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  164.9, 135.4, 133.7, 132.4, 131.5, 131.0, 130.6, 129.0, 128.2, 127.8, 126.6, 76.4, 45.9, 32.3, 31.4, 25.6, 23.5; **HRMS** (ESI-Orbitrap) m/z calcd for C<sub>19</sub>H<sub>19</sub>ClO<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 417.0136; Found: 417.0140.



**2-(phenylselanyl)cyclohexyl 2-(diphenylphosphaneyl)benzoate** (7p): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 2:1, v/v). 81.9 mg, 75% yield. Colourless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  7.96-7.95 (m, 1H), 7.72-7.63 (m, 5H), 7.61-7.43 (m, 10H), 7.28-7.21 (m, 4H), 4.76-4.73 (m, 1H), 2.98-2.94 (m, 1H), 2.04 (d, *J* = 13.9 Hz, 1H), 1.90-1.89 (m, 1H), 1.58 (s, 2H), 1.40-1.38 (m, 1H), 1.26-1.21 (m, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  165.9 (d, *J* = 2.5 Hz), 136.1 (d, *J* = 5.0 Hz), 135.5, 135.0 (d, *J* = 7.5 Hz), 133.6 (dd, *J* = 90.0, 33.8 Hz), 132.8, 132.2 (d, *J* = 8.8 Hz), 131.9 (d, *J* = 8.8 Hz), 131.5 (dd, *J* = 12.5, 1.3 Hz), 131.0 (d, *J* = 8.8 Hz), 130.8 (d, *J* = 7.5 Hz), 128.9, 128.3 (d, *J* = 11.3 Hz), 128.0, 127.7; <sup>31</sup>P NMR (CDCl<sub>3</sub>, 240 MHz)  $\delta$  34.1; HRMS (ESI-Orbitrap) m/z calcd for C<sub>31</sub>H<sub>30</sub>PO<sub>2</sub>Se [M+H]<sup>+</sup>: 545.1149; Found: 545.1152.



**2-(phenylselanyl)cyclohexyl** benzo[d]oxazole-6-carboxylate (7q): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 53.6 mg, 67% yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.21 (s, 1H), 8.12 (dd, J = 1.4, 0.5 Hz, 1H), 8.0 (dd, J = 8.4, 1.5 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.56-7.53 (m, 3H), 7.22-7.17 (m, 3H), 5.11 (td, J = 9.2, 4.0 Hz, 1H), 3.41 (ddd, J = 11.3, 8.7, 4.1 Hz,

1H), 2.27-2.23 (m, 2H), 1.80-1.70 (m, 2H), 1.66-1.37 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  165.2, 154.9, 149.7, 143.8, 135.2, 129.0, 128.5, 128.3, 127.7, 126.5, 120.2, 112.9, 76.8, 46.3, 32.4, 31.8, 25.8, 23.7; HRMS (ESI-Orbitrap) m/z calcd for C<sub>20</sub>H<sub>19</sub>NO<sub>3</sub>SeNa [M+Na]<sup>+</sup>: 424.0428; Found: 424.0430.



**2-(phenylselanyl)cyclohexyl 2,3,4,5,6-pentafluorobenzoate** (7r): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 48.0 mg, 53 % yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.57-7.55 (m, 2H), 7.24-7.21 (m, 3H), 5.15 (td, *J* = 8.9, 4.0 Hz, 1H), 3.33 (ddd, *J* = 10.9,7.9, 4.2 Hz, 1H), 2.24-2.19 (m, 2H), 1.79-1.67 (m, 2H), 1.65-1.53 (m, 2H), 1.47-1.36 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.3, 135.2, 131.6, 129.3, 129.0, 128.2, 127.8, 108.5, 78.3, 45.1, 31.7, 31.1, 25.4, 23.3; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 376 MHz)  $\delta$  -138.0, 149.1, 160.7; HRMS (ESI-Orbitrap) m/z calcd for C<sub>19</sub>H<sub>15</sub>F<sub>5</sub>O<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 473.0055; Found: 473.0058.



**2-(phenylselanyl)cyclohexyl 2-naphthoate (7s)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 65.9 mg, 80% yield. Orange-red oil liquid. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.50 (s, 1H), 8.02 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.93-7.85 (m, 3H), 7.62-7.52 (m, 4H), 7.24-7.19 (m, 3H), 5.18 (td, *J* = 9.1, 4.0 Hz, 1H), 3.47 (ddd, *J* = 11.3, 8.4, 4.2 Hz, 1H), 2.33-2.27 (m, 2H), 1.83-1.70 (m, 2H), 1.68-1.37 (m, 4H); <sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz)  $\delta$  166.0, 135.6, 135.3, 132.5, 131.2, 129.5, 129.0, 128.7, 128.2, 128.1, 127.8, 127.7, 126.6, 125.5, 76.2, 46.4, 32.4, 31.7, 25.8, 23.7; **HRMS** (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>22</sub>O<sub>2</sub>SeNa [M+Na]<sup>+</sup>:433.0683; Found: 433.0679.



**2-(phenylselanyl)cyclohexyl 3-phenylpropiolate (7t)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 54.3 mg, 71% yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.66-7.62 (m, 2H), 7.60-7.57 (m, 2H), 7.47-7.43 (m, 1H), 7.40-7.35 (m, 2H), 7.29-7.26 (m, 3H), 5.01 (td, *J* = 9.0, 4.2 Hz, 1H), 3.27 (ddd, *J* = 11.3, 8.5, 4.2 Hz, 1H), 2.25-2.13 (m, 2H), 1.78-1.64 (m, 2H), 1.59-1.26 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  153.4, 135.6, 133.0, 130.6, 129.0, 128.6, 128.2, 127.9, 119.7, 86.4, 80.9, 77.2, 45.7, 32.3, 31.4, 25.6, 23.5; HRMS (ESI-Orbitrap) m/z calcd for C<sub>21</sub>H<sub>20</sub>O<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 407.0532; Found: 407.0526.



**2-(phenylselanyl)cyclohexyl 3-phenylpropanoate (7u)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 64.1 mg, 83 % yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.60-7.55 (m, 2H), 7.32-7.26 (m, 5H), 7.22-7.18 (m, 3H), 4.88 (td, *J* = 4.2, 9.2 Hz, 1H), 3.21 (ddd, *J* = 11.4, 8.7, 4.1 Hz, 1H), 2.95 (t, *J* = 7.7 Hz, 2H), 2.57-2.53 (m, 2H), 2.18-2.03 (m, 2H), 1.72-1.64 (m, 2H), 1.56-1.26 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  172.2, 140.7, 135.1, 129.0, 128.7, 128.5, 128.4, 127.6, 126.3, 75.4, 46.1, 36.0, 32.3, 31.8, 31.0, 25.8, 23.7; HRMS (ESI-Orbitrap) m/z calcd for C<sub>21</sub>H<sub>24</sub>O<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 411.0839; Found: 411.0844.



2-(phenylselanyl)cyclohexyl acetate (7v): Known compound<sup>[7]</sup>. (Eluent:

petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 54.4 mg, 92 % yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.59-7.56 (m, 2H), 7.29-7.25 (m, 3H), 4.84 (td, J = 9.3, 4.2 Hz, 1H), 3.21 (ddd, J = 11.5, 8.9, 4.1 Hz, 1H), 2.17-2.05 (m, 2H), 1.95 (s, 3H), 1.74-1.62 (m, 2H), 1.55-1.24 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  170.5, 135.2, 129.0, 128.7, 127.7, 75.6, 46.2, 32.4, 31.9, 26.0, 23.7, 21.3.



**2-(phenylselanyl)cyclohexyl cyclohexanecarboxylate (7w)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 70:1, v/v). 54.4 mg, 74 % yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.59-7.55 (m, 2H), 7.28-7.25 (m, 3H), 4.82 (td, *J* = 9.0, 4.1 Hz, 1H), 3.21 (ddd, *J* = 11.4, 8.5, 4.1 Hz, 1H), 2.24-2.16 (m, 1H), 2.14-2.04 (m, 2H), 1.94-1.84 (m, 2H), 1.76-1.62 (m, 5H), 1.55-1.22 (m, 5H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  175.3, 135.2, 129.0, 128.7, 128.5, 128.4, 127.6, 74.5, 46.0, 43.4, 32.3, 31.7, 29.1, 25.9, 25.8, 25.6 (d, *J* = 1 Hz ), 23.6; HRMS (ESI-Orbitrap) m/z calcd for C<sub>19</sub>H<sub>26</sub>O<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 389.0996; Found: 389.0996.



**2-(phenylselanyl)cyclohexyl** tetrahydrofuran-2-carboxylate (7x): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 58.5 mg, 83% yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.57-7.55 (m, 2H), 7.29-7.24 (m, 3H), 4.89-4.82 (m, 1H), 4.44-4.33 (m, 1H), 4.08-3.99 (m, 1H), 3.93-3.88 (m, 1H), 3.24-3.13 (m, 1H), 2.25-1.83 (m, 6H), 1.72-1.61 (m, 2H), 1.50-1.25 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  172.8, 172.6, 135.4, 129.0, 128.1, 127.9, 127.8, 127.8, 76.8, 75.5, 75.1, 69.4, 46.1, 45.8, 32.7, 32.4, 31.8, 31.6, 25.9, 25.8, 25.2, 30.0, 23.7, 23.6; HRMS (ESI-Orbitrap) m/z calcd for C<sub>17</sub>H<sub>22</sub>O<sub>3</sub>SeNa [M+Na]<sup>+</sup>: 377.0632; Found: 377.0627.



**2-(phenylselanyl)cyclohexyl 4-oxopentanoate (7y)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 10:1, v/v). 55.5 mg, 79 % yield. Colorless oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.57-7.54 (m, 2H), 7.27-7.24 (m, 3H), 4.82 (td, J = 9.2, 4.2 Hz, 1H), 3.20 (ddd, J = 11.4, 8.8, 4.1 Hz, 1H), 2.78-2.61 (m, 2H), 2.55-2.38 (m, 2H), 2.16 (s, 3H), 2.14-2.03 (m, 2H), 1.72-1.62 (m, 2H), 1.53-1.25 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  206.7, 172.0, 135.1, 129.0, 128.7, 127.6, 75.7, 46.4, 38.1, 32.3, 31.7, 30.0, 28.3, 25.8, 23.6; HRMS (ESI-Orbitrap) m/z calcd for C<sub>17</sub>H<sub>22</sub>O<sub>3</sub>SeNa [M+Na]<sup>+</sup>: 377.0632; Found: 377.0638.



**2-(phenylselanyl)cyclopentyl benzoate (7z)**: Known compound<sup>[6]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 44.4 mg, 64% yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 7.97-7.94 (m, 2H), 7.63-7.59 (m, 2H), 7.57-7.52 (m, 1H), 7.44-7.39 (m, 2H), 7.27-7.24 (m, 3H), 5.42-5.39 (m, 1H), 3.82-3.78 (m, 1H), 2.38-2.27 (m, 2H), 1.91-1.76 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 165.9, 134.3, 133.0, 130.5, 129.7, 129.3, 129.2, 128.4, 127.7, 82.2, 46.2, 31.4, 31.1, 22.8.



**4-hydroxy-2-(phenylselanyl)cyclopentyl benzoate** (7a'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 2:1, v/v). d.r. = 8:1, 69.5 mg, 96% yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.93-7.90 (m, 2H), 7.63-7.60 (m, 2H), 7.56-7.52 (m, 1H), 7.42-7.38 (m, 2H), 7.26-7.23 (m, 3H), 5.53 (dt, *J* = 6.7, 4.0 Hz, 1H), 4.57-4.51 (m, 1H), 3.76-3.71 (m, 1H), 2.72-2.60 (m, 1H), 2.40-2.33 (m, 1H), 2.21-2.13 (m, 2H), 1.89-1.83 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  81.2, 81.0, 134.9, 134.6, 133.1, 130.1, 130.0, 129.7, 129.7, 129.3, 129.2, 129.1, 128.4, 127.9, 81.2, 80.9, 71.6, 71.6, 43.8, 43.7, 41.6, 41.3, 40.9; **HRMS** (ESI-Orbitrap) m/z calcd for C<sub>18</sub>H<sub>19</sub>O<sub>3</sub>Se [M+H]<sup>+</sup>: 361.0502; Found: 361.0507.



**2-(phenylselanyl)cycloheptyl benzoate (7b')**: Known compound<sup>[6]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 63.4 mg, 85% yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 8.01-7.98 (m, 2H), 7.61-7.52 (m, 3H), 7.44-7.40 (m, 2H), 7.25-7.21 (m, 3H), 5.37 (ddd, *J* = 8.3, 5.5, 3.6 Hz, 1H), 3.64 (ddd, *J* = 9.1, 6.7, 3.4 Hz, 1H), 2.27-2.20 (m, 1H), 2.06-1.92 (m, 2H), 1.87-1.51 (m, 7H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 165.7, 135.0, 132.9, 130.7, 129.7, 129.3, 129.1, 128.4, 127.7, 78.6, 48.8, 32.0, 31.7, 28.3, 26.6, 22.3.



(1*R*,8*S*,9*S*)-9-(hydroxymethyl)-5-(phenylselanyl)bicyclo[6.1.0]nonan-4-yl benzoate (7c'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v/v). d.r. = 8:1, 85 mg, 99% yield. Colourless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 8.06-8.01 (m, 2H), 7.55-7.50 (m, 3H), 7.42 (q, J = 7.1 Hz, 2H), 7.27-7.25 (m, 3H), 5.21 (dt, J = 8.3, 3.0 Hz, 1H), 4.16-4.11 (m, 1H), 3.54-3.45 (m, 1H), 2.23-1.85 (m, 6H), 1.53 (s, 1H), 1.35-1.21 (m, 2H), 0.85-0.79 (m, 1H), 0.68-0.54 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) δ 165.9, 165.8, 134.2, 134.0, 133.1, 133.1, 130.8, 130.5, 130.3, 130.2, 129.9, 129.9, 129.7, 129.2, 128.5, 128.4, 127.4, 127.4, 76.3, 76.2, 66.6, 48.4, 47.4, 36.3, 35.3, 33.9, 33.8, 29.7, 29.4, 27.5, 26.8, 26.7, 25.2, 24.6, 22.6, 21.0, 20.7, 20.3; HRMS (ESI-Orbitrap) m/z calcd for C<sub>23</sub>H<sub>26</sub>O<sub>3</sub>SeNa [M+Na]<sup>+</sup>: 453.0939; Found: 453.0938.



**4-bromo-1-(phenylselanyl)butan-2-yl benzoate (7d')**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 61.2 mg, 74% yield. Colorless oil liquid. <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz) δ 8.01-7.98 (m, 2H), 7.66-7.62 (m, 2H), 7.59-7.55 (m, 1H), 7.46-7.42 (m, 2H), 7.36-7.28 (m, 3H), 4.61 (dd, J = 11.5, 5.2 Hz, 1H), 4.43 (dd, J = 11.4, 7.8 Hz, 1H), 3.76-3.62 (m, 3H), 2.41-2.33 (m, 1H), 2.19-2.10 (m, 1H); <sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 100 MHz) δ 166.2, 135.6, 133.3, 129.9, 129.8, 129.4, 128.5, 128.4, 127.2, 67.5, 41.8, 35.0, 31.6; **HRMS** (ESI-Orbitrap) m/z calcd for C<sub>17</sub>H<sub>17</sub>BrO<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 434.9475; Found: 434.9479.



2-(1-(4-(((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)phenyl)-2-

(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (8a): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 53 mg, 75% yield. white solid. m.p.:162.7-166.0 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.98-7.96 (m, 1H), 7.88-7.77 (m, 3H), 7.56-7.54 (m, 2H), 7.53-7.50 (m, 2H), 7.25-7.22 (m, 4H), 6.95-6.92 (m, 2H), 6.81-6.75 (m, 2H), 5.36 (t, *J* = 8.0 Hz, 1H), 5.30 (s, 1H), 4.05 (dd, *J* = 12.9, 8.3 Hz, 1H), 3.80 (dd, *J* = 12.8, 7.9 Hz, 1H), 2.89-2.85 (m, 2H), 2.54-2.48 (m, 1H), 2.41-2.38 (m, 1H), 2.31-2.25 (m, 1H), 2.19-1.95 (m, 4H), 1.63-1.51 (m, 5H), 0.92 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.8, 158.1, 154.4, 138.5, 137.5, 135.4, 134.9, 134.4, 133.9, 130.9, 130.2, 129.3, 129.1, 127.8, 127.3, 126.8, 125.3, 120.9, 119.7, 118.1, 117.0, 57.5, 50.5, 48.1, 44.2, 38.3, 36.0, 31.7, 29.6, 29.3, 26.5, 26.0, 21.7, 14.0; HRMS (ESI-Orbitrap) m/z calcd for C<sub>39</sub>H<sub>38</sub>NO<sub>5</sub>SSe [M+H]<sup>+</sup>: 712.1630;

found: 712.1630.



2-(1-((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-

decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl)-2-

(phenylselanyl)ethyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (8b): Known compound<sup>[3]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 5:1, v/v). 112.6 mg, 91% yield. colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 7.98-7.96 (m, 1H), 7.87-7.75 (m, 3H), 7.56-7.53 (m, 2H), 7.37-7.34 (m, 1H), 7.27-7.22 (m, 5H), 5.35 (td, *J* = 8.0, 2.6 Hz, 1H), 4.15-4.04 (m, 1H), 3.83-3.77 (m, 1H), 2.89-2.86 (m, 2H), 2.49 (dd, *J* = 19.3, 9.0 Hz, 1H), 2.42-2.37 (m, 1H), 2.29-2.24 (m, 1H), 2.18-1.94 (m, 4H), 1.65-1.57 (m, 2H), 1.54-1.42 (m, 4H), 0.89 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 158.8, 158.8, 140.4, 137.4, 136.8, 134.8, 134.3, 133.8, 133.8, 129.2, 127.6, 127.3, 126.0, 125.9, 125.6, 125.2, 120.8, 57.7, 50.6, 48.0, 44.4, 38.0, 35.9, 31.6, 29.5, 29.2, 26.5, 25.6, 21.7, 13.9.



**2-(phenylselanyl)cyclohexyl 4-(***N***,***N***-dipropylsulfamoyl)benzoate (8c)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 6:1, v/v). 89.4 mg, 86% yield. Colourless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.02 (d, *J* = 7.9 Hz, 2H), 7.83 (d, *J* = 7.9 Hz, 2H), 7.55 (d, *J* = 7.1 Hz, 2H), 7.28-7.21 (m, 3H), 5.11 (t, *J* = 9.1 Hz, 1H), 3.43-3.39 (m, 1H), 3.11 (t, *J* = 7.2 Hz, 4H), 2.26 (t, *J* = 7.2 Hz, 4H), 1.82-1.73 (m, 2H), 1.66-1.53 (m, 6H), 1.49-1.38 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 6H); <sup>13</sup>C NMR
(CDCl<sub>3</sub>, 100 MHz) δ 164.5, 144.1, 135.2, 133.9, 130.4, 129.1, 128.6, 127.8, 127.0, 50.1, 46.2, 32.4, 31.8, 25.9, 23.8, 22.1, 11.3; **HRMS** (ESI-Orbitrap) m/z calcd for C<sub>25</sub>H<sub>34</sub>NO<sub>4</sub>SSe [M+H]<sup>+</sup>: 524.1368; Found: 524.1368.



**2-(phenylselanyl)cyclohexyl** benzo[d][1,3]dioxole-5-carboxylate (8d): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 57.6 mg, 71% yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.58-7.54 (m, 3H), 7.37 (d, *J* = 1.7 Hz, 1H), 7.26-7.20 (m, 3H), 6.80 (d, *J* = 8.2 Hz, 1H), 6.03-6.02 (m, 2H), 5.05 (td, *J* = 9.0, 3.9 Hz, 1H), 3.37 (ddd, *J* = 11.1, 8.3, 4.1 Hz, 1H), 2.25-2.18 (m, 2H), 1.79-1.68 (m, 2H), 1.64-1.36 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  165.2, 151.6, 147.7, 135.3, 129.0, 128.6, 127.7, 125.5, 124.6, 109.7, 108.0, 101.8, 75.9, 46.3, 32.3, 31.6, 25.8, 23.6; HRMS (ESI-Orbitrap) m/z calcd for C<sub>20</sub>H<sub>20</sub>O<sub>4</sub>SeNa [M+Na]<sup>+</sup>:427.0425; Found: 427.0425.



**2-(phenylselanyl)cyclohexyl 4-hydroxy-3,5-dimethoxybenzoate** (**8e**): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 2:1, v/v). 48.4 mg, 56% yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.56-7.54 (m, 2H), 7.27 (s, 2H), 7.24-7.18 (m, 3H), 5.93 (s, 1H), 5.05 (td, *J* = 9.2, 4.0 Hz, 1H), 3.91 (s, 6H), 3.36 (ddd, *J* = 12.0, 8.6, 4.2 Hz, 1H), 2.26-2.19 (m, 2H), 1.78-1.69 (m, 2H), 1.65-1.33 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  165.7, 146.6, 139.3, 135.4, 129.0, 128.6, 127.7, 121.5, 106.9, 75.9, 55.5, 46.7, 32.7, 31.8, 25.9, 23.8; HRMS (ESI-Orbitrap) m/z calcd for C<sub>21</sub>H<sub>24</sub>O<sub>5</sub>SeNa [M+Na]<sup>+</sup>:459.0687; Found: 459.0683.



**2-(phenylselanyl)cyclohexyl cinnamate (8f)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 67.2 mg, 87% yield. Orange-red oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.63-7.58 (m, 3H), 7.50-7.47 (m, 2H), 7.40-7.36 (m, 3H), 7.27-7.24 (m, 3H), 6.29 (d, *J* = 16.0 Hz, 1H), 4.98 (td, *J* = 9.1, 4.0 Hz, 1H), 3.32 (ddd, *J* = 11.4, 8.7, 4.1 Hz, 1H), 2.24-2.15 (m, 2H), 1.77-1.67 (m, 2H), 1.61-1.34 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  166.3, 144.8, 135.3, 134.6, 130.3, 129.0, 128.9, 128.8, 128.2, 127.6, 118.4, 75.8, 46.4, 32.4, 31.9, 25.9, 23.7; HRMS (ESI-Orbitrap) m/z calcd for C<sub>21</sub>H<sub>22</sub>O<sub>2</sub>SeNa [M+Na]<sup>+</sup>:409.0683; Found: 409.0686.



**2-(phenylselanyl)cyclohexyl furan-2-carboxylate (8g)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 53.9 mg, 77% yield. Orangered oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.59-7.54 (m, 3H), 7.27-7.20 (m, 3H), 7.03 (dd, *J* = 3.5, 0.8 Hz, 1H), 5.06 (td, *J* = 9.3, 4.1 Hz, 1H), 3.33 (ddd, *J* = 11.3, 8.5, 4.1 Hz, 1H), 2.24-2.15 (m, 2H), 1.78-1.66 (m, 2H), 1.60-1.49 (m, 2H), 1.45-1.32 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  158.1, 146.3, 144.9, 135.3, 129.0, 128.4, 127.7, 118.0, 111.8, 76.1, 46.1, 32.4, 31.7, 25.8, 23.6; HRMS (ESI-Orbitrap) m/z calcd for C<sub>17</sub>H<sub>18</sub>O<sub>3</sub>Na [M+Na]<sup>+</sup>: 373.0319; Found: 373.0316.



**2-(phenylselanyl)cyclohexyl nicotinate (8h)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 8:1, v/v). 27.9 mg, 39% yield. Colorless oil liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  9.08 (d, J = 1.5 Hz, 1H), 8.74 (dd, J = 4.8, 1.7

Hz, 1H), 8.14 (dt, J = 8.0, 1.9 Hz, 1H), 7.54-7.52 (m, 2H), 7.34-7.31 (m, 1H), 7.24-7.17 (m, 3H), 5.12 (td, J = 9.2, 4.1 Hz, 1H), 3.38 (ddd, J = 11.4, 8.7, 4.2 Hz, 1H), 2.27-2.18 (m, 2H), 1.82-1.70 (m, 2H), 1.64-1.33 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  164.5, 153.3, 151.0, 137.2, 135.2, 129.1, 128.5, 127.8, 126.4, 123.3, 76.9, 46.2, 32.3, 31.8, 25.8, 23.7; HRMS (ESI-Orbitrap) m/z calcd for C<sub>18</sub>H<sub>19</sub>NO<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 384.0479; Found: 384.0471.



**2-(phenylselanyl)cyclohexyl 2-(2,4-dichlorophenyl)acetate** (8i): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 75.2 mg, 85% yield. Colourless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  7.54-7.54 (m, 2H), 7.38 (m, 1H), 7.26 (m, 3H), 7.19 (m, 2H), 4.89-4.86 (m, 1H), 3.63 (s, 2H), 3.19-3.16 (m, 1H), 2.12-2.06 (m, 2H), 1.68-1.61 (m, 2H), 1.51-1.27 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  169.4, 135.4, 135.1, 133.8, 132.4, 131.3, 129.3, 129.0, 128.6, 127.7, 127.2, 76.1, 45.9, 38.8, 32.3, 31.5, 25.7, 23.5; HRMS (ESI-Orbitrap) m/z calcd for C<sub>20</sub>H<sub>20</sub>Cl<sub>2</sub>O<sub>2</sub>SeNa [M+Na]<sup>+</sup>:464.9898 ; Found:464.9890.



**2-(phenylselanyl)cyclohexyl 2-(4-isobutylphenyl)propanoate** (8j): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). d.r. = 1:1. 66.4 mg, 75% yield. Colourless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.60-7.59 (m, 1H), 7.49 (d, *J* = 7.1 Hz, 1H), 7.31-7.25 (m, 4H), 7.20 (d, *J* = 7.6 Hz, 1H), 7.12-7.10 (m, 1H), 4.87-4.83 (m, 1H), 3.73-3.54 (m, 1H), 3.25-3.20 (m, 1H), 2.48-2.46 (m, 2H), 2.14-2.09 (m, 1H), 2.00-1.96 (m, 1H), 1.89-1.83 (m, 1H), 1.66-1.61 (m, 2H), 1.5-1.50 (m, 4H), 1.47-1.30 (m, 3H), 0.92-0.89 (m, 6H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  174.0,

173.9, 140.5, 140.4, 138.1, 137.8, 135.2, 135.1, 129.3, 129.3, 19.0, 128.9, 128.9, 128.5, 127.6, 127.6, 127.5, 127.3, 75.4, 74.7, 46.0, 45.6, 45.6, 45.2, 45.1, 32.2, 31.9, 31.1, 30.9, 30.3, 25.7, 25.3, 23.4, 23.2, 22.5, 18.6, 18.4; **HRMS** (ESI-Orbitrap) m/z calcd for  $C_{25}H_{32}O_2$ SeNa [M+Na]<sup>+</sup>: 465.1468; Found: 465.1468.



**2-(phenylselanyl)cyclohexyl 2-(11-oxo-6,11-dihydrodibenzo[***b,e***]oxepin-2-yl)acetate (8k)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 50:1, v/v). 76.2 mg, 75% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.10 (d, *J* = 2.2 Hz, 1H), 7.88 (d, *J* = 7.6 Hz, 1H), 7.55-7.52 (m, 3H), 7.47-7.40 (m, 2H), 7.34 (d, *J* = 7.4 Hz, 1H), 7.27-7.25 (m, 3H), 7.00 (d, *J* = 8.5 Hz, 1H), 5.15 (s, 2H), 4.87 (td, *J* = 9.1, 4.0, Hz, 1H), 3.51 (s, 1H), 3.22 (dt, *J* = 10.1, 4.1 Hz, 1H), 2.15-2.04 (m, 2H), 1.68-1.61 (m, 2H), 1.54-1.26 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  190.9, 170.7, 160.5, 140.6, 136.6, 135.6, 132.8, 132.6, 129.5, 129.3, 129.0, 128.7, 128.0, 127.9, 127.7, 125.1, 121.0, 76.0, 73.7, 46.0, 40.4, 32.3, 31.7, 25.8, 23.6; HRMS (ESI-Orbitrap) m/z calcd for C<sub>28</sub>H<sub>26</sub>O<sub>4</sub>SeNa [M+Na]<sup>+</sup>: 529.0889; Found: 529.0886.



**2-(phenylselanyl)cyclohexyl 3-(4-(2,2-dichlorocyclopropyl)phenyl)-2,2dimethylpropanoate (8l)**: New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 70:1, v/v). d.r. = 1:1, 78.3 mg, 75% yield. Yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.56-7.54 (m, 2H), 7.29-7.24 (m, 3H), 7.09-7.07 (m, 2H), 6.89-6.85 (m, 2H), 4.93-4.86 (m, 1H), 3.15 (td, *J* = 10.0, 4.0 Hz, 1H), 2.81 (dd, *J* = 10.6, 8.5 Hz, 1H), 2.07-1.98 (m, 2H), 1.93-1.89 (m, 1H), 1.77-1.72 (m, 1H), 1.64 (s, 6H), 1.61-1.57 (m, 1H), 1.50-1.42 (m, 1H), 1.33-1.23 (m, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  173.4 (d, J = 2.5 Hz), 155.2 (d, J = 2.5 Hz), 135.4, 129.7 (d, J = 5.0 Hz), 129.1, 128.0 (d, J = 2.5 Hz), 128.0, 127.9, 118.5 (d, J = 3.8 Hz), 79.3, 75.6, 61.0 (d, J = 3.8 Hz), 45.7, 34.9 (d, J = 3.8 Hz), 32.5, 31.2, 26.4 (d, J = 8.8 Hz), 25.9, 25.6, 25.0 (d, J = 7.5 Hz), 23.5; **HRMS** (ESI-Orbitrap) m/z calcd for C<sub>26</sub>H<sub>30</sub>Cl<sub>2</sub>O<sub>2</sub>Se [M+Na]<sup>+</sup>: 547.0686; Found: 547.0681.

#### 5. References

- [1] Zhang, W.-S.; Ji, D.-W.; Li, Y.; Zhang, X.-X.; Zhao, C.-Y.; Hu, Y.-C.; Chen, Q.-A. ACS Catal., 2022, 12, 2158-2165.
- [2] Singh, D.; Deobald, A. M.; Camargo, L. R. S.; Tabarelli, G.; Rodrigues, O. E. D.;
  Braga, A. L. Org Lett., 2010, 12, 3288-3291.
- [3] Liu, G.-Q.; Zhou, C.-F.; Zhang, Y.-Q.; Yi, W.; Wang, P.-F.; Liu, J.; Ling, Y. Green Chem., 2021, 23, 9968-9973.
- [4] Sun, K.; Wang, X.; Lv, Y.; Li, G.; Jiao, H.; Dai, C.; Li, Y.; Zhang, C.; Liu, L. Chem. Commun., 2016, 52, 8471-8474.
- [5] Wang, X.; Li, H.; Zhu, M.; Yan, J. RSC Adv., 2017, 7, 15709-15714.
- [6] Guan, H.; Wang, H.; Huang, D.; Shi, Y. Tetrahedron, 2012, 68, 2728-2735.
- [7] Shi, H.; Yu, C.; Zhu, M.; Yan, J. J. Organomet. Chem., 2015, 776, 117-122.

# 6. Copies of NMR spectra



<sup>110 100</sup> fl (ppm) -1 150 140 





<sup>13</sup>C NMR of product 4b in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 4c in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 4c in CDCl<sub>3</sub> (100 MHz)



## <sup>1</sup>H NMR of product 4d in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 4d in CDCl<sub>3</sub> (100 MHz)



## <sup>1</sup>H NMR of product 4e in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 4e in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 4f in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 4f in CDCl<sub>3</sub> (100 MHz)



## <sup>1</sup>H NMR of product 4g in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 4g in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 4h in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 4h in CDCl<sub>3</sub> (100 MHz)



## <sup>1</sup>H NMR of product 4i in CDCl<sub>3</sub> (400 MHz)





#### <sup>13</sup>C NMR of product 4i in CDCl<sub>3</sub> (100 MHz)



# <sup>19</sup>F NMR of product 4i in CDCl<sub>3</sub> (376 MHz)



# <sup>1</sup>H NMR of product 4j in CDCl<sub>3</sub> (400 MHz)



S88

# <sup>13</sup>C NMR of product 4j in CDCl<sub>3</sub> (100 MHz)



4.5 fl (ppm)

-05 H

5.5 5.0

6.0

1.01 × 3.23 Å

8.5 8.0 7.5

9.0

. 0

9.5

3.17 -≢ 2.05 -≢

7.0

6.5

1.01 H

4.0

1.014

3.5 3.0

3.00-

2.0

1.0 0.5 0.0

1.5

2. 5

-0.5 -1

# <sup>13</sup>C NMR of product 4k in CDCl<sub>3</sub> (100 MHz)



## <sup>1</sup>H NMR of product 4l in CDCl<sub>3</sub> (400 MHz)



# <sup>13</sup>C NMR of product 4l in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 4m in CDCl<sub>3</sub> (400 MHz)



# <sup>13</sup>C NMR of product 4m in CDCl<sub>3</sub> (100 MHz)



<sup>19</sup>F NMR of product 4m in CDCl<sub>3</sub> (376 MHz)



#### <sup>1</sup>H NMR of product 4n in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 4n in CDCl<sub>3</sub> (100 MHz)



## <sup>1</sup>H NMR of product 40 in CDCl<sub>3</sub> (400 MHz)





#### <sup>13</sup>C NMR of product 40 in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 4p in CDCl<sub>3</sub> (400 MHz)







#### <sup>1</sup>H NMR of product 4q in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 4q in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 4r in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 4r in CDCl<sub>3</sub> (100 MHz)



## <sup>1</sup>H NMR of product 4s in CDCl<sub>3</sub> (400 MHz)



#### <sup>13</sup>C NMR of product 4s in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 4t in CDCl<sub>3</sub> (400 MHz)



#### <sup>13</sup>C NMR of product 4t in CDCl<sub>3</sub> (100 MHz)

| 138.64<br>137.113<br>137.113<br>137.113<br>132.123<br>132.123<br>132.123<br>132.123<br>132.133<br>132.133<br>132.133<br>132.133<br>132.133<br>132.133<br>132.133<br>132.133<br>132.133<br>132.133<br>132.133<br>132.133<br>132.133<br>132.133<br>132.133<br>132.133<br>132.133<br>132.133<br>132.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133<br>133.133 | 77.48<br>77.16<br>76.84 | 63.59 | 42.51<br>38.93 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|----------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|----------------|



## <sup>1</sup>H NMR of product 4u in CDCl<sub>3</sub> (400 MHz)



#### <sup>1</sup>H NMR of product 4v in CDCl<sub>3</sub> (400 MHz)



<sup>110 100</sup> fl (ppm) -1 

## <sup>1</sup>H NMR of product 4w in CDCl<sub>3</sub> (400 MHz)





<sup>13</sup>C NMR of product 4w in CDCl<sub>3</sub> (100 MHz)



## <sup>1</sup>H NMR of product 4x in CDCl<sub>3</sub> (400 MHz)



#### <sup>13</sup>C NMR of product 4x in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 4y in CDCl<sub>3</sub> (400 MHz)



#### <sup>13</sup>C NMR of product 4y in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 4z in CDCl<sub>3</sub> (400 MHz)







#### <sup>13</sup>C NMR of product 4z in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 4a' in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 4a' in CDCl<sub>3</sub> (100 MHz)



## <sup>1</sup>H NMR of product 4b' in CDCl<sub>3</sub> (400 MHz)





#### <sup>13</sup>C NMR of product 4b' in CDCl<sub>3</sub> (100 MHz)



## <sup>1</sup>H NMR of product 4c' in CDCl<sub>3</sub> (400 MHz)







#### <sup>13</sup>C NMR of product 4c' in CDCl<sub>3</sub> (100 MHz)


#### <sup>1</sup>H NMR of product 4d' in CDCl<sub>3</sub> (400 MHz)











# <sup>1</sup>H NMR of product 5a in CDCl<sub>3</sub> (400 MHz)



#### <sup>13</sup>C NMR of product 5a in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5b in CDCl<sub>3</sub> (400 MHz)

74.0898 44.0779 44.0579 44.0579 44.0579 74.0567 74.0356 74.0356 74.0325 73.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 33.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.1367 34.136 0,0 OMe Ö Se 1.05 F + 01.0 3.10 -3.46 3.46 3.20 2.29 2.21 . 0 4.5 fl (ppm) 3.0 2.0 -0.5 -1 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3.5 2.5 1.5 1.0 0.5 0.0

# <sup>13</sup>C NMR of product 5b in CDCl<sub>3</sub> (100 MHz)



### <sup>1</sup>H NMR of product 5c in CDCl<sub>3</sub> (400 MHz)





<sup>13</sup>C NMR of product 5c in CDCl<sub>3</sub> (100 MHz) 137.56 135.07 135.07 134.60 134.26 134.26 134.25 130.65 129.33 120.58 129.33 120.58 129.33 120.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.49 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 125.40 12 163.03 160.60 159.28 77.48 77.16 76.84 44.28 o" C ö Se -1 210 200 130 120 110 100 fl (ppm) 20 10 0 190 180 170 160 150 140 90 80 70 60 50 40 30

<sup>19F</sup> NMR of product 5c in CDCl<sub>3</sub> (376 MHz)



# <sup>13</sup>C NMR of product 5d in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5e in CDCl<sub>3</sub> (400 MHz)



# <sup>13</sup>C NMR of product 5e in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5f in CDCl<sub>3</sub> (400 MHz)



# <sup>13</sup>C NMR of product 5f in CDCl<sub>3</sub> (100 MHz)



<sup>19</sup>F NMR of product 5f in CDCl<sub>3</sub> (376 MHz)



### <sup>1</sup>H NMR of product 5g in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 5g in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 5h in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 5h in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 5i in CDCl<sub>3</sub> (400 MHz)





#### <sup>13</sup>C NMR of product 5i in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5j in CDCl<sub>3</sub> (400 MHz)



# <sup>13</sup>C NMR of product 5j in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5k in CDCl<sub>3</sub> (400 MHz)

88,069 88,0069 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,00612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,000612 88,0006120



<sup>13</sup>C NMR of product 5k in CDCl<sub>3</sub> (100 MHz)

| <ul> <li>153.36</li> <li>153.36</li> <li>153.36</li> <li>153.36</li> <li>153.36</li> <li>153.136</li> <li>1</li></ul> | 77.48<br>77.16<br>76.84<br>-68.77 | ~40.88 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|

![](_page_120_Figure_5.jpeg)

#### <sup>1</sup>H NMR of product 5l in CDCl<sub>3</sub> (400 MHz)

![](_page_121_Figure_1.jpeg)

### <sup>13</sup>C NMR of product 5l in CDCl<sub>3</sub> (100 MHz)

![](_page_121_Figure_3.jpeg)

### <sup>1</sup>H NMR of product 5m in CDCl<sub>3</sub> (400 MHz)

![](_page_122_Figure_1.jpeg)

# <sup>13</sup>C NMR of product 5m in CDCl<sub>3</sub> (100 MHz)

![](_page_122_Figure_3.jpeg)

#### <sup>1</sup>H NMR of product 5n in CDCl<sub>3</sub> (400 MHz)

![](_page_123_Figure_1.jpeg)

# <sup>13</sup>C NMR of product 5n in CDCl<sub>3</sub> (100 MHz)

![](_page_123_Figure_3.jpeg)

# <sup>1</sup>H NMR of product 50 in CDCl<sub>3</sub> (400 MHz)

![](_page_124_Figure_1.jpeg)

![](_page_124_Picture_2.jpeg)

![](_page_124_Figure_3.jpeg)

<sup>13</sup>C NMR of product 50 in CDCl<sub>3</sub> (100 MHz)

![](_page_124_Figure_5.jpeg)

# <sup>1</sup>H NMR of product 5p in CDCl<sub>3</sub> (400 MHz)

![](_page_125_Figure_1.jpeg)

#### <sup>13</sup>C NMR of product 5p in CDCl<sub>3</sub> (100 MHz)

![](_page_125_Figure_3.jpeg)

# <sup>1</sup>H NMR of product 5q in CDCl<sub>3</sub> (400 MHz)

![](_page_126_Figure_2.jpeg)

<sup>13</sup>C NMR of product 5q in CDCl<sub>3</sub> (100 MHz)

|  | 77.48<br>77.16<br>76.84 | -44.50<br>742.83<br>-38.98<br>-34.71<br>-31.36 |
|--|-------------------------|------------------------------------------------|
|--|-------------------------|------------------------------------------------|

![](_page_126_Figure_5.jpeg)

### <sup>1</sup>H NMR of product 5r in CDCl<sub>3</sub> (400 MHz)

![](_page_127_Figure_2.jpeg)

<sup>13</sup>C NMR of product 5r in CDCl<sub>3</sub> (100 MHz)

![](_page_127_Figure_4.jpeg)

#### <sup>1</sup>H NMR of product 5s in CDCl<sub>3</sub> (400 MHz)

![](_page_128_Figure_2.jpeg)

![](_page_128_Figure_3.jpeg)

#### <sup>13</sup>C NMR of product 5s in CDCl<sub>3</sub> (100 MHz)

![](_page_128_Figure_5.jpeg)

# <sup>19</sup>F NMR of product 5s in CDCl<sub>3</sub> (376 MHz)

![](_page_129_Figure_1.jpeg)

# <sup>1</sup>H NMR of product 5t in CDCl<sub>3</sub> (400 MHz)

![](_page_129_Figure_3.jpeg)

# <sup>13</sup>C NMR of product 5t in CDCl<sub>3</sub> (100 MHz)

![](_page_130_Figure_1.jpeg)

110 100 fl (ppm) -1 

# <sup>1</sup>H NMR of product 5u in CDCl<sub>3</sub> (400 MHz)

![](_page_130_Figure_4.jpeg)

# <sup>13</sup>C NMR of product 5u in CDCl<sub>3</sub> (100 MHz)

![](_page_131_Figure_1.jpeg)

# H NMR of product 5v in CDCl<sub>3</sub> (400 MHz)

1

![](_page_131_Figure_4.jpeg)

# <sup>13</sup>C NMR of product 5v in CDCl<sub>3</sub> (100 MHz)

![](_page_132_Figure_1.jpeg)

<sup>1</sup>H NMR of product 5w in CDCl<sub>3</sub> (400 MHz)

![](_page_132_Figure_4.jpeg)

# <sup>13</sup>C NMR of product 5w in CDCl<sub>3</sub> (100 MHz)

![](_page_133_Figure_1.jpeg)

<sup>1</sup>H NMR of product 5x in CDCl<sub>3</sub> (400 MHz)

![](_page_133_Figure_3.jpeg)

# <sup>13</sup>C NMR of product 5x in CDCl<sub>3</sub> (100 MHz)

![](_page_134_Figure_1.jpeg)

<sup>1</sup>H NMR of product 5y in CDCl<sub>3</sub> (400 MHz)

![](_page_134_Figure_3.jpeg)

#### <sup>13</sup>C NMR of product 5y in CDCl<sub>3</sub> (100 MHz)

![](_page_135_Figure_1.jpeg)

#### H NMR of product 5z in CDCl<sub>3</sub> (400 MHz)

![](_page_135_Figure_3.jpeg)

#### <sup>13</sup>C NMR of product 5z in CDCl<sub>3</sub> (100 MHz)

![](_page_136_Figure_1.jpeg)

#### <sup>1</sup>H NMR of product 5a' in CDCl<sub>3</sub> (400 MHz)

![](_page_136_Figure_3.jpeg)

#### <sup>13</sup>C NMR of product 5a' in CDCl<sub>3</sub> (100 MHz)

![](_page_137_Figure_1.jpeg)

# <sup>1</sup>H NMR of product 5b' in CDCl<sub>3</sub> (400 MHz)

![](_page_137_Figure_3.jpeg)

#### <sup>13</sup>C NMR of product 5b' in CDCl<sub>3</sub> (100 MHz)

![](_page_138_Figure_1.jpeg)

# <sup>1</sup>H NMR of product 5c' in CDCl<sub>3</sub> (400 MHz)

![](_page_138_Figure_3.jpeg)

#### <sup>13</sup>C NMR of product 5c' in CDCl<sub>3</sub> (100 MHz)

![](_page_139_Figure_1.jpeg)

#### <sup>19</sup>F NMR of product 5c' in CDCl<sub>3</sub> (376 MHz)

![](_page_139_Figure_3.jpeg)

![](_page_140_Figure_0.jpeg)

<sup>13</sup>C NMR of product 5d' in CDCl<sub>3</sub> (100 MHz)

![](_page_140_Figure_2.jpeg)

#### <sup>1</sup>H NMR of product 5e' in CDCl<sub>3</sub> (400 MHz)

![](_page_141_Figure_1.jpeg)

<sup>13</sup>C NMR of product 5e' in CDCl<sub>3</sub> (100 MHz)

![](_page_141_Figure_3.jpeg)

![](_page_142_Figure_0.jpeg)

<sup>13</sup>C NMR of product 5f' in CDCl<sub>3</sub> (100 MHz)

![](_page_142_Figure_2.jpeg)

![](_page_143_Figure_0.jpeg)

![](_page_143_Figure_1.jpeg)

<sup>13</sup>C NMR of product 5g' in CDCl<sub>3</sub> (100 MHz)

![](_page_143_Figure_3.jpeg)
# <sup>1</sup>H NMR of product 5h' in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 5h' in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5i' in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 5i' in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5j' in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 5j' in CDCl<sub>3</sub> (100 MHz)





<sup>13</sup>C NMR of product 5k' in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5l' in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 5l' in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5m' in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 5m' in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5n' in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 5n' in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5o' in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 50' in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5p' in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 5p' in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5q' in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 5q' in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5r' in CDCl<sub>3</sub> (400 MHz)



#### <sup>13</sup>C NMR of product 5r' in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5s' in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 5s' in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 5t' in CDCl<sub>3</sub> (400 MHz)



#### <sup>13</sup>C NMR of product 5t' in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 7a in CDCl<sub>3</sub> (400 MHz)



#### <sup>13</sup>C NMR of product 7a in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 7b in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 7b in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 7c in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 7c in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 7d in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 7d in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 7e in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 7e in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 7f in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 7f in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 7g in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 7g in CDCl<sub>3</sub> (100 MHz)



# <sup>19</sup>F NMR of product 7g in CDCl<sub>3</sub> (376 MHz)



# <sup>1</sup>H NMR of product 7h in CDCl<sub>3</sub> (400 MHz)



#### <sup>13</sup>C NMR of product 7h in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 7i in CDCl<sub>3</sub> (400 MHz)



#### <sup>13</sup>C NMR of product 7i in CDCl<sub>3</sub> (100 MHz)



### <sup>1</sup>H NMR of product 7j in CDCl<sub>3</sub> (400 MHz)



#### <sup>13</sup>C NMR of product 7j in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 7k in CDCl<sub>3</sub> (400 MHz)



# <sup>13</sup>C NMR of product 7k in CDCl<sub>3</sub> (100 MHz)



# <sup>19</sup>F NMR of product 7k in CDCl<sub>3</sub> (376 MHz)



#### <sup>1</sup>H NMR of product 7l in CDCl<sub>3</sub> (400 MHz)



#### <sup>13</sup>C NMR of product 7l in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 7m in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 7m in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 7n in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 7n in CDCl<sub>3</sub> 100 MHz)



#### <sup>1</sup>H NMR of product 70 in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 70 in CDCl<sub>3</sub> (100 MHz)







<sup>13</sup>C NMR of product 7p in CDCl<sub>3</sub> (150 MHz)



# <sup>31</sup>P NMR of product 7p in CDCl<sub>3</sub> (240 MHz)



# <sup>1</sup>H NMR of product 7q in CDCl<sub>3</sub> (400 MHz)



# <sup>13</sup>C NMR of product 7q in CDCl<sub>3</sub> (100 MHz)



### <sup>1</sup>H NMR of product 7r in CDCl<sub>3</sub> (400 MHz)



# <sup>13</sup>C NMR of product 7r in CDCl<sub>3</sub> (100 MHz)



<sup>19</sup>F NMR of product 7r in CDCl<sub>3</sub> (376 MHz)



#### <sup>1</sup>H NMR of product 7s in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 7s in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 7t in CDCl<sub>3</sub> (400 MHz)



# <sup>13</sup>C NMR of product 7t in CDCl<sub>3</sub> (100 MHz)



#### <sup>1</sup>H NMR of product 7u in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 7u in CDCl<sub>3</sub> (100 MHz)


### <sup>1</sup>H NMR of product 7v in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 7v in CDCl<sub>3</sub> (100 MHz)







<sup>13</sup>C NMR of product 7w in CDCl<sub>3</sub> (100 MHz)







<sup>13</sup>C NMR of product 7x in CDCl<sub>3</sub> (100 MHz)



### <sup>1</sup>H NMR of product 7y in CDCl<sub>3</sub> (400 MHz)



### <sup>13</sup>C NMR of product 7y in CDCl<sub>3</sub> (100 MHz)



### <sup>1</sup>H NMR of product 7z in CDCl<sub>3</sub> (400 MHz)



### <sup>13</sup>C NMR of product 7z in CDCl<sub>3</sub> (100 MHz)



### <sup>1</sup>H NMR of product 7a' in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 7a' in CDCl<sub>3</sub> (100 MHz)





<sup>13</sup>C NMR of product 7b' in CDCl<sub>3</sub> (100 MHz)



### <sup>1</sup>H NMR of product 7c' in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 7c' in CDCl<sub>3</sub> (150 MHz)





<sup>13</sup>C NMR of product 7d' in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 8a in CDCl<sub>3</sub> (400 MHz)



### <sup>13</sup>C NMR of product 8a in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 8b in CDCl<sub>3</sub> (400 MHz)





<sup>13</sup>C NMR of product 8b in CDCl<sub>3</sub> (100 MHz)



### <sup>1</sup>H NMR of product 8c in CDCl3 (600 MHz)



### <sup>13</sup>C NMR of product 8c in CDCl<sub>3</sub> (150 MHz)



# <sup>1</sup>H NMR of product 8d in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 8d in CDCl<sub>3</sub> (100 MHz)



### <sup>1</sup>H NMR of product 8e in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 8e in CDCl<sub>3</sub> (100 MHz)



### <sup>1</sup>H NMR of product 8f in CDCl<sub>3</sub> (400 MHz)



### <sup>13</sup>C NMR of product 8f in CDCl<sub>3</sub> (100 MHz)



### <sup>1</sup>H NMR of product 8g in CDCl<sub>3</sub> (400 MHz)



# <sup>13</sup>C NMR of product 8g in CDCl<sub>3</sub> (100 MHz)



# <sup>1</sup>H NMR of product 8h in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 8h in CDCl<sub>3</sub> (100 MHz)



### <sup>1</sup>H NMR of product 8i in CDCl<sub>3</sub> (600 MHz)



### <sup>13</sup>C NMR of product 8i in CDCl<sub>3</sub> (150 MHz)



### <sup>1</sup>H NMR of product 8j in CDCl<sub>3</sub> (600 MHz)



# <sup>13</sup>C NMR of product 8j in CDCl<sub>3</sub> (150 MHz)



### <sup>1</sup>H NMR of product 8k in CDCl<sub>3</sub> (400 MHz)



### <sup>13</sup>C NMR of product 8k in CDCl<sub>3</sub> (150 MHz)



### <sup>1</sup>H NMR of product 8l in CDCl<sub>3</sub> (400 MHz)



<sup>13</sup>C NMR of product 8l in CDCl<sub>3</sub> (150 MHz)



### 7. X-Ray crystallographic data

The suitable crystals were selected on a **XtaLAB Synergy**, **Dualflex**, **HyPix** diffractometer. The crystals were kept at 100.03(10) K during data collection. Using Olex2, the structures were solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation.

### 7.1 X-Ray crystallographic data for 4d' (CCDC 2233790)



| Identification code                                   | CCDC 2233790                                           |  |
|-------------------------------------------------------|--------------------------------------------------------|--|
| Empirical formula                                     | C <sub>23</sub> H <sub>18</sub> BrNO <sub>3</sub> SSe  |  |
| Formula weight                                        | 547.31                                                 |  |
| Temperature/K                                         | 296.15                                                 |  |
| Crystal system                                        | orthorhombic                                           |  |
| Space group                                           | Pbca                                                   |  |
| a/Å                                                   | 9.9532(9)                                              |  |
| b/Å                                                   | 24.647(2)                                              |  |
| c/Å                                                   | 17.5152(15)                                            |  |
| α/°                                                   | 90                                                     |  |
| β/°                                                   | 90                                                     |  |
| $\gamma/^{\circ}$                                     | 90                                                     |  |
| Volume/Å <sup>3</sup>                                 | 4296.8(7)                                              |  |
| Z                                                     | 8                                                      |  |
| $\rho_{calc}g/cm^3$                                   | 1.692                                                  |  |
| µ/mm <sup>-1</sup>                                    | 3.730                                                  |  |
| F(000)                                                | 2176.0                                                 |  |
| Crystal size/mm <sup>3</sup>                          | 0.1 	imes 0.1 	imes 0.08                               |  |
| Radiation                                             | MoKa ( $\lambda = 0.71073$ )                           |  |
| $2\Theta$ range for data collection/ <sup>c</sup>     | <sup>o</sup> 5.706 to 49.99                            |  |
| Index ranges                                          | $-11 \le h \le 11, -28 \le k \le 29, -13 \le l \le 20$ |  |
| Reflections collected                                 | 20591                                                  |  |
| Independent reflections                               | $3771 [R_{int} = 0.0569, R_{sigma} = 0.0403]$          |  |
| Data/restraints/parameters                            | 3771/0/271                                             |  |
| Goodness-of-fit on F <sup>2</sup>                     | 1.006                                                  |  |
| Final R indexes $[I \ge 2\sigma(I)]$                  | $R_1 = 0.0333$ , $wR_2 = 0.0606$                       |  |
| Final R indexes [all data]                            | $R_1 = 0.0625, WR_2 = 0.0691$                          |  |
| Largest diff. peak/hole / e Å-3                       | 0.43/-0.38                                             |  |
| 7.2 X-Ray crystallographic data for 5y (CCDC 2191956) |                                                        |  |
|                                                       |                                                        |  |





| 0                                     | 2000                                                                |
|---------------------------------------|---------------------------------------------------------------------|
| Identification code                   | CCDC 2191956                                                        |
| Empirical formula                     | C <sub>19</sub> H <sub>19</sub> NO <sub>3</sub> SSe                 |
| Formula weight                        | 420.37                                                              |
| Temperature/K                         | 296.15                                                              |
| Crystal system                        | monoclinic                                                          |
| Space group                           | P2 <sub>1</sub> /c                                                  |
| a/Å                                   | 14.852(3)                                                           |
| b/Å                                   | 8.3709(17)                                                          |
| c/Å                                   | 15.745(3)                                                           |
| α/°                                   | 90                                                                  |
| β/°                                   | 111.498(4)                                                          |
| γ/°                                   | 90                                                                  |
| Volume/Å <sup>3</sup>                 | 1821.3(6)                                                           |
| Z                                     | 4                                                                   |
| $\rho_{calc}g/cm^3$                   | 1.533                                                               |
| µ/mm <sup>-1</sup>                    | 2.194                                                               |
| F(000)                                | 856.0                                                               |
| Crystal size/mm <sup>3</sup>          | 0.2 	imes 0.15 	imes 0.1                                            |
| Radiation                             | MoKa ( $\lambda = 0.71073$ )                                        |
| $2\Theta$ range for data collection/° | 5.254 to 55.202                                                     |
| Index ranges                          | -19 $\leq h \leq$ 16, -10 $\leq k \leq$ 10, - 18 $\leq$ 1 $\leq$ 20 |
| Reflections collected                 | 10639                                                               |
| Independent reflections               | $\begin{array}{llllllllllllllllllllllllllllllllllll$                |
| Data/restraints/parameters            | 4149/0/226                                                          |
| Goodness-of-fit on F <sup>2</sup>     | 1.033                                                               |
| Final R indexes [I>= $2\sigma$ (I)]   | $R_1 = 0.0406, wR_2 = 0.0854$                                       |
| Final R indexes [all data]            | $R_1 = 0.0802, wR_2 = 0.0967$                                       |
| Largest diff. peak/hole / e Å-3       | 0.34/-0.40                                                          |

# 7.3 X-Ray crystallographic data for 7m (CCDC 2227321)



Identification code Empirical formula Formula weight Temperature/K Crystal system Space group a/Å CCDC 2227321 C<sub>19</sub>H<sub>19</sub>NO<sub>4</sub>Se 404.31 296.15 monoclinic P2<sub>1</sub>/n 6.0420(6)

| b/Å                                                    | 7.1534(7)                                          |  |
|--------------------------------------------------------|----------------------------------------------------|--|
| c/Å                                                    | 41.598(4)                                          |  |
| α/°                                                    | 90                                                 |  |
| β/°                                                    | 91.970(2)                                          |  |
| γ/°                                                    | 90                                                 |  |
| Volume/Å <sup>3</sup>                                  | 1796.8(3)                                          |  |
| Z                                                      | 4                                                  |  |
| pcalcg/cm <sup>3</sup>                                 | 1.495                                              |  |
| µ/mm <sup>-1</sup>                                     | 2.113                                              |  |
| F(000)                                                 | 824.0                                              |  |
| Crystal size/mm <sup>3</sup>                           | $? \times ? \times ?$                              |  |
| Radiation                                              | MoKα ( $\lambda = 0.71073$ )                       |  |
| $2\Theta$ range for data collection/ $\!\!\!^{c}$      | 5.778 to 55.252                                    |  |
| Index ranges                                           | $-7 \le h \le 7, -7 \le k \le 9, -46 \le l \le 54$ |  |
| Reflections collected                                  | 10475                                              |  |
| Independent reflections                                | $4080\;[R_{int}{=}0.0368,R_{sigma}{=}0.0504]$      |  |
| Data/restraints/parameters                             | 4080/0/226                                         |  |
| Goodness-of-fit on F <sup>2</sup>                      | 1.036                                              |  |
| Final R indexes $[I \ge 2\sigma(I)]$                   | $R_1 = 0.0442, wR_2 = 0.0780$                      |  |
| Final R indexes [all data]                             | $R_1 = 0.0790, wR_2 = 0.0873$                      |  |
| Largest diff. peak/hole / e Å <sup>-3</sup> 0.30/-0.45 |                                                    |  |
|                                                        |                                                    |  |