## Supporting information

## A Bifunctional Molecular Catalyst Builtup of L-Proline Grafted

## Polyoxometalate for One-pot Three-component Green Synthesis

## of Heterocycles

Guoyong Dai, ${ }^{\text {a,b }}$ Qi Li, ${ }^{\text {a }}$ Dejin Zang, ${ }^{* a, c}$ and Yongge Wei, *a, b
[a] G. Dai, Q. Li, Dr D. Zang,* Prof. Dr. Y. Wei* Key Lab of Organic Optoelectronics \& Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China E-mail: yonggewei@tsinghua.edu.cn
[b] Prof. Dr. Y. Wei* State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China. E-mail: ygwei@pku.edu.cn
[c] Prof. Dr. D. Zang,* School of Pharmacy and Pharmaceutical Sciences \& Institute of Materia Medica, Shandong First Medical University \& Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare \& Uncommon Diseases of Shandong Province, Jinan 250117, China. E-mail: zangdejin_Im@163.com

## Contents

1. General experimental conditions. .....  3
2. Synthesis and characterization of L-Pro-Mn-Anderson POM .....  4
3. Catalytic studies ..... 17
4. Mechanistic Experiment ..... 20
5. NMR data of isolated compounds. ..... 25
6. NMR spectra of isolated compounds. ..... 34
7. Reference ..... 60

## 1. General experimental conditions.

Mn-Anderson POMs were prepared according to literature methods ${ }^{[1]}$. All reagents were purchased without further treatment except dimethylacetamide (DMAC). DMAC was dried with calcium hydride before use. $1 \mathrm{H}-\mathrm{NMR}$ spectra were recorded using a JEOL JNM-EXC 400 spectrometer. ESI-MS spectra were recorded on a Thermo Q Exactive spectrometer. Elemental analysis was measured with Elementar Vario EL III element analyzer. Infrared spectroscopy was recorded on a Bruker Vertex FT-IR spectrometer with a diamond ATR mode in the range of $400-4000 \mathrm{~cm}^{-1}$. X-ray photoelectron spectroscopy (XPS) experiments were carried out on a scanning X-ray microprobe (ESCALAB Xi+, Thermo Fisher Scientific) operated at 15 kV and 100 eV with monochromated $\mathrm{Al} \mathrm{K}_{\alpha}$ radiation. The XPS spectra were calibrated with $\mathrm{C} 1 \mathrm{~s}=284.8 \mathrm{eV}$ and fitted using XPSPEAK41 software with Shirley background type and free parameters. The CD spectra were recorded on a circular dichroism chiroptical spectrometer (Chirascan plus) at $20^{\circ} \mathrm{C}$. A suitable single crystal of compound 2 and $\mathbf{3}$ was selected. Data collection was performed using graphite-monochromated $\mathrm{Cu}_{\alpha}$ radiation $(\lambda=1.5418 \AA$ ). Data reduction, cell refinement, and experimental absorption correction were performed with a software package. Data collection and reduction were performed in CrysAlisPro 1.171.39.46. The structure solution and refinement were performed with SHLEX$97{ }^{[2]}$ and Olex1.2. ${ }^{[3]}$ The multi-scan method was used for the absorption correction. The structure was solved by direct methods and refined against $F^{2}$ by full matrix least-squares techniques. All non-hydrogen atoms were refined anisotropically. Crystal data and CCDC codes were listed in Table S1.

## 2. Synthesis and characterization of L-Pro-Mn-Anderson POM

Synthetic route 1:



Synthetic route 2:



Scheme S1. Synthetic routes of L-proline grafted Mn-Anderson POM.

### 2.1 Compound 1: Boc-L-Pro-Tris

$\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$


Mixture of Boc-L-Proline ( $2.15 \mathrm{~g}, 10 \mathrm{mmol}$ ), Tris ( $1.21 \mathrm{~g}, 10 \mathrm{mmol}$ ), EEDQ $(1.2 \mathrm{eq}, 2.97 \mathrm{~g}), \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(30 \mathrm{~mL})$ in a 50 mL round bottle was stirred for 12 h at $50^{\circ} \mathrm{C}$. After the reaction temperature was cooled down to the room temperature, the solvents were removed under vacuum and the pure purple product of Por-tris was obtained by crystallization in ethyl acetate ( $\mathrm{m}=2.83 \mathrm{~g}$, yield=89 \%). Yield: 2.83 g , 89 \%;
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{D}_{\mathbf{2}} \mathbf{O}$ ): $\delta 4.14(\mathrm{~d}, \mathrm{~J}=19.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ ( $\mathrm{s}, 6 \mathrm{H}$ ), 3.32 (d, J $=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=10.6 \mathrm{~Hz}$, 9H). ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{C l}$,): $\delta 174.56$ ( s ), 155.72 (s), 81.22 (s), 64.86 (s), 62.11 (s), 61.43 (s), 61.10 (s), 47.42 (s), 30.02 (s), 28.40 (s), 24.67 (s). ESIMS(C14H26N2O6): [M-1], 317.4.

### 2.2 Compound 2: Boc-L-Pro-Mn-Anderson POM

$\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{\mathbf{4}} \mathrm{N}\right]_{3}\left\{\mathbf{M n M o}_{\mathbf{6}} \mathrm{O}_{\mathbf{1 8}}\left[\left(\mathbf{O C H}_{2}\right)_{3} \mathbf{C N H C}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{1 6}} \mathrm{NO}_{3}\right]_{2}\right\}$



A mixture of $(\mathrm{TBA})_{4}\left[\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{[4]}(4.31 \mathrm{~g}, 2 \mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.80 \mathrm{~g}$, 3 mmol ) and Boc-L-Pro-Tris ( 0.64 g ; 7 mmol ) was refluxed in $\mathrm{MeCN}(100 \mathrm{~mL})$ for 16 h . The resulting bright orange solution was allowed to cool down to room
temperature. This crude mixture was purified via crystallization by $\mathrm{Et}_{2} \mathrm{O}$ diffusion. After a day, orange crystals were formed, isolated and analyzed. Single crystals suitable for X -ray diffraction were grown from MeCN by slow $\mathrm{Et}_{2} \mathrm{O}$ diffusion.

Yield: $4.98 \mathrm{~g}, 0.476 \mathrm{mmol}, 82 \%$ based on $\mathrm{Mo} ;{ }^{1} \mathbf{H}$ NMR ( 600 MHz , ACETONITRILE-D3) 1H NMR ( 600 MHz , ACETONITRILE-D3) $\delta 4.33$ - 4.01 (m, 2H), 3.43 (s, 2H), 3.30 ( $\mathrm{s}, 2 \mathrm{H}), 3.11$ (s, 24H), 1.82 (d, J = $36.1 \mathrm{~Hz}, 6 \mathrm{H}$ ), 1.62 ( s , 24 H ), $1.40(\mathrm{~d}, \mathrm{~J}=41.0 \mathrm{~Hz}, 42 \mathrm{H}), 0.97(\mathrm{~s}, 36 \mathrm{H}), 60.0-66.0 \mathrm{ppm}\left(\mathrm{s}, \mathrm{br}, 6 \mathrm{CH}_{2}\right)$; IR(ATR):v ( $\mathrm{cm}^{-1}$ ) 3436 (w), 3065 (m), 2966 (v C-H, S ), 2877 (v C-H, S), 1687 (v $\mathrm{C}=\mathrm{O}, \mathrm{S}$ ), 1553 (m), 1477 (m), 1396 (m), 1311 (W), 1252 (W), 1166 (m), 1117 (m), $1030(\mathrm{~m}), 943$ ( $\mathrm{v} \mathrm{Mo}=\mathrm{O}$, vs), 924 ( $\mathrm{v} \mathrm{Mo}=\mathrm{O}$, vs), 905 ( $\mathrm{v} \mathrm{Mo}=\mathrm{O}$, vs), 665 ( $\mathrm{v} \mathrm{Mo}-\mathrm{O}-$ Mo, vs, br.), 564 (m). Elemental analysis: Calc. for $\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right]_{3}\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left[\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}_{10} \mathrm{H}_{16} \mathrm{NO}_{3}\right]_{2}\right\}\left(2276.67 \mathrm{~g} . \mathrm{mol}^{-1}\right): \mathrm{C} 38.70, \mathrm{H}$ 6.03, N 7.09 Found: C 38.62, H 6.03, N 7.09. ESI-MS: Peak envelopes were observed with central peaks at $\mathrm{m} / \mathrm{z}$ 896. $442(\mathrm{z}=-2), 516.867(\mathrm{z}=-3)$ were assigned as $\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right]\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left[\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}_{10} \mathrm{H}_{16} \mathrm{NO}_{3}\right]_{2}\right\}^{2-}$ (predicted: 895.865) and $\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left[\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}_{10} \mathrm{H}_{16} \mathrm{NO}_{3}\right]_{2}\right\}^{3-}$ (predicted: 516.42), respectively.

### 2.3 Compound 3: L-Pro-Mn-Anderson POM

 $\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}^{2} \mathrm{H}_{2}\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left[\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}_{5} \mathrm{H}_{8} \mathrm{NO}\right]_{2}\right\}\right.$

At $0{ }^{\circ} \mathrm{C}$ the $\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}_{3}\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left[\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}_{10} \mathrm{H}_{16} \mathrm{NO}_{3}\right]_{2}\right\}(2.28 \mathrm{~g}, 1\right.$ mmol ) was added to the solution of $\mathrm{CF}_{3} \mathrm{COOH}(2.5 \mathrm{~mL})$ in $\mathrm{CH} 2 \mathrm{Cl} 2(10 \mathrm{~mL})$, and then the reaction mixture was warmed to room temperature and stirred for 4 h before removal of all solvents in vacuo to yield the product as the corresponding TFA salt. This was then dissolved in DMF ( 10 mL ). To the suspension, 5 mL of 1.0 M tetrabutylammonium hydroxide in methanol was added. After stirring for 30
minutes, add $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, the resulting solids were obtained by the centrifugal separation and washed dichloromethane. Single crystals suitable for X-ray diffraction were grown from DMSO by slow $\mathrm{Et}_{2} \mathrm{O}$ diffusion.

Yield: $1.035 \mathrm{~g}, 0.476 \mathrm{mmol}, 81.1$ \% based on $\mathrm{Mo} ;{ }^{1} \mathbf{H}$ NMR ( 400 MHz , DMSO-D6) $\delta 65.00$ (s, 5H), 1H NMR (400 MHz, DMSO-D6) $\delta 4.34$ (s, 2H), 3.30 ( $\mathrm{s}, 2 \mathrm{H}$ ), $3.13(\mathrm{~s}, 8 \mathrm{H}), 2.22(\mathrm{~s}, 2 \mathrm{H}), 1.83(\mathrm{~d}, \mathrm{~J}=38.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.53(\mathrm{~s}, 8 \mathrm{H}), 1.27(\mathrm{~s}$, 8H), 0.90 ( $\mathrm{s}, 12 \mathrm{H}$ ); IR(ATR):v ( $\mathrm{cm}^{-1}$ ) 3446 (w), 3088 (v C-H, m), 2967 (v C-H, m ), 2878 (v C-H, m), 1684 (v C=O, s), 1568 (m), 1463 (m), 1386 (m), 1324 (W),1204(s), 1164 ( s ), 1052 (m), 949 ( $\mathrm{v} \mathrm{Mo}=\mathrm{O}$, vs), 921 ( $\mathrm{v} \mathrm{Mo}=\mathrm{O}$, vs), 901 ( v $\mathrm{Mo}=\mathrm{O}, \mathrm{vs}$ ), 793 (m), 670 (v Mo-O-Mo, vs, br.), 570(m). Elemental analysis: Calc. for $\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right] \mathrm{H}_{2}\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left[\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}_{5} \mathrm{H}_{8} \mathrm{NO}\right]\left(1593.51 \mathrm{~g} . \mathrm{mol}^{-1}\right)\right.$ : C 38.70, H 6.03, N 7.09 Found: C 38.62, H 6.03, N 7.09. ESI-MS: Peak envelopes were observed with central peaks at $\mathrm{m} / \mathrm{z} 1350.268(\mathrm{z}=-1)$, 676. 264( $\mathrm{z}=-2$ ) were assigned as $\mathrm{H}_{2}\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left[\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}_{5} \mathrm{H}_{8} \mathrm{NO}_{2}\right\}^{-}\right.$(predicted: 1351.04) and $\mathrm{H}\left\{\mathrm{MnMo}_{6} \mathrm{O}_{18}\left[\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CNHC}_{5} \mathrm{H}_{8} \mathrm{NO}\right]_{2}\right\}^{2-}$ (predicted: 675.015).

### 2.4 Single crystal XRD

Table S1. Crystal data and structure refinement for compound $\mathbf{2}$ and $\mathbf{3 .}$

| Compound | 2 | 3 |
| :---: | :---: | :---: |
| CCDC number | 2049197 | 2049194 |
| Empirical formula | $\mathrm{C}_{81} \mathrm{H}_{161.5} \mathrm{MnMo}_{6} \mathrm{~N}_{9.5} \mathrm{O}_{30}$ | $\mathrm{C}_{46} \mathrm{H}_{106} \mathrm{MnMo}_{7.5} \mathrm{~N}_{4} \mathrm{O}_{44} \mathrm{~S}_{14}$ |
| Formula weight | 2379.27 | 2642.67 |
| Temperature/K | 109.3(8) | 293(2) |
| Crystal system | monoclinic | orthorhombic |
| Space group | $\mathrm{P} 2_{1}$ | $\mathrm{P} 2{ }_{1} 2_{1} 2$ |
| $\mathrm{a} / \AA{ }^{\text {a }}$ | 24.1600(5) | 33.5555(4) |
| b/ ¢ | 14.7868(3) | 30.4959(4) |
| c/Å | 33.2539(11) | 9.33799 (9) |
| $\alpha /{ }^{\circ}$ | 90 | 90 |
| $\beta /{ }^{\circ}$ | 103.708(3) | 90 |
| $\gamma /{ }^{\circ}$ | 90 | 90 |
| Volume/ $\AA^{3}$ | 11541.6(5) | 9555.6(2) |
| Z | 4 | 4 |
| $\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$ | 1.369 | 1.837 |
| $\mu / \mathrm{mm}^{-1}$ | 6.597 | 12.431 |
| $\mathrm{F}(000)$ | 4924.0 | 5304.0 |
| Crystal size/ $\mathrm{mm}^{3}$ | $0.4 \times 0.05 \times 0.05$ | $0.2 \times 0.03 \times 0.03$ |
| Radiation | $\mathrm{CuK} \alpha(\lambda=1.54184)$ | $\mathrm{CuK} \alpha(\lambda=1.54184)$ |
| $2 \Theta$ range for data collection/ ${ }^{\circ}$ | 7.066 to 142.972 | 7.834 to 152.786 |
| Index ranges | $\begin{gathered} -28 \leq \mathrm{h} \leq 29,-17 \leq \mathrm{k} \leq \\ 17,-33 \leq 1 \leq 40 \end{gathered}$ | $\begin{gathered} -39 \leq \mathrm{h} \leq 42,-38 \leq \mathrm{k} \leq \\ 37,-7 \leq 1 \leq 11 \end{gathered}$ |
| Reflections collected | 81684 | 69366 |
| Independent reflections | $\begin{gathered} 40519\left[\mathrm{R}_{\text {int }}=0.0804,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.1145\right] \end{gathered}$ | $\begin{gathered} 19625\left[\mathrm{R}_{\text {int }}=0.0598,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0594\right] \end{gathered}$ |
| Data/restraints/parameters | 40519/1245/2338 | 19625/42/1040 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.042 | 1.043 |
| Final R indexes [ $\mathrm{I}>=2 \sigma$ (I)] | $\begin{gathered} \mathrm{R}_{1}=0.0872, \mathrm{wR}_{2}= \\ 0.2165 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0482, \mathrm{wR}_{2}= \\ 0.1165 \end{gathered}$ |
| Final R indexes [all data] | $\begin{gathered} \mathrm{R}_{1}=0.1161, \mathrm{wR}_{2}= \\ 0.2342 \end{gathered}$ | $\begin{gathered} \mathrm{R}_{1}=0.0533, \mathrm{wR}_{2}= \\ 0.1195 \end{gathered}$ |
| Largest diff. peak/hole / e $\AA^{-3}$ | 1.44/-1.40 | 1.58/-1.40 |
| Flack parameter | 0.070(9) | 0.020(6) |

### 2.5 NMR spectra of compound 1-3



Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1}$.


Figure S2. ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1}$.


Figure S3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 2.


S3-S4).

### 2.6 FT-IR spectra



Figure S5. FT-IR spectrum of Mn-Anderson POM (black curve), $\mathbf{2}$ (red curve), $\mathbf{3}$ (blue curve).

IR spectra of these compounds are very similar within $400-1000 \mathrm{~cm}^{-1}$, and in accordance with the typical Anderson-type structures. The characteristic peaks at 932, 917 and $900 \mathrm{~cm}-1$ in Mn-Anderson POM while 934, 924 and $905 \mathrm{~cm}-1$ in compound 2 and 949, $921 \mathrm{~cm}-1$ and $901 \mathrm{~cm}-1$ in compound 3 correspond to the vibrations of $\mathrm{Mo}=\mathrm{O}$ groups and this at $675 \mathrm{~cm}-1$ in Mn-Anderson POM, while $665 \mathrm{~cm}-1$ in compound $2,670 \mathrm{~cm}-1$ in compound 3 belong to the vibrations of the Mo-O-Mo groups. The characteristic peaks at $1117,1030 \mathrm{~cm}-1$ in compound 2 while $1164,1052 \mathrm{~cm}^{-1}$ in compound $\mathbf{3}$ are assigned to the vibration peak of the $\mathrm{C}-\mathrm{O}$ bonds bridging the Mn-Anderson-type POM and the L-Proline-Tris, demonstrating the grafting of triol onto the surface of the POMs successfully.

### 2.7 Thermal analysis



Figure S6. TGA spectrum of compound Mn-Anderson POM and 3 The preliminary thermal studies on compound $\mathbf{3}$ were conducted by using thermal gravimetric analyses (TGA). It clearly shows two weight-loss regions. The first step at $200-360^{\circ} \mathrm{C}$ was the reduction in TBA counterions. The second step at $360-700^{\circ} \mathrm{C}$ was the decomposition of the organic triol moiety and the decomposition of the cluster.

### 2.8 XPS spectra



Figure S7. XPS spectrum of the Mn-Anderson POM


Figure S8. XPS spectrum of compound $\mathbf{3}$


Figure S9. Mo 3d XPS spectrum of the Mn-Anderson POM and 3.


Figure S10. Mn 3p XPS spectrum of the Mn-Anderson POM and 3.


Figure S11. O 1s XPS spectrum of the Mn-Anderson POM and $\mathbf{3}$.



Figure S12. There are three types of oxygen atoms (red spheres) in Anderson-type POMs: terminal oxygen atoms $\left(\mathbf{O}_{\boldsymbol{t}}\right)$, double-bridged ( $\boldsymbol{\mu}_{2}-\mathbf{O}$ ), triple-bridged ( $\boldsymbol{\mu}_{3}-\mathbf{O}$ ). L-Proline-Tris and Mn -Anderson are covalently linked via $\boldsymbol{\mu}_{3} \mathbf{- O}$. Ball and stick representation with Mn navy blue, Mo dark teal, C gray, O red. H atoms have been omitted for clarity.

### 2.9 Cyclic voltammogram analysis



Figure S13. CVs comparison of the applied Mn-Anderson POM (red curve), LProline (blue curve), L-Proline/Mn-Anderson POM (green curve), L-Pro-MnAnderson POM (purple curve), the numbers plus asterisk represent the occurrence order and number of relevant redox peaks. Cyclic voltammetry was carried out under $\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}$ (1:1) solution with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}, 4 \times 10^{-3} \mathrm{M}$ related analyst, respectively. Scan rate: $100 \mathrm{mV} \mathrm{s}^{-1}$.

### 2.10 Circular dichroism spectra



Figure S14. CD spectra of Boc-L-Pro-Mn-Anderson in $\mathrm{CH}_{3} \mathrm{CN}$ (red curve), CD spectra of L-Pro-Mn-Anderson in $\mathrm{H}_{2} \mathrm{O}$ (black curve).

## 3. Catalytic studies

Table S2. Catalytic performance of various catalysts in the selective oxidation of benzyl alcohol to benzaldehyde. ${ }^{\text {a }}$

| Entry | Catalyst | Time (h) | Yields $(\%)^{b}$ |
| :---: | :---: | :---: | :---: |
| 1 | No catalyst | 24 | <1 |
| 2 | L-Proline | 24 | <1 |
| 3 | Mn-Anderson POM | 8 | 72 |
| 4 | L-Proline/Mn-Anderson POM ${ }^{\text {C }}$ | 8 | 56 |
| 5 | L-Pro-Mn-Anderson POM ${ }^{\text {d }}$ | 8 | 83 |
| 6 | L-Pro-Mn-Anderson POM ${ }^{\text {d }}$ | 12 | 97 |
| 7 | L-Pro-Mn-Anderson POM ${ }^{\text {d }}$ | 16 | 97 |
| ${ }^{\text {a }}$ Reaction conditions: benzyl alcohol ( 1 mmol ), catalyst ( 0.005 mmol ), $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ |  |  |  |
| and $\mathrm{H}_{2} \mathrm{O}_{2} 30 \%(3 \mathrm{mmol})$ at $90^{\circ} \mathrm{C}$. |  |  |  |
| ${ }^{\mathrm{b}}$ The yield of isolated products. |  |  |  |

${ }^{\mathrm{d}}$ Covalent bonding.
we used the 4-chlorobenzyl alcohol as the model substrate to evaluate the oxidation catalytic activity of L-Pro-Mn-Anderson. Using $\mathrm{H}_{2} \mathrm{O}_{2}$ as a co-oxidant, almost no product was detected after 24 hours of reaction with either L-proline or in the absence of a catalyst. ( $<1 \%$ ) (entry 1-2). Mn-Anderson showed superior oxidation performance compared to L-Proline/Mn-Anderson (entry 3-4), which was also consistent with the results of electrochemical tests (Fig. S13), possibly due to the mixing of L-Proline/Mn-Anderson to produce hydrogen bonds or other interactions to occupy the catalytic sites, thereby affecting its catalytic performance. L-Pro-MnAnderson performed optimally in the oxidation reaction. ${ }^{[5]}$
Table S3. Optimization of the selective oxidation of benzyl alcohol to benzaldehyde. ${ }^{\text {a }}$

| Entry | Cat. <br> $(\mathbf{m m o l})$ | Solvent | Temp <br> $\left({ }^{\circ} \mathbf{C}\right)$ | Sel. $^{\mathbf{b}}{ }^{\mathbf{( \% \% )}}$ | Yield <br> $\mathbf{s}$ <br> $(\%)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.005 | $\mathrm{H}_{2} \mathrm{O}$ | 70 | $>99$ | 73 |
| $\mathbf{2}$ | 0.005 | $\mathrm{H}_{2} \mathrm{O}$ | 80 | $>99$ | 86 |
| $\mathbf{3}$ | 0.005 | $\mathrm{H}_{2} \mathrm{O}$ | 90 | $>99$ | 97 |
| $\mathbf{4}$ | 0.005 | $\mathrm{H}_{2} \mathrm{O}$ | 100 | 96 | 91 |
| $\mathbf{5}$ | 0.005 | $\mathrm{CH}_{3} \mathrm{OH}$ | 90 | 40 | 35 |
| $\mathbf{6}$ | 0.005 | EtOH | 90 | 46 | 39 |
| $\mathbf{7}$ | 0.005 | $\mathrm{CH}_{3} \mathrm{CN}$ | 90 | 65 | 58 |
| $\mathbf{8}$ | 0.02 | $\mathrm{H}_{2} \mathrm{O}$ | 90 | 98 | 93 |
| $\mathbf{9}$ | 0.01 | $\mathrm{H}_{2} \mathrm{O}$ | 90 | $>99$ | 96 |
| $\mathbf{1 0}$ | 0.001 | $\mathrm{H}_{2} \mathrm{O}$ | 90 | $>99$ | 90 |

${ }^{\text {a }}$ Reaction conditions: reaction time ( 12 h ), benzyl alcohol ( 1 mmol ), catalyst ( 0.01 mmol ), $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}_{2} 30 \%(3 \mathrm{mmol})$.
${ }^{\mathrm{b}}$ Selectivity was determined by GC and confirmed by GC-MS.
${ }^{c}$ The yield of isolated products.
The influence of the amount of catalyst, solvent and tem-perature on the catalytic oxidation performance was investigated. It was found that the solvent had a great influence on the selectivity of the product (entry 3,5-7). Gratifyingly, aldehydes could be exclusively selec-tively produced in $\mathrm{H}_{2} \mathrm{O}$ ( $97 \%$ yield with $99 \%$ selectivity) (entry 3). Only when the temperature reaches $100^{\circ} \mathrm{C}$, the selectivity decreased a little $(96 \%$ selectivity) (entry 4). The different amount of catalyst only affects the yield of aldehyde (entry 8-10).


Table S4. Optimization of the three-component coupling reaction between benzyl alcohol, anilines, and barbituric acids ${ }^{\text {a }}$

| Entry | Cat. (\%) | Time |  | Yields(\%) $^{\mathbf{b}}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A(h) | $\mathbf{B}(\mathbf{h})$ | $\mathbf{5}$ | $\mathbf{6}$ |
| $\mathbf{1}$ | No catalyst | 12 | 12 | $<1$ | - |
| $\mathbf{2}$ | $\mathrm{H}_{3} \mathrm{PW}_{12} \mathrm{O}_{40}(0.5)$ | 12 | 12 | 85 | - |
| $\mathbf{3}$ | L-Proline(1) | 12 | 12 | $<1$ | - |
| $\mathbf{4}$ | Mn-Anderson(0.5) | 12 | 12 | 90 | - |
| $\mathbf{5}$ | L-Proline/Mn-Anderson | 12 | 12 | $<1$ | 65 |
|  | (1/0.5) |  |  |  |  |
| $\mathbf{6}$ | L-Pro-Mn-Anderson(0.5) | 12 | 12 | $<1$ | 90 |
| $\mathbf{7}$ | L-Pro-Mn-Anderson(0.5) | 0 | 12 | 43 | - |
| $\mathbf{8}$ | L-Pro-Mn-Anderson(2) | 12 | 12 | $<1$ | 89 |
| $\mathbf{9}$ | L-Pro-Mn-Anderson(1) | 12 | 12 | $<1$ | 89 |
| $\mathbf{1 0}$ | L-Pro-Mn-Anderson(0.1) | 12 | 12 | $<1$ | 78 |

${ }^{\text {a }}$ Reaction conditions: 4- $\mathrm{CH}_{3}$-aniline ( 1 mmol ), 4-Cl-benzaldehyde ( 1 mmol ), barbituric acid ( 1 mmol ), $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}_{2} 30 \%(3 \mathrm{mmol})$ at reflux.
${ }^{\mathrm{b}}$ The yield of isolated products.

### 3.1 General procedure for the synthesis of 5-aryl-pyrimido[4,5-b]-quinolinedione derivatives 6

0.50 mol - \% of the catalyst $\mathbf{3}$ (L-Mn-Anderson POM) was dissolved in 1 mL of water in 25 mL round bottomed flask by stirring. Thereafter, 1 mmol of alcohol was added followed by the slow addition of 3 mmol of aqueous $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ drop wise by stirring. The reaction temperature was set at $90{ }^{\circ} \mathrm{C}$ for A hours. followed by the addition of aromatic amine compound $(1 \mathrm{mmol})$, barbituric acid $(0.13 \mathrm{~g}, 1 \mathrm{mmol})$ in refluxing $\mathrm{H}_{2} \mathrm{O}$ for B hours. After completion of the reaction, as confirmed by TLC, the reaction mixture was cooled down to r.t. The precipitate was collected by filtration and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{EtOH}(5 \mathrm{~mL})$ to afford the pure product 6.

### 3.2 General Procedure for the Synthesis of pyrido [3,4-b] pyrazole derivatives 9 .

$0.50 \mathrm{~mol}-\%$ of the catalyst $\mathbf{3}$ (L-Mn-Anderson POM) was dissolved in 1 mL of
water in 25 mL round bottomed flask by stirring. Thereafter, 1 mmol of alcohol was added followed by the slow addition of 3 mmol of aqueous $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ drop wise by stirring. The reaction temperature was set at $90{ }^{\circ} \mathrm{C}$ for A hours. followed by the addition of 3-methyl-1-phenyl-1H-pyrazol-5-amine ( 1 mmol ), Meldrum's acid (1 mmol), in refluxing $\mathrm{H}_{2} \mathrm{O}$ for C hours. After completion of the reaction, as confirmed by TLC, the reaction mixture was cooled to r.t. The precipitate was collected by filtration and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{EtOH}(5 \mathrm{~mL})$ to afford the pure product 9.

## 4. Mechanistic Experiment



Scheme S2. L-Proline activates 5-Arylidene Barbiturate (7)

### 4.1 Synthesis and Characterization of the 5-arylidene Barbiturate (7)

0.50 mol - \% of the catalyst $\mathbf{3}$ (L-Mn-Anderson POM) was dissolved in 1 mL of water in 25 mL round bottomed flask by stirring. Thereafter, 1 mmol of 4-F-benzyl alcohol was added followed by the slow addition of 2 mmol of aqueous $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ drop wise by stirring. The reaction temperature was set at $90{ }^{\circ} \mathrm{C}$ for 12 hours. followed by the addition of barbituric acid $(0.13 \mathrm{~g}, 1 \mathrm{mmol})$ in refluxing $\mathrm{H}_{2} \mathrm{O}$ for 12 hours. After completion of the reaction, as confirmed by TLC, the reaction mixture was filtered and the precipitated product was washed with water $(3 \times 10 \mathrm{~mL})$ to afford the pure compound.

${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D6) $\delta 11.36$ (s), 11.22 (s), $8.27-8.09$ (m), 7.27 (dd, J = 8.7, 8.0 Hz ). ${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO-D6) $\delta 165.95$ (s), 163.92 (s), 163.44 (s), 162.26 (s), 153.97 (s), 150.72 ( s), 136.89 (d, J = 9.3 Hz ), 129.74 ( s), 119.21 (s), 115.85 (s), 115.63 (s). ${ }^{19}$ F NMR: ( 376 MHz, DMSO-D6) $\delta$-105.85 (s).


Figure S15. ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectra of $\mathbf{5}$-arylidene Barbiturate (7)


Figure S16. ${ }^{13}$ C NMR spectra of 5-arylidene Barbiturate (7)
S8: $\mathbf{S I L}^{-}$


Figure S17. ${ }^{19}$ F NMR spectra of 5-arylidene Barbiturate (7)

### 4.2 Study of Reaction Mechanisms

An oven-dried 5 mL vial was charged with catalyst ( $0.01 \mathrm{mmol}, 1$ equiv.), DMSO ( 1 mL ) and 5 -arylidene barbiturate ( $0.01 \mathrm{mmol}, 1$ equiv.). The mixture was allowed to stand at ambient temperature for 1 hours. An aliquot was used for 19 F NMR characterization.




Figure S18. ${ }^{19}$ F NMR spectra of 7/L-Proline ( $1 / 1$ mole ratio)



Figure S19. ${ }^{19}$ F NMR spectra of 7/L-Pro-Mn-Anderson (1/1 mole ratio)



Figure S20. ${ }^{19}$ F NMR spectra of 7/Boc-L-Proline ( $1 / 1$ mole ratio)




Figure S21. ${ }^{19}$ F NMR spectra of 7/Boc-L-Pro-Mn-Anderson (1/1 mole ratio)


Figure S22. FT-IR spectrum of Mn-Anderson POM :Fresh (black curve), Recycle (red curve).


Figure S23. CVs comparison of the applied (a) Only the catalyst (L-Pro-MnAnderson POM) in the reaction system; (b) Add H 2 O 2 to the reaction system in (a) (red curve), (c) Add alcohol to the reaction system in (b) (green curve), the numbers plus asterisk represent the occurrence order and number of relevant redox peaks. Cyclic voltammetry was carried out under DMSO/H2O (1:1) solution with 0.1 M TBAPF6, $1 \times$ 10-3 M related analyst, respectively. Scan rate: $100 \mathrm{mV} \mathrm{s}-1$.

## 5. NMR data of isolated compounds.



6a: Yield: $90 \%{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-D6) $\delta 10.51$ (s), 10.25 (s), 8.71 (s), $7.32-7.12(\mathrm{~m}), 6.89(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}), 4.99(\mathrm{~s}), 2.10(\mathrm{~s}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO-D6) $\delta 163.22$ (s), 150.70 ( s$), 147.49$ (s), 146.37 (s), 133.40 (s), 132.58 (s), 131.04 ( s ), 130.25 ( s ), 129.43 ( s$), 128.56$ (d, J = 19.8 Hz ), 124.43 (s), 116.44 ( s$),$ 85.37 ( s ), 20.84 ( s ).

This compound was known. ${ }^{[6]}$


6b: Yield: 91\%, ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-D6) $\delta 10.45$ (s, 1H), 10.21 (s, 1H), $8.62(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{dd}, \mathrm{J}=14.8,8.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta 163.23$ (s), 155.73 ( s ), 150.77 ( s ), 146.36 (s), 145.44 (s), 135.45 (s), 129.32 ( d, J = 15.3 Hz ), 127.33 ( s$), 126.53$ ( s$), 117.28$ (s), 114.85 (s), 113.26 (s), 85.07 ( s ), 55.72 ( s$), 21.04$ ( s ).

This compound was known. ${ }^{[6]}$


6c: Yield: $93 \%,{ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D6) $\delta 10.53$ (s), 10.26 (s), 8.72 (s), $7.20(\mathrm{q}, \mathrm{J}=8.6 \mathrm{~Hz}), 6.92(\mathrm{dd}, \mathrm{J}=6.2,4.3 \mathrm{~Hz}), 5.01(\mathrm{~s}), 2.40(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}), 1.03$ (t, J = 7.6 Hz); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta 163.22$ (s), 150.70 (s), 147.39 (s), 146.43 (s), 139.12 (s), 133.67 (s), 131.04 (s), 129.40 (s), 129.09 (s), 128.65 (s), 127.20 (s), 124.41 (s), 116.48 ( s$), 85.38$ (s), 27.97 (s), 16.11 (s).


6d: Yield: $85 \%,{ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D6) $\delta 10.54$ (s, 1H), 10.36 (s, 1H), $8.85(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{dd}, \mathrm{J}=8.5,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-6.87(\mathrm{~m}, 5 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta 163.21$ (s), 162.43 (s), 160.02 (s), 159.75 (s), 157.37 (s), 150.77 (s), 146.44 (s), 144.10 (s), 132.43 (s), 129.25 (d, J = 8.0 Hz ), $126.83(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}), 117.99(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 116.20(\mathrm{~s}), 116.06(\mathrm{~d}, \mathrm{~J}=22.7 \mathrm{~Hz})$, 115.58 (s), 115.37 (s), 114.81 ( s$), 114.58$ ( s$), 84.85$ ( s ).


6e: Yield: $87 \%$, ${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, ~ D M S O-D 6\right) ~ \delta 10.63$ (s), 9.97 (s), 9.03 (s), 7.86 (dd, J = 29.3, 8.3 Hz ), 7.61 (t, J = 7.6 Hz ), $7.56-7.42$ (m), 7.26 (d, J = 8.5 Hz ), 7.15 (dd, J = 16.8, 8.2 Hz), 5.11 ( s , 1.15 ( s$) ;$ 13C NMR ( 101 MHz , DMSOD6) $\delta 163.35$ (s), 150.40 (s), 148.82 (s), 146.25 (s), 145.21 (s), 132.80 (s), 130.14 (s), 129.00 ( s), 128.21 ( s), 127.36 ( s), 126.82 (s), 126.54 (s), 125.53 (s), 123.29 ( s ), 122.33 ( s$), 120.41$ (d, J = 9.4 Hz ), 86.66 ( s$), 34.54$ ( s$), 31.64(\mathrm{~s})$.


6f: Yield: 83\%, ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO-D6) $\delta 10.87$ (s), 10.42 (s), 8.36 (d, J $=8.3 \mathrm{~Hz}), 7.87-7.76(\mathrm{~m}), 7.49(\mathrm{dt}, \mathrm{J}=16.6,7.7 \mathrm{~Hz}), 7.27-7.14(\mathrm{~m}), 6.92(\mathrm{~d}, \mathrm{~J}$ $=8.7 \mathrm{~Hz}), 6.77(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}), 4.69(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}), 3.72(\mathrm{~s}) ; 13 \mathrm{C}$ NMR ( 101 MHz, DMSO-D6) $\delta 170.63$ (s), 167.84 (s), 158.93 (s), 153.95 (s), 133.32 (s), 132.56 (s), 131.90 ( s$), 130.13$ (s), 128.66 (s), 126.65 (s), 126.14 (s), 123.10 ( s$)$, 122.76 ( s ), 122.18 (d, J = 9.4 Hz ), 114.70 ( s$), 55.81$ - 55.61 (m), 55.42 (d, J = 28.1 Hz ), 44.40 (s).

This compound was known. ${ }^{[7]}$


6g: Yield: 81\%, ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO-D6) $\delta 10.65$ (s), 9.96 (s), 9.01 (s), 7.90 (d, J = 8.5 Hz ), 7.82 (d, J = 8.1 Hz ), 7.61 (dd, $\mathrm{J}=11.3,4.0 \mathrm{~Hz}$ ), 7.48 (dd, J = $15.8,8.1 \mathrm{~Hz}), 7.31(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}), 6.95(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}), 6.72(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}), 6.62$ (dd, J = 8.3, 1.9 Hz ), 5.11 (s), 3.66 (s), $3.60(\mathrm{~s}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO-D6) $\delta 163.44$ (s), 150.41 (s), 148.92 (s), 147.78 (s), 146.16 (s), 141.08 ( s$), 132.79$ (s), 130.02 (s), 129.00 (s), 128.21 (s), 126.77 (s), 126.51 ( s), 123.20 (s), 122.34 (s), 120.45 (s), 119.73 (s), 112.50 (s), 112.10 (s), 86.72 (s), 56.04 (s).


6h: Yield: $91 \%$, ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO-D6) $\delta 10.68$ (s), 9.98 (s), 9.05 (s), 7.89 (d, J = 8.5 Hz ), $7.82(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$ ), $7.60(\mathrm{dd}, \mathrm{J}=8.3,1.1 \mathrm{~Hz}), 7.52-7.44$ (m), $7.27-7.20(\mathrm{~m}), 5.18(\mathrm{~s}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO-D6) $\delta 163.34(\mathrm{~s})$, 150.36 (s), 147.09 (s), 146.26 (s), 132.90 (s), 131.25 (s), 130.18 (s), 129.75 (s), 129.02 (s), 128.68 (s), 128.04 (s), 126.79 (d, J = 20.0 Hz ), 123.40 ( s$), 122.33$ (s), 120.50 (s), 119.58 (s), 86.23 (s).

This compound was known. ${ }^{[7]}$


6i: Yield: $90 \%$, ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-D6) $\delta 10.68$ (s), 9.98 (s), 9.04 (s), $7.89(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}), 7.82(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}), 7.62(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.52-7.43(\mathrm{~m})$, $7.35(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}), 7.25-7.17(\mathrm{~m}), 5.17(\mathrm{~s}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta$ 163.34 (s), 150.36 (s), 147.51 (s), 146.26 (s), 132.90 (s), 131.61 (s), 130.16 (s), 129.03 ( s ), 128.04 ( s$), 126.80(\mathrm{~d}, \mathrm{~J}=19.8 \mathrm{~Hz}), 123.41$ ( s$), 122.33$ (s), 120.50 ( s$),$ 119.76 (s), 119.50 (s), 86.17 (s).


6j: Yield: 92\%, ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-D6) $\delta 10.72$ (s), 10.03 (s), 9.14 (s), $8.05(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}), 7.91(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}), 7.82(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.55-7.43(\mathrm{~m})$, $7.23(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}), 5.36(\mathrm{~s}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta 163.33(\mathrm{~s})$, 155.32 ( s ), 150.35 ( s ), 146.44 ( s , 133.03 ( s$), 130.36$ ( s$), 129.14$ ( $\mathrm{d}, \mathrm{J}=18.4 \mathrm{~Hz}$ ), 127.93 ( s ), 126.94 ( $\mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}$ ), 124.11 ( s$), 123.56$ ( s$), 122.36$ ( s$), 120.57$ ( s$),$ 118.62 (s), 85.67 (s).

This compound was known. ${ }^{[7]}$


6k: Yield: 87\%, ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-D6) $\delta 10.73$ (s), 9.95 (s), 9.19 (s), 7.86 (dd, $\mathrm{J}=17.0,8.1 \mathrm{~Hz}$ ), $7.55(\mathrm{ddd}, \mathrm{J}=28.7,18.1,7.4 \mathrm{~Hz}), 7.02(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz})$, 5.67 (s); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta 163.17$ (s), 150.19 (s), 146.69 (s),
133.25 (s), 130.90 ( s ), 129.05 ( s$), 127.19$ (d, $\mathrm{J}=11.6 \mathrm{~Hz}$ ), 123.68 ( s$), 122.04(\mathrm{~s})$, 120.50 ( s , 115.35 ( s ), 82.57 ( s ), 31.18 ( s ).


9a: Yield: 95\%, ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 10.51$ ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.76 - 6.96 (m, 9H), 4.18 (dd, J = 6.7, 4.7 Hz, 1H), 3.01 (dd, J = 15.6, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.62(\mathrm{dd}, \mathrm{J}=$ $15.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.27 (s, 3H), 1.90 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO) $\delta$ 170.50 (s), 145.80 ( s ), 140.51 ( s$), 139.27$ ( s$), 138.51$ (s), 136.27 (s), 129.69 (d, J $=4.1 \mathrm{~Hz}), 127.21(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}), 123.11(\mathrm{~s}), 104.02(\mathrm{~s}), 34.05(\mathrm{~s}), 21.05(\mathrm{~s})$, 12.48 (s).

This compound was known. ${ }^{[8]}$


9b: Yield: 97\%, ${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, ~ D M S O\right) ~ \delta 10.52(\mathrm{~s}, 1 \mathrm{H}), 7.52$ (dd, J = 13.4, $7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 3.04$ (dd, J = 15.5, $7.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.64 (dd, J = 15.5, $2.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.93 (s, 3H), 1.27 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ( 101 MHz DMSO) $\delta 170.53$ (s), 149.47 (s), 145.79 (s), 140.50 (s), 139.21 (s), 138.54 (s), 129.66 (s), 127.06 (d, J = 21.8 Hz ), 126.91-126.67 (m), 125.90 ( s$), 123.13$ (s), 104.10 (s), 40.55 (d, J = 21.1 Hz ), 40.26 ( s$), 40.13$ (d, $\mathrm{J}=21.0 \mathrm{~Hz}$ ), 40.02 (s), 40.02 (s), 39.71 (d, J = 21.0 Hz ), 39.40 (s), $34.60(\mathrm{~s})$, 33.82 (s), 31.61 ( s , 12.49 ( s ).


9c: Yield: $95 \%$, ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 10.51$ (s, 1H), 7.51 (dt, J = 15.6, $7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, 2 H ), 4.18 (dd, J = 6.9, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.73 (s, 3H), 2.99 (dd, J = 15.6, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.63 (dd, J = 15.6, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO) $\delta$ 170.51 (s), 158.52 (s), 145.78 (s), 139.20 (s), 138.54 ( s), 135.37 (s), 129.66 (s), 128.41 (s), 127.15 (s), 123.10 (s), 114.54 (s), 104.24 (s), 55.51 (s), 33.67 (s), 12.50 (s).

This compound was known. ${ }^{[9]}$


9d: Yield: $86 \%$, white solid, ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO) $\delta 10.50(\mathrm{~s}, 1 \mathrm{H}), 7.51$ (dt, J = 15.6, 7.9 Hz, 4H), $7.35(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.66$ (dd, J = 8.2, 1.8 Hz, 1H), 4.23 - 4.12 (m, 1H), 3.73 (d, J = $3.9 \mathrm{~Hz}, 6 \mathrm{H}$ ), 2.97 (dd, $\mathrm{J}=15.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, \mathrm{J}=15.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 170.63$ (s), 149.37 (s), 148.14 (s), 145.80 (s), 139.20 (s), 138.55 (s), 135.85 (s), 129.67 (s), 127.13 (s), 123.05 (s), 119.11 (s), 112.42 (s), 111.49 (s), 104.22 ( s ), 55.97 ( s$), 34.17$ ( s ), 12.56 ( s$)$.

This compound was known. ${ }^{\text {[9] }}$


9e: Yield: 91\%, white solid, ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO) $\delta 10.56$ (s, 1H), $7.69-$ $6.99(\mathrm{~m}, 9 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{dd}, \mathrm{J}=15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, \mathrm{J}=15.7,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO) $\delta 170.31$ (s), 162.72 (s), 160.31 (s), 145.74 (s), 139.62 (s), 139.31 (s), 138.48 (s), 129.67 (s), 129.31 (d, J $=8.1 \mathrm{~Hz}$ ), 127.23 ( s$), 123.17$ ( s$), 115.99$ ( s , 115.78 ( s$), 103.78$ ( s$), 33.71(\mathrm{~s})$, 12.49 (s).

This compound was known. ${ }^{[8]}$


9f: Yield: $97 \%$, white solid, ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO) $\delta 10.57$ (s, 1H), $7.59-$ 7.21 (m, 9H), 4.27 (dd, J = 7.2, $4.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.04 (dd, J = 15.7, 7.3 Hz, 1H), 2.64 (dd, J = 15.7, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 170.21$ (s), 145.75 (s), 142.52 (s), 139.39 (s), 138.46 (s), 131.81 (s), 129.67 (s), 129.34 (s), 129.14 ( s ), 127.25 ( s$), 123.18$ ( s$), 103.41$ ( s$), 33.81$ (s), 12.51 (s).

This compound was known. ${ }^{[9]}$


9g: Yield: 96\%, white solid, ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 10.57(\mathrm{~s}, 1 \mathrm{H}), 7.61-$ $7.46(\mathrm{~m}, 6 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{dd}, \mathrm{J}=7.1$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, \mathrm{J}=15.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, \mathrm{J}=15.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.91$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO) $\delta 170.19$ (s), 145.76 (s), 142.96 (s), 139.40 (s), 138.46 (s), 132.06 (s), 129.70 (d, J = 4.9 Hz ), 127.26 (s), 123.18 (s), 120.29 (s), 103.33 (s), 33.86 (s), 12.51 ( s ).

This compound was known. ${ }^{\text {[9] }}$


9h: Yield: 95\%, white solid, ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 10.66$ (s, 1H), 8.22 (d, J = 8.6 Hz, 2H), $7.66-7.17(\mathrm{~m}, 7 \mathrm{H}), 4.46(\mathrm{dd}, \mathrm{J}=7.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}$, $\mathrm{J}=15.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, \mathrm{J}=15.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO) $\delta 169.90$ (s), 151.44 (s), 146.94 (s), 145.78 (s), 139.56 (s), 138.39 (s), 129.69 (s), 128.86 ( s$), 127.36$ ( s$), 124.46$ (s), 123.29 ( s$), 102.65$ ( s$), 34.29$ (s), 12.53 (s).

This compound was known. ${ }^{[9]}$


9i: Yield: $87 \%$, white solid, ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 10.66$ (s, 1H), $8.19-$ $8.06(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{dt}, \mathrm{J}=15.6,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{dt}, \mathrm{J}=15.6,7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.37$ (t, J = 7.2 Hz, 1H), 4.49 (dd, J = 7.1, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, \mathrm{J}=15.8,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.73 (dd, J = 15.8, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.91 ( $\mathrm{s}, 3 \mathrm{H}$ ). ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO) $\delta$ 170.00 (s), 148.56 ( s), 145.81 (d, J = 12.9 Hz ), 139.59 (s), 138.40 (s), 134.39 (s), 130.84 (s), 129.70 (s), 127.35 ( s ), 123.25 ( s ), 122.41 ( s$), 122.10$ (s), 102.85 (s), 34.03 (s), 12.56 (s).

This compound was known. ${ }^{[9]}$


9j: Yield: $63 \%$, white solid, ${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 10.69(\mathrm{~s}, 1 \mathrm{H}), 8.07-$ $7.93(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 2 \mathrm{H})$, $4.66(\mathrm{dd}, \mathrm{J}=7.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, \mathrm{J}=15.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, \mathrm{J}=15.9$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 169.70(\mathrm{~s}), 149.40(\mathrm{~s})$, 145.65 ( s ), 140.18 ( s , 138.36 ( s$), 136.78$ ( s$), 134.04$ ( s$), 129.72$ (d, J = 5.2 Hz), 128.94 (s), 127.40 (s), 124.99 (s), 123.35 (s), 102.29 (s), 30.04 (s), 12.26 (s).

This compound was known. ${ }^{[8]}$


9k: Yield: 91\%, white solid, ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 10.48$ (s, 1H), 9.30 $(\mathrm{s}, 1 \mathrm{H}), 7.51(\mathrm{dt}, \mathrm{J}=15.4,7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.20-4.05(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, \mathrm{J}=15.6,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.61(\mathrm{dd}, \mathrm{J}=15.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta$ 170.62 ( s$), 156.56$ ( s$), 145.80$ (s), 139.13 ( s$), 138.55$ ( s$), 133.58$ (s), 129.66 (s), 128.33 (s), 127.12 (s), 123.08 (s), 115.84 (s), 104.44 (s), 33.70 (s), 12.50 (s).


91: Yield: 88\%, white solid, ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO) $\delta 10.56$ (s), $7.91-7.78$ (m), 7.64 ( s ), $7.54(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}$ ), 7.46 (ddd, J = 5.8, 5.3, 2.5 Hz ), $7.41-7.29$ (m), 4.38 (dd, J = 7.0, 5.1 Hz ), $3.06(\mathrm{dd}, \mathrm{J}=15.8,7.3 \mathrm{~Hz}$ ), $2.73(\mathrm{dd}, \mathrm{J}=15.7,5.0$ Hz ), 1.85 (s). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 170.50$ (s), 145.98 ( s ), 141.11 ( s$)$, 139.54 ( s), 138.61 ( s), 133.56 ( s), 132.59 ( s), 129.76 (s), 129.03 ( s), 128.09 (d, J $=5.9 \mathrm{~Hz}), 127.29(\mathrm{~s}), 126.82(\mathrm{~s}), 126.23(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}), 125.61(\mathrm{~s}), 123.23(\mathrm{~s})$, 103.75 ( s ), 34.77 ( s ), 12.63 ( s ).


9m: Yield: 93\%, white solid, ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO) $\delta 10.55$ (s), 7.46 (dt, J $=15.4,7.8 \mathrm{~Hz}), 7.31(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 6.97-6.84(\mathrm{~m}), 4.48(\mathrm{dd}, \mathrm{J}=6.7,3.1 \mathrm{~Hz})$, 3.07 (dd, $\mathrm{J}=15.7,7.0 \mathrm{~Hz}$ ), $2.70\left(\mathrm{dd}, \mathrm{J}=15.7,3.2 \mathrm{~Hz}\right.$ ), $2.04(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO) $\delta 170.11$ (s), 147.83 (s), 145.65 (s), 139.07 (s), 138.50 (s), 129.75 (s), 127.69 (s), 127.34 (s), 124.99 (s), 124.40 (s), 123.23 (s), 104.49 (s), 44.04 (s), 29.81 (s), 12.42 (s).

This compound was known. ${ }^{[9]}$


9n: Yield: 87\%, white solid, ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO) $\delta 10.72$ (s, 1H), 7.66 7.26 (m, 5H), $4.87-4.51(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dd}, \mathrm{J}=16.9,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.66$ (dd, J = 16.9, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 169.44(\mathrm{~s})$, 145.80 ( s ), 139.60 ( s ), 138.21 ( s$), 129.69$ ( s$), 127.48$ ( s$), 123.57$ (s), 98.85 (s), 36.38 (s), 24.11 ( s ), 12.03 ( s ).

## 6. NMR spectra of isolated compounds.






${ }^{13} \mathrm{C}$ NMR spectra of 6a



$\begin{array}{ll}\hat{\circ} & \text { N } \\ \text { in } \\ \text { ir }\end{array}$
$\underset{i}{\text { N }} \underset{\text { N }}{\text { N }}$




${ }^{1} H$ NMR spectra of $\mathbf{6 c}$


${ }^{13} \mathbf{C}$ NMR spectra of $\mathbf{6 c}$

(

${ }^{1} H$ NMR spectra of $\mathbf{6 d}$




${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 e}$

${ }^{13} \mathrm{C}$ NMR spectra of $6 e$



${ }^{1} \mathrm{H}$ NMR spectra of $6 f$

${ }^{13} \mathrm{C}$ NMR spectra of $6 f$



${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 g}$

0
0
0

${ }^{13} \mathrm{C}$ NMR spectra of 6 g




${ }^{13} \mathrm{C}$ NMR spectra of 6 h


${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 i}$


${ }^{13} \mathrm{C}$ NMR spectra of $6 \mathbf{i}$


${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 j}$

## 


${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 j}$


${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 k}$

${ }^{13} \mathrm{C}$ NMR spectra of $6 \mathbf{k}$




${ }^{13} \mathrm{C}$ NMR spectra of 9 a


${ }^{1} \mathrm{H}$ NMR spectra of 9 b






${ }^{1} \mathbf{H}$ NMR spectra of 9 c


${ }^{13} \mathrm{C}$ NMR spectra of 9 c



${ }^{1} \mathrm{H}$ NMR spectra of 9d

$\stackrel{\stackrel{\rightharpoonup}{i n}}{\stackrel{\rightharpoonup}{7}} \stackrel{\stackrel{\rightharpoonup}{7}}{\stackrel{\rightharpoonup}{7}}$

$\begin{array}{llllllllllllllll}210 & 190 & 170 & 150 & 130 & 110 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{13}$ C NMR spectra of 9d



${ }^{1} \mathrm{H}$ NMR spectra of 9 e

$\underset{\sim}{\underset{\sim}{\sim}}$

${ }^{13} \mathrm{C}$ NMR spectra of 9 e


${ }^{1} \mathrm{H}$ NMR spectra of 9 f

##  <br> $\begin{array}{ll}\bar{m} & \vec{m} \\ \stackrel{n}{i}\end{array}$


${ }^{13} \mathrm{C}$ NMR spectra of 9 f


${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{9 g}$

$\stackrel{\stackrel{n}{\infty}}{\stackrel{n}{n}}$

${ }^{13} \mathbf{C}$ NMR spectra of $\mathbf{9 g}$


${ }^{1} \mathrm{H}$ NMR spectra of 9 h





${ }^{13}$ C NMR spectra of 9 i



${ }^{\mathbf{1}} \mathbf{H}$ NMR spectra of $\mathbf{9 j}$

$\begin{array}{ll} \pm & \text { N } \\ \text { O. } \\ \text { - } \\ 1 & \text { I }\end{array}$

${ }^{13}$ C NMR spectra of $\mathbf{9 j}$




${ }^{13} \mathbf{C}$ NMR spectra of $\mathbf{9 k}$







## ${ }^{13} \mathrm{C}$ NMR spectra of 91



${ }^{1} \mathrm{H}$ NMR spectra of 9 m






${ }^{1} \mathrm{H}$ NMR spectra of 9 n


$\begin{array}{llllllllllllllll}210 & 190 & 170 & 150 & 130 & 110 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{13}$ C NMR spectra of $\mathbf{9 n}$

## 7. Reference

[1] Q. Xu, S. Yuan, L. Zhu, J. Hao, Y. Wei, Synthesis of novel bis(Triol)-functionalized Anderson clusters serving as potential synthons for forming organic-inorganic hybrid chains, Chem Commun (Camb), 53 (2017) 5283-5286.
[2] G.M. Sheldrick, A short history of SHELX, Acta Crystallographica a-Foundation and Advances, 64 (2008) 112-122.
[3] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, Journal of Applied Crystallography, 42 (2009) 339-341.
[4] A. Macdonell, N.A. Johnson, A.J. Surman, L. Cronin, Configurable Nanosized Metal Oxide Oligomers via Precise "Click" Coupling Control of Hybrid Polyoxometalates, J Am Chem Soc, 137 (2015) 56625665.
[5] M. Arefian, M. Mirzaei, H. Eshtiagh-Hosseini, Structural insights into two inorganic-organic hybrids based on chiral amino acids and polyoxomolybdates, Journal of Molecular Structure, 1156 (2018) 550558.
[6] G.S. Nongthombam, G.K. Kharmawlong, J.E. Kumar, R. Nongkhlaw, UV365 light promoted catalystfree synthesis of pyrimido[4,5-b]quinoline-2,4-diones in aqueous-glycerol medium, New Journal of Chemistry, 42 (2018) 9436-9442.
[7] H.Y. Guo, Y. Yu, One-pot synthesis of 7-aryl-11,12-dihydrobenzo[h]pyrimido-[4,5-b]quinoline-8,10 (7H,9H)-diones via three-component reaction in ionic liquid, Chinese Chemical Letters, 21 (2010) 1435-1438.
[8] X. Zhang, D. Li, X. Fan, X. Wang, X. Li, G. Qu, J. Wang, lonic liquid-promoted multi-component reaction: novel and efficient preparation of pyrazolo[3,4-b]pyridinone, pyrazolo[3,4-b]-quinolinone and their hybrids with pyrimidine nucleoside, Mol Divers, 14 (2010) 159-167.
[9] C.-L. Shi, H. Chen, D.-Q. Shi, An Efficient One-Pot Synthesis of Pyrazolo 3,4-b pyridinone Derivatives Catalyzed by L-Proline, Journal of Heterocyclic Chemistry, 48 (2011) 351-354.

