Carbonatation of [ethylene - glycidyl methacrylate]-based copolymers with carbon dioxide as reagent: from batch to solvent-free reactive extrusion

Bruno Guerdener, a,b,c Virgile Ayzac, a Sébastien Norsic, a Paul Besognet, c Véronique Bounor-Legaré, b, Véronique Monteil, a, Vincent Monteil, a, Véronique Dufaud, a, Jean Raynaud, a, Yvan Chalamet, c

a Univ. Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bd du 11 novembre 1918, Université Claude Bernard Lyon 1, CPE Lyon, F-69616 VILLEURBANNE, France.
vincent.monteil@univ-lyon1.fr ; veronique.dufaud@univ-lyon1.fr ; jean.raynaud@univ-lyon1.fr

b Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-69622 VILLEURBANNE, France.
veronique.bounor-legare@univ-lyon1.fr

c Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-42023 SAINT-ETIENNE cedex 2, France.
yvan.chalamet@univ-st-etienne.fr

Supporting Information
Table of contents

1. Catalytic cycles for the carbonatation of epoxides.................................................................3
2. Structure and mains properties of the commercial polymers ..................................................5
3. Characterization of glycidyl methacrylate and the commercial polymers ..............................6
   a. $^1$H NMR spectra..............................................................................................................6
   b. $^{13}$C NMR spectrum ......................................................................................................10
   c. ATR-IR spectra ..............................................................................................................11
   d. SEC analyses...............................................................................................................14
   e. DSC analyses...............................................................................................................17
   f. TGA ............................................................................................................................18
   g. Rheology analysis ......................................................................................................19
4. Establishment of the calibration curve to determine the cyclic carbonate yield .......................20
5. Repeatability of the experiments ..........................................................................................23
6. Characterization of the modified polymers with CO$_2$ in batch ..........................................24
   a. $^1$H NMR spectra...........................................................................................................24
   b. $^{13}$C NMR spectrum ....................................................................................................27
   c. ATR-IR spectra ............................................................................................................30
   d. SEC analyses...............................................................................................................42
   e. DSC analyses...............................................................................................................45
   f. TGA ............................................................................................................................46
   g. Rheology analysis ......................................................................................................47
7. Characterization of the modified polymers with CO$_2$ in extruder ........................................48
   a. Presentation of the reactive-extrusion process ................................................................48
   b. $^1$H NMR spectra...........................................................................................................49
   c. ATR-IR spectra............................................................................................................52
   d. SEC analyses...............................................................................................................60
   e. DSC analyses...............................................................................................................63
8. Summary table of SEC and DSC analyses .............................................................................64
9. TGA of the catalysts ...........................................................................................................65
10. References .......................................................................................................................67
1. Catalytic cycles for the carbonatation of epoxides

There are two routes for the carbonatation of epoxides with CO$_2$. The first one starts with the ring-opening of the epoxide by a nucleophilic catalyst derived essentially from halide anions of a Lewis-acidic cation (e.g. quaternary ammonium salts). A selected Lewis (designed metal-based complexes) or Brønsted acid (hydrogen bond organic donor) activator A$^+$ could be used to synergistically activate the epoxide and stabilize the different intermediates (see Scheme S1).

The second route starts with the activation of CO$_2$ by steric hindered bases such as 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) and/or nucleophiles presenting a delocalized negative charge such as BF$_4^-$ or PF$_6^-$ (see Scheme S2). Bifunctional catalysts bearing both nucleophilic and acidic functionalities have also been developed, promoting hybrid mechanisms.

In the first route, the nucleophile attacks the less hindered carbon atom of the epoxide 1, to form the alkoxide anion 2 (Scheme S1, step a), which subsequently activates the CO$_2$ molecule to form the corresponding linear carbonate 3 (Scheme S1, step b). Finally, the cyclic carbonate 4 is formed by an intramolecular ring-closure, leading to the regeneration of the halide based catalyst (Scheme S1, step c).

In the second route, CO$_2$ is first activated by the catalyst, leading to the formation of the carboxylate intermediate 5 (Scheme S2, step a'). The less hindered carbon atom of the epoxide is then attacked by the carboxylate (Scheme S2, step b') and an intramolecular ring-closure forms the cyclic carbonate 4 and regenerates the catalyst (Scheme S2, step c').

![Scheme S1](image-url)

**Scheme S1.** First route for the cycloaddition of CO$_2$ with epoxides.
Scheme S2. Second route for the cycloaddition of CO$_2$ with epoxides.
2. Structure and main properties of the commercial polymers

Scheme S3. Structure and main properties of Lotader® AX8900, AX8700 and AX8840.
3. Characterization of glycidyl methacrylate and the commercial polymers

a. $^1$H NMR spectra

Figure S1. $^1$H NMR (TCE/C$_6$D$_6$, 400 MHz) spectrum of glycidyl methacrylate (GMA).

$^1$H NMR (400 MHz, TCE/C$_6$D$_6$) $\delta$: 5.99 (m, 1H, d''), 5.35 (m, 1H, d''), 4.18 (dd, $J = 12.2$, 3.6 Hz, 1H, f''), 3.87 (dd, $J = 12.2$, 5.6 Hz, 1H, f''), 2.99 – 2.87 (m, 1H, g''), 2.48 (dd, $J = 5.3$, 4.0 Hz, 1H, h''), 2.33 (dd, $J = 5.3$, 2.5 Hz, 1H, h''), 1.82 (dd, $J = 1.6$, 1.0 Hz, 3H, e'').
Figure S2. $^1$H NMR (TCE/C$_6$D$_6$, 400 MHz) spectrum of the Lotader® AX8900.

$^1$H NMR (400 MHz, TCE/C$_6$D$_6$) δ: 4.14 (dd, J = 12.0, 3.7 Hz, f), 3.80 (dd, J = 12.1, 5.6 Hz, f), 3.49 (s, i), 2.90 (m, g), 2.46 (m, h), 2.41 – 2.19 (m, b, h), 1.82 – 0.49 (m, a, c, d, e).

*: chain ends due to the radical copolymerization (termination by disproportionation) method used to synthesize these ethylene-rich copolymers$^{28}$; almost no residual GMA monomer is present (see minute amounts identified under arrows and correspondence with Figure S1)
Figure S3. $^1$H NMR (TCE/C$_6$D$_6$, 400 MHz) spectrum of the Lotader® AX8700.

$^1$H NMR (400 MHz, TCE/C$_6$D$_6$) $\delta$ : 4.13 (dd, $J$ = 11.4, 2.9 Hz, f), 3.99 (t, $J$ = 6.6 Hz, i), 3.79 (dd, $J$ = 12.1, 5.6 Hz, f), 3.48 (s, 3H, methyl acrylate), 2.90 (m, g), 2.46 (m, h), 2.41 – 2.18 (m, b, h), 1.87 – 0.54 (m, a, c, d, e, j, k, l).
**Figure S4.** $^1$H NMR (TCE/$C_6D_6$, 400 MHz) spectrum of the Lotader® AX8840.

$^1$H NMR (400 MHz, TCE/$C_6D_6$) $\delta$: 4.13 (dd, $J = 12.1$, 3.7 Hz, f), 3.79 (dd, $J = 12.1$, 5.6 Hz, f), 3.01 – 2.83 (m, g), 2.45 (dd, $J = 5.1$, 4.1 Hz, h), 2.30 (dd, $J = 5.3$, 2.4 Hz, h), 1.87 – 0.37 (m, c, d, e).
b. $^{13}$C NMR spectrum

Figure S5. $^{13}$C NMR (101 MHz, TCE/C$_6$D$_6$) spectrum of the Lotader® AX8900.
$^{13}$C NMR (101 MHz, TCE/C$_6$D$_6$) δ: 175.60 (C=O), 64.92 (f), 50.79 (i), 49.24 (g), 46.00 (b), 44.40 (h), 41.27 – 18.04 (a, c, d, e, j), 14.20 (CH$_3$).

c. ATR-IR spectra

![ATR-IR spectrum of Lotader® AX8900.](image)

**Figure S6.** ATR-IR spectrum of Lotader® AX8900.
Figure S7. ATR-IR spectrum of Lotader® AX8700.
Figure S8. ATR-IR spectrum of the Lotader® AX8840.
d. SEC analyses

Figure S9. Molar mass distribution of the Lotader® AX8900.

<table>
<thead>
<tr>
<th>$M_n$</th>
<th>$M_w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 600</td>
<td>101 300</td>
</tr>
</tbody>
</table>
**Figure S10.** Molar mass distribution of the Lotader® AX8700.

<table>
<thead>
<tr>
<th>$M_n$</th>
<th>$M_w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 500</td>
<td>145 000</td>
</tr>
</tbody>
</table>
Figure S11. Molar mass distribution of the Lotader® AX8840.
e. **DSC analyses**

On the following DSC curves, the glass transition and the melting endotherm of the polymers overlap. Thus, the baseline for the integration of the melting endothermic event is a tangential right line to take into account the change of baseline induced by the glass transition (common practice for DSC of polymers with overlapping thermal events).

**Figure S12.** DSC analysis of the Lotader® AX8900.

**Figure S13.** DSC analysis of the Lotader® AX8700.
Figure S14. DSC analysis of the Lotader® AX8840.

f. TGA

Figure S15. TGA analysis of the Lotader® AX8900.
g. Rheology analysis

**Figure S16.** Rheology analysis at 150 °C of the Lotader® AX8900.
4. Establishment of the calibration curve to determine the cyclic carbonate yield

The reaction with TBAB using the Lotader® AX8900 described in Figure 3 was followed by ¹H NMR and ATR-IR (Figure S17). The cyclic carbonate yield determined by ¹H NMR was correlate to the ratio C=O cyclic carbonate band area (1820 cm⁻¹) / C=O ester band area (1734 cm⁻¹) calculated by ATR-IR. As shown in Table S1, for each reaction time, three samples were analyzed by ATR-IR to confirm the homogeneity of the modified polymer, allowing the calculation of an average ratio based on these three different analyses. The linear correlation between the cyclic carbonate yield and the average ratio is shown on Figure S18. All the cyclic carbonate yields for the modification of the Lotader® AX8900 were determined using this calibration curve.
Figure S17. Reaction with TBAB in batch followed by $^1$H NMR (TCE/C$_6$D$_6$, 400MHz) and ATR-IR. Conditions: 2.0 g of Lotader® AX8900 (1.1 mmol of glycidyl methacrylate), 18 mg of TBAB (0.057 mmol, 5 mol%), 2.0 mL of toluene, 110 °C, 4.0 MPa of CO$_2$. 
Table S1. Calculation of the ratio cyclic carbonate C=O band area (1820 cm\(^{-1}\)) / ester C=O band area (1734 cm\(^{-1}\)) for the reaction with the Lotader\textsuperscript{®} AX8900 using TBAB as catalyst

<table>
<thead>
<tr>
<th>Reaction time (min)</th>
<th>Cyclic carbonate C=O area</th>
<th>Ester C=O area</th>
<th>Ratio cyclic carbonate C=O area / ester C=O area</th>
<th>Ratio average</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.433</td>
<td>6.200</td>
<td>0.0698</td>
<td>0.0702</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>0.427</td>
<td>6.053</td>
<td>0.0705</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.428</td>
<td>6.084</td>
<td>0.0703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.680</td>
<td>6.138</td>
<td>0.1108</td>
<td>0.1172</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>0.720</td>
<td>5.933</td>
<td>0.1213</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.733</td>
<td>6.140</td>
<td>0.1194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.999</td>
<td>5.991</td>
<td>0.1668</td>
<td>0.1638</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>1.074</td>
<td>6.343</td>
<td>0.1693</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.908</td>
<td>5.848</td>
<td>0.1553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1.727</td>
<td>6.423</td>
<td>0.2689</td>
<td>0.2682</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>1.742</td>
<td>6.406</td>
<td>0.2719</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.647</td>
<td>6.241</td>
<td>0.2639</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>2.059</td>
<td>6.174</td>
<td>0.3335</td>
<td>0.3359</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>2.013</td>
<td>6.025</td>
<td>0.3341</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.089</td>
<td>6.145</td>
<td>0.3400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conditions: 2.0 g of Lotader\textsuperscript{®} AX8900 (1.1 mmol of glycidyl methacrylate), 18 mg of TBAB (0.057 mmol, 5 mol%), 2.0 mL of toluene, 110 °C, 4.0 MPa of CO\(_2\).

Figure S18. Calibration curve for the calculation of the cyclic carbonate yield with Lotader\textsuperscript{®} AX8900 established from Table S1.
5. Repeatability of the experiments

**Figure S19.** Repeated experiments for the reactions with TBAB
6. Characterization of the modified polymers with CO$_2$ in batch

a. $^1$H NMR spectra

Figure S20. $^1$H NMR (TCE/C$_6$D$_6$, 400 MHz) spectrum of the modified Lotader® AX8900 with CO$_2$ in batch.

$^1$H NMR (400 MHz, TCE/C$_6$D$_6$) $\delta$: 4.25 (m, g’), 4.07 – 3.70 (m, f’, h’), 3.48 (s, i), 2.38 – 2.21 (m, b), 1.84 – 0.33 (m, a, c’, d’, e’).
Figure S21. $^1$H NMR (TCE/C$_6$D$_6$, 400 MHz) spectrum of the modified Lotader® AX8700 with CO$_2$ in batch.

$^1$H NMR (400 MHz, TCE/C$_6$D$_6$) δ: 4.24 (m, g’), 4.14 (dd, J = 11.4, 2.9 Hz, f), 4.09 – 3.69 (m, f, f’, h’, i), 3.48 (methyl acrylate), 2.89 (m, g), 2.53 – 2.21 (m, h, b), 1.88 – 0.37 (m, a, c, d, d’, e, e’, j, k, l).

Yield of cyclic carbonate $= \frac{S_{g'}}{S_g + S_{g'}} = \frac{4.52}{4.52 + 1.00} = 82\%$
Figure S22. $^1$H NMR (TCE/C$_6$D$_6$, 400 MHz) spectrum of the Lotader® AX8840 modified with CO$_2$ in batch.

$^1$H NMR (400 MHz, TCE/C$_6$D$_6$) δ: 4.51 – 3.66 (m, g’, f, f’, h’), 2.90 (m, g), 2.45 (dd, J = 5.1, 4.1 Hz, h), 2.30 (dd, J = 5.3, 2.4 Hz, h), 1.87 – 0.45 (m, c, d, d’, e, e’).

$\text{Yield of cyclic carbonate} = \frac{S_f + S_g + S_h}{S_f + S_g + S_h + S_f + S_g + S_h} = \frac{11.95 - 1.17 \times 2}{1.00 + 1.10 + 1.40 + 11.95} = 62\%$
27

b. $^{13}$C NMR spectrum

**Figure S23.** $^{13}$C NMR (101 MHz, TCE/C$_6$D$_6$) spectrum of the Lotader® AX8900 modified with CO$_2$ in batch.
$^{13}$C NMR (101 MHz, TCE/C$_6$D$_6$) δ: 175.60 (C=O), 120.91 (TCE), 73.58 (g'), 65.79 – 63.33 (f', h'), 50.80 (i), 46.01 (b), 39.85 – 20.46 (a, c, d', e', j'), 14.35-14.03 (CH$_3$).
Figure S24. CP/MAS $^{13}$C NMR (126 MHz) spectrum of the Lotader® AX8900 modified with CO$_2$ and catalyzed by TBAC in batch.
CP/MAS $^{13}$C NMR (126 MHz) $\delta$ 175.97 (C=O), 74.25 (g'), 70.65 (ether linkages), 69.19 – 62.61 (f, f', h'), 51.17 (i), 49.38 (g), 45.90 (b), 41.59 – 18.59 (a, c, d, d', e, e', j, j'), 14.60 (CH$_3$).

c. ATR-IR spectra

![ATR-IR spectra](image)

**Figure S25.** ATR-IR spectra of the Lotader® AX8900 modified with CO$_2$ (catalyst (5 mol%), 110°C, 4 MPa, toluene, 5 h) using different catalysts in batch.
Figure S26. ATR-IR spectra of the Lotader® AX8900 modified with CO₂ (catalyst (5 mol%), 110°C, 4 MPa, toluene, 5 h) using different alkylammonium bromides in batch.
Figure S27. ATR-IR spectra of the Lotader® AX8900 modified with CO₂ (TBAI (5 mol%), 110°C, 4 MPa, toluene) for different reaction times in batch.
Figure S28. ATR-IR spectra of the Lotader® AX8900 modified with CO₂ (TBAC (5 mol%), 110°C, 4 MPa, toluene) for different reaction times in batch.
Figure S29. ATR-IR spectra of the Lotader® AX8900 modified with CO₂ (110°C, 4 MPa, toluene, 1 h) with different amounts of TBAI in batch.
Figure S30. ATR-IR spectra of the Lotader® AX8900 modified with CO$_2$ (TBAI (5 mol%), 110°C, toluene, 1 h) under different pressures of CO$_2$ in batch.
Figure S31. ATR-IR spectra of the Lotader® AX8900 modified with CO2 (TBAI (5 mol%), 4 MPa, toluene) at different temperatures for a reaction time of 1 h in batch.
Figure S32. ATR-IR spectra of the Lotader® AX8900 modified with CO$_2$ (TBAI (5 mol%), 4 MPa, toluene) at different temperatures for a reaction time of 5 h in batch.
Figure S33. ATR-IR spectra of three different samples of the Lotader® AX8900 modified with CO$_2$ under-solvent free conditions (TBAB (5 mol%), 4 MPa of CO$_2$, 110 °C, 5 h). The calculated yields of sample 1, 2 and 3 are 3, 52 and 67% respectively. This experiment showcases a very heterogeneous reaction medium due to inefficient mixing of the molten polymer+catalyst under these conditions. CO$_2$ reactivity is thus very inhomogeneous, likely due to some dead volumes, or unreactive pockets, within the batch reactor.
Photo S1. Open Batch reactor after a reaction in the absence of solvent (toluene): observation of “pop-corning” of pellets (after decompression of CO$_2$) and inhomogeneous reaction medium after carbonatation reaction.
Figure S34. ATR-IR spectrum of the Lotader® AX8700 modified with CO₂ in batch.
Figure S35. ATR-IR spectrum of the Lotader® AX8840 modified with CO$_2$ in batch.
d. SEC analyses

**Figure S36.** SEC analysis of the Lotader® AX8900 modified with CO$_2$ in batch.

<table>
<thead>
<tr>
<th>$M_n$</th>
<th>$M_w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 400</td>
<td>105 800</td>
</tr>
</tbody>
</table>
Figure S37. SEC analysis of the Lotader® AX8700 modified with CO$_2$ in batch.
Figure S38. SEC analysis of the Lotader® AX8840 modified with CO$_2$ in batch.

<table>
<thead>
<tr>
<th>$M_n$</th>
<th>$M_w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 800</td>
<td>40 500</td>
</tr>
</tbody>
</table>
e. DSC analyses

**Figure S39.** DSC analysis of the Lotader® AX8900 modified with CO₂ in batch.

**Figure S40.** DSC analysis of the Lotader® AX8700 modified with CO₂ in batch.
**Figure S41.** DSC analysis of the Lotader® AX8840 modified with CO$_2$ in batch.

**Figure S42.** TGA analysis of the Lotader® AX8900 modified with CO$_2$ in batch.
Figure S43. Rheology analysis at 150 °C of the Lotader® AX8900 modified with CO₂ in batch.
7. Characterization of the modified polymers with CO$_2$ in extruder

a. Presentation of the reactive-extrusion process

![Scheme S4. Flowchart of the reactive extruder. The exact twin-screw profile is not disclosed due to IP issues.](image)

Photo S2. Reactive Extruder with carbonated Lotader® extruding from the die.
b. ¹H NMR spectra

![Figure S44. ¹H NMR (TCE/C₆D₆, 400 MHz) spectrum of the modified Lotader® AX8900 with CO₂ in extruder.](image)

¹H NMR (400 MHz, TCE/C₆D₆) δ: 4.28 (m, g’), 4.14 (dd, J = 11.4, 2.9 Hz, f), 4.09 – 3.72 (m, f, f’, h’), 3.48 (s, i) 2.90 (m, g), 2.53 – 2.21 (m, h, b), 1.88 – 0.42 (m, a, c, d, d’, e, e’, j, k, l).

\[
\text{Yield of cyclic carbonate} = \frac{(S_f + S_{f’} + S_h)/5}{S_g + (S_f + S_{f’} + S_h)/5} = \frac{(14.74 - 2.00)/5}{(14.74 - 2)/5 + 1.00} = 72 \%
\]

Repeated experiment : 74%
Figure S45. $^1$H NMR (TCE/C$_6$D$_6$, 400 MHz) spectrum of the modified Lotader® AX8700 with CO$_2$ in extruder.

$^1$H NMR (400 MHz, TCE/C$_6$D$_6$) $\delta$: 4.26 (m, g'), 4.14 (dd, $J = 11.4, 2.9$ Hz, f), 4.09 – 3.69 (m, f, f', h', i), 3.48 (methyl acrylate), 2.90 (m, g), 2.53 – 2.21 (m, h, b), 1.88 – 0.37 (m, a, c, d, d', e, e', j, k, l).

Yield of cyclic carbonate $= \frac{S'_{g'}}{S_g + S'_{g'}} = \frac{0.87}{0.87 + 1.00} = 47\%$
Figure S46. $^1$H NMR (TCE/C$_6$D$_6$, 400 MHz) spectrum of the modified Lotader® AX8840 with CO$_2$ in extruder.

$^1$H NMR (400 MHz, TCE/C$_6$D$_6$) $\delta$: 4.38 – 3.61 (m, f, f’, g’, h’), 2.90 (m, g), 2.45 (dd, $J$ = 5.1, 4.1 Hz, h), 2.30 (dd, $J$ = 5.3, 2.4 Hz, h), 1.88 – 0.29 (m, c, d, d’, e, e’).

$\text{Yield of cyclic carbonate} = \frac{S_f + S_g + S_h}{S_f + S_g + S_h + S_f' + S_g' + S_h'} \times 100\% = \frac{2.70 - 2 \times 1.00 + 2.09}{2.70 + 1.00 + 2.09} = 12\%$
c. ATR-IR spectra

Figure S47. ATR-IR spectra of the Lotader® AX8900 modified with CO$_2$ (TBAB (5 mol%), 120 °C, 150 rpm, 2.0 kg/h) under different pressures of CO$_2$ in extruder.
Figure S48. ATR-IR spectra of the Lotader® AX8900 modified with CO\(_2\) (TBAB (5 mol%), 130 °C, 150 rpm, 2.0 kg/h) under different pressures of CO\(_2\) in extruder.
Figure S49. ATR-IR spectra of the Lotader® AX8900 modified with CO₂ (TBAB (5 mol%), 140 °C, 150 rpm, 2.0 kg/h) under different pressures of CO₂ in extruder.
Figure S50. ATR-IR spectra of the Lotader® AX8900 modified with CO₂ (TBAB (5 mol%), 150 °C, 150 rpm, 2.0 kg/h) under different pressures of CO₂ in extruder.
Figure S51. ATR-IR spectra of the Lotader® AX8900 modified with CO₂ (TBAB, 150 °C, 4 MPa of CO₂, 150 rpm, 2.0 kg/h) with different amounts of TBAB in extruder.
**Figure S52.** ATR-IR spectra of the Lotader® AX8900 modified with CO₂ (catalyst (7.5 mol%), 150 °C, 4 MPa of CO₂, 150 rpm, 2.0 kg/h) with different amounts of TBAB in extruder.
Figure S53. ATR-IR spectrum of the Lotader® AX8700 modified with CO$_2$ in extruder.
Figure S54. ATR-IR spectrum of the Lotader® AX8840 modified with CO$_2$ in extruder.
d. SEC analyses

Figure S55. SEC analysis of the Lotader® AX8900 modified with CO₂ in extruder.

|   |  
|---|---|
| $M_n$ | $M_w$ |
| 16 300 | 85 900 |
Figure S56. SEC analysis of the Lotader® AX8700 modified with CO₂ in extruder.
Figure S57. SEC analysis of the Lotader® AX8840 modified with CO₂ in extruder.

<table>
<thead>
<tr>
<th>$M_d$</th>
<th>$M_w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>13500</td>
<td>81200</td>
</tr>
</tbody>
</table>
e. DSC analyses

**Figure S58.** DSC analysis of the Lotader® AX8900 modified with CO₂ in extruder.

**Figure S59.** DSC analysis of the Lotader® AX8700 modified with CO₂ in extruder.
Figure S60. DSC analysis of the Lotader® AX8840 modified with CO₂ in extruder.

8. Summary table of SEC and DSC analyses

Table S2. SEC and DSC analyses of the different Lotader® grades

<table>
<thead>
<tr>
<th>Entry</th>
<th>polymer</th>
<th>Sample</th>
<th>Mₙ (g/mol)</th>
<th>Mₓ (g/mol)</th>
<th>D</th>
<th>Tₘ (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AX8900</td>
<td>1</td>
<td>16 600</td>
<td>101 300</td>
<td>6.1</td>
<td>62</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>16 900</td>
<td>84 500</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AX8900 modified in batch</td>
<td>1</td>
<td>14 400</td>
<td>105 800</td>
<td>7.3</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2</td>
<td>9 600</td>
<td>48 800</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AX8900 modified in extruder</td>
<td>1</td>
<td>16 300</td>
<td>85 900</td>
<td>5.3</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2</td>
<td>12 400</td>
<td>87 700</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AX8700</td>
<td>1</td>
<td>18 500</td>
<td>145 000</td>
<td>7.8</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2</td>
<td>16 100</td>
<td>111 500</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>AX8700 modified in batch</td>
<td>1</td>
<td>14 300</td>
<td>101 500</td>
<td>7.1</td>
<td>66</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2</td>
<td>10 100</td>
<td>54 800</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>AX8700 modified in extruder</td>
<td>1</td>
<td>18 800</td>
<td>133 700</td>
<td>7.1</td>
<td>66</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2</td>
<td>11 700</td>
<td>113 600</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>AX8840</td>
<td>1</td>
<td>17 100</td>
<td>55 500</td>
<td>3.2</td>
<td>105</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>2</td>
<td>16 500</td>
<td>76 600</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>AX8840 modified in batch</td>
<td>1</td>
<td>10 800</td>
<td>40 500</td>
<td>3.8</td>
<td>107</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>2</td>
<td>12 300</td>
<td>100 900</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>AX8840 modified in extruder</td>
<td>1</td>
<td>13 500</td>
<td>81 200</td>
<td>6.0</td>
<td>105</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>2</td>
<td>15 300</td>
<td>106 400</td>
<td>7.0</td>
<td></td>
</tr>
</tbody>
</table>

High values of dispersities D are common for LDPE and LDPE-based copolymers synthesized using high temperatures (typically >200°C) and high pressures (>1500 bar, up to 3000 bar): see for instance Ref [29]. Some variations in Mₓ can be observed even in the native Lotader® grades, from sample to sample, and some chain scissions/radical coupling can occur due to prolonged shear stress, in particular in the batch processes with extensive mechanical stirring, albeit to a very reasonable extent.
9. TGA of the catalysts

Figure S61. TGA of TBAI.

Figure S62. TGA of TBAB.
Figure S63. TGA of TBAC.
10. References