Supporting Information

Electrochemical enabled cascaded cyclization of enaminones with thiocyanate and alcohols access to 2-

alkoxythiazoles

Dandan Li,*^a Long Chen,^a Yang Jin,^a Xiaochen Wang,^a Long Liu,^a Yilin Li,^a Gongyuan Chen,^a Guanhao Wu,^a Yujie Qin,^a Leilei Yang,^a Mengke Wang,^a Lulu Zhao,^b Zhihong Xu,^a Jiangwei Wen*^b

^a Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, Henan, P. R. China.

^bKey Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.

Contents

1.	General informationS2	
2.	Experimental procedure	
3.	Detail descriptions for products	\$
4.	References	5
5.	Copies of product NMR spectraS16	5
6.	Crystallography Data	7

1. General information

All glassware was oven dried at 110 °C for hours and cooled down under vacuum. The instrument for electrolysis was dual display potentiostat (DJS-292B) (made in China). Cyclic voltammograms were obtained on a CHI 605E potentiostat. All undivided cells were purchased from Jiehengda[®] limited liability company (https://www.whjiehengda.com). All the electrode clamps were purchased from Gaoss Uinon[®] (https://gaossunion.cn.made-in-china.com). The anodic electrode was graphite rod (ϕ 6 mm) and cathodic electrode was platinum plate (15 mm×15 mm×0.2 mm). Enamines were synthesized according to literature procedures.^{1,2} Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 silica gel or neutral alumina in petroleum (bp. 60-90 °C). ¹H and ¹³C NMR data were recorded with Bruker Advance III (400 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. All chemical shifts are reported relative to tetramethylsilane and d-solvent peaks (0 ppm for ¹H, 77.00 ppm for ¹³C) or DMSO-d6 (2.50 ppm for ¹H, 39.6 ppm for ¹³C), respectively. High-resolution mass spectra (HRMS) were measured with ESI in positive mode.

2. Experimental procedure

General procedure for the synthesis of 2-alkoxythiazoles via three-component cascade reaction in one pot: In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, enaminones (0.3 mmol), potassium thiocyanate (87.5 mg, 0.9 mmol), LiClO₄ (127.7 mg, 1.2 mmol) and DCE/CH₃OH (10 mL, v/v = 9.5/0.5) were combined and added. The flask was equipped with graphite rod (ϕ 6 mm) as anode and Pt plate electrodes (15 mm×15 mm×0.2 mm) as cathode. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under N₂ atmosphere at room temperature for 6 h. When the reaction was finished, the solvent was removed with a rotary evaporator. The pure product was obtained by flash chromatography on silica gel using petroleum ether and ethyl acetate as the eluent.

General procedure for cyclic voltammetry (CV): Cyclic voltammetry was performed in a three electrode cell connected to a schlenk line under nitrogen at room temperature. The working electrode was a glassy carbon electrode, the counter electrode a platinum wire. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution, **1a** (2.5 mM), and KSCN (7.5 mM), DCE/CH₃OH (10 mL, v/v = 9.5/0.5) containing 0.01 M LiClO₄ were poured into the electrochemical cell in all experiments. The scan rate is 0.05 V/s, ranging from 0 V to 2.5 V. The peak potentials vs. Ag/AgCl for used. An obvious oxidation peak of **1a** was observed at 1.76 V. The oxidation peak of KSCN could also be observed at 1.15 V.

Figure S1. Cyclic voltammetry experiments

Preliminary mechanistic studies.

(1) Deuteration experiments

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, enaminones (52.6 mg, 0.3 mmol), potassium thiocyanate (87.5 mg, 0.9 mmol), LiClO₄ (127.7 mg, 1.2 mmol) and DCE/CD₃OD (10 mL, v/v = 9.5/0.5) were combined and added. The flask was equipped with graphite rod (ϕ = 6 mm) as anode and Pt plate electrodes (15 mm×15 mm×0.2 mm) as cathode. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under N₂ atmosphere at room temperature for 6 h. When the reaction was finished, the solvent was removed with a rotary evaporator. The product **1b-D** was isolated in 38% yield by flash chromatography on silica gel using petroleum ether and ethyl acetate as the eluent. (2) Intermediate verification experiments

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, enaminones (52.6 mg, 0.3 mmol), potassium thiocyanate (87.5 mg, 0.9 mmol), LiClO₄ (127.7 mg, 1.2 mmol) and MeCN (10 mL) were combined and added. The flask was equipped with graphite rod (ϕ 6 mm) as anode and Pt plate electrodes (15 mm×15 mm×0.2 mm) as cathode. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under N₂ atmosphere at room temperature for 6 h. When the reaction was finished, the solvent was removed with a rotary evaporator. The product 1c was isolated in 67% yield by flash chromatography on silica gel using petroleum ether and ethyl acetate as the eluent.

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, enaminones (52.6 mg, 0.3 mmol), potassium thiocyanate (87.5 mg, 0.9 mmol), LiClO₄ (127.7 mg, 1.2 mmol) and DCE/ CH₃OH (10 mL, v/v = 9.5/0.5) were combined and added. The flask was equipped with graphite rod (ϕ 6 mm) as anode and Pt plate electrodes (15 mm×15 mm×0.2 mm) as cathode. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under N₂ atmosphere at room temperature for 4 h. When the reaction was finished, the solvent was removed with a rotary evaporator. The product **1b** was isolated in 44% yield and the product **1c** was isolated in 34% yield by flash chromatography on silica gel using petroleum ether and ethyl acetate as the eluent. (3) The reaction of 1a and KSCN with TEMPO under the standard conditions.

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, enaminones (52.6 mg, 0.3 mmol), potassium thiocyanate (87.5 mg, 0.9 mmol), LiClO₄ (127.7 mg, 1.2 mmol), TEMPO (93.8 mg, 0.6 mmol), and DCE/CH₃OH (10 mL, v/v =9.5/0.5) were combined and added. The flask was equipped with graphite rod (ϕ 6 mm) as anode and Pt plate electrodes (15 mm×15 mm×0.2 mm) as cathode. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under N₂ atmosphere at room temperature for 6 h. When the reaction was finished, the **1b** was not detected. (4) Parallel KIE Experiment

Figure S2. Kinetic isotopic effect experiments.

(5) Intermolecular Competition KIE Experiment

7.828 7.825 7.808 7.804 7.681 7.624 7.617 7.617 7.617 7.583 7.583 7.583 7.583 7.583 7.584 7.584 7.584 7.584 7.584 7.584 7.584

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, enaminones (52.6 mg, 0.3 mmol), potassium thiocyanate (87.5 mg, 0.9 mmol), LiClO₄ (127.7 mg, 1.2 mmol) and DCE/CH₃OH/CD₃OD (10 mL, v/v/v = 9.5/0.25/0.25) were combined and added. The flask was equipped with graphite rod (ϕ 6 mm) as anode and Pt plate electrodes (15 mm×15 mm×0.2 mm) as cathode. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under N₂ atmosphere at room temperature for 6 h. When the reaction was finished, the solvent was removed with a rotary evaporator. The product **1b** and **1b-D** was isolated by flash chromatography on silica gel using petroleum ether and ethyl acetate as the eluent. The value of K_H/K_D was confirmed through ¹H NMR.

-4.160

3. Detail descriptions for products

(2-Methoxythiazol-5-yl)(phenyl)methanone (1b): Yield 81% (53.1 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.1 Hz, 2H), 7.68 (s, 1H), 7.64 – 7.56 (m, 1H), 7.51 (t, *J* = 7.5 Hz, 2H), 4.16 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.59, 180.10, 146.13, 137.73, 133.01, 132.64, 128.97, 128.79, 59.17. HRMS (ESI) calculated for C₁₁H₁₀NO₂S [M+H]⁺: 220.0427; found: 220.0430.

(2-Methoxythiazol-5-yl)(p-tolyl)methanone (2b): Yield 84% (58.6 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.1 Hz, 2H), 7.68 (s, 1H), 7.30 (d, J = 7.9Hz, 2H), 4.15 (s, 3H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.96, 179.64, 145.42, 143.23, 134.83, 132.91, 129.24, 128.92, 58.87, 21.54. HRMS (ESI) calculated for C₁₂H₁₂NO₂S [M+H]⁺: 234.0583; found: 234.0584.

(4-Methoxyphenyl)(2-methoxythiazol-5-yl)methanone (3b): Yield 77% (57.5 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.7 Hz, 2H), 7.59 (s, 1H), 6.90 (d, J = 8.7 Hz, 2H), 4.07 (s, 3H), 3.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.84, 179.38, 163.18, 144.83, 132.88, 131.07, 130.03, 113.83, 58.84, 55.43. HRMS (ESI) calculated for C₁₂H₁₂NO₃S [M+H]⁺: 250.0532; found: 250.0535.

[1,1'-Biphenyl]-4-yl(2-methoxythiazol-5-yl)methanone (4b): Yield 64% (56.9 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.3 Hz, 2H), 7.64 (s, 1H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.54 (dd, *J* = 7.3, 1.8 Hz, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.30 (t, *J* =

7.2 Hz, 1H), 4.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.74, 179.78, 145.66, 145.27, 139.71, 136.14, 132.85, 129.38, 128.90, 128.16, 127.20, 127.18, 58.93. HRMS (ESI) calculated for C₁₇H₁₄NO₂S [M+H]⁺: 296.0740; found: 296.0742.

(4-chlorophenyl)(2-methoxythiazol-5-yl)methanone (5b): Yield 66% (50.6 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.5 Hz, 2H), 7.66 (s, 1H), 7.49 (d, J = 8.5 Hz, 2H), 4.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.00, 180.07, 145.90, 138.91, 135.80, 132.49, 130.16, 128.96, 59.06. HRMS (ESI) calculated for C₁₁H₈NClNaO₂S [M+Na]⁺: 275.9856; found: 275.9857.

(4-Bromophenyl)(2-methoxythiazol-5-yl)methanone (6b): Yield 65% (58.3 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.5 Hz, 2H), 7.61 – 7.53 (m, 3H), 4.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.12, 180.09, 145.93, 136.24, 132.45, 131.93, 130.27, 127.44, 59.07. HRMS (ESI) calculated for C₁₁H₈NBrNaO₂S [M+Na]⁺: 319.9351; found: 319.9353.

(4-Iodophenyl)(2-methoxythiazol-5-yl)methanone (7b): Yield 75% (77.2 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, J = 8.4, 2.2 Hz, 2H), 7.57 (d, J = 2.2 Hz, 1H), 7.45 (dd, J = 8.5, 2.1 Hz, 2H), 4.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.27, 180.01, 145.89, 137.84, 136.73, 132.39, 130.14, 99.91, 59.04. HRMS (ESI) calculated for C₁₁H₈NINaO₂S [M+Na]⁺: 367.9213; found: 367.9213.

(2-Methoxythiazol-5-yl)(4-(methylsulfonyl)phenyl)methanone (8b): Yield 52%

(48.5 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 8.4 Hz, 2H), 7.58 (s, 1H), 4.12 (s, 3H), 3.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.78, 180.67, 146.91, 143.66, 142.09, 132.17, 129.50, 127.80, 59.28, 44.35. HRMS (ESI) calculated for C₁₂H₁₁NNaO₄S₂ [M+Na]⁺: 320.0022; found: 320.0021.

(2-Methoxythiazol-5-yl)(4-(trifluoromethyl)phenyl)methanone (9b): Yield 50% (40.7 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.1 Hz, 2H), 7.78 (d, J = 8.1 Hz, 2H), 7.66 (s, 1H), 4.18 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 186.16, 180.44, 146.57, 140.59, 133.91 (q, J = 32.7 Hz), 132.37, 129.02, 125.69 (q, J = 3.7 Hz), 123.56 (q, J = 272.7 Hz), 59.17. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.05. HRMS (ESI) calculated for C₁₂H₉F₃NNaO₂S [M+H]⁺: 288.0301; found: 288.0305.

(2-Methoxythiazol-5-yl)(4-nitrophenyl)methanone (10b): Yield 57% (45.3 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 8.7 Hz, 2H), 7.96 (d, J = 8.7 Hz, 2H), 7.66 (s, 1H), 4.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.42, 180.75, 149.93, 146.93, 142.65, 132.14, 129.64, 123.89, 59.32. HRMS (ESI) calculated for C₁₁H₈NNaO₄S [M+Na]⁺: 287.0097; found: 287.0099.

(4-(Dimethylamino)phenyl)(2-methoxythiazol-5-yl)methanone (11b): Yield 57% (57.5 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 9.0 Hz, 2H), 7.68 (s, 1H), 6.71 (d, J = 9.0 Hz, 2H), 4.14 (s, 3H), 3.08 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 185.13, 178.82, 153.39, 143.50, 133.41, 131.38, 124.75, 110.86, 58.72, 40.05. HRMS (ESI) calculated for C₁₃H₁₄N₂NaO₂S [M+Na]⁺: 285.0668; found: 285.0671.

(2-Methoxythiazol-5-yl)(4-(trifluoromethoxy)phenyl)methanone (12b): Yield 63% (57.7 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.7 Hz, 2H), 7.68 (s, 1H), 7.35 (d, J = 7.3 Hz, 2H), 4.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.69, 180.14, 152.16, 146.04, 135.81, 132.42, 130.68, 124.15, 120.29 (q, J = 258.9 Hz), 59.07. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.66. HRMS (ESI) calculated for C₁₂H₈N₂F₃NaO₃S [M+Na]⁺: 326.0069; found: 326.0071.

(2-Methoxythiazol-5-yl)(o-tolyl)methanone (13b): Yield 41% (28.7 mg), white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 7.53 (s, 1H), 7.54 – 7.41 (m, 2H), 7.40 – 7.25 (m, 2H), 4.12 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 188.99, 179.58, 147.27, 137.15, 135.87, 133.23, 131.18, 130.79, 128.07, 125.68, 59.84, 19.22. HRMS (ESI) calculated for C₁₂H₁₂NO₂S [M+H]⁺: 234.0583; found: 234.0585.

(2-Fluorophenyl)(2-methoxythiazol-5-yl)methanone (14b): Yield 60% (42.6 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.48 (m, 3H), 7.27 (td, *J* = 7.5, 1.0 Hz, 1H), 7.23 – 7.16 (m, 1H), 4.16 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 184.00, 180.49, 159.50 (d, *J* = 252.6 Hz), 146.97 (d, *J* = 3.7 Hz), 133.11 (d, *J* = 8.2 Hz), 133.03, 130.09 (d, *J* = 2.7 Hz), 126.27 (d, *J* = 15.0 Hz), 124.31 (d, *J* = 3.7 Hz), 116.52 (d, *J* = 21.7 Hz), 59.09. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.34 – -114.76 (m). HRMS (ESI) calculated for C₁₁H₉FNO₂S [M+H]⁺: 238.0333; found: 238.0337.

(2-Chlorophenyl)(2-methoxythiazol-5-yl)methanone (15b): Yield 41% (31.3 mg),

white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.32 (m, 5H), 4.16 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.34, 180.79, 147.66, 137.41, 132.72, 131.46, 131.24, 130.40, 128.87, 126.63, 59.18. HRMS (ESI) calculated for C₁₁H₈NClNaO₂S [M+Na]⁺: 275.9856; found: 275.9859.

(2-Methoxythiazol-5-yl)(m-tolyl)methanone (16b): Yield 77% (53.4 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.57 – 7.48 (m, 2H), 7.36 – 7.25 (m, 2H), 4.08 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.57, 179.82, 145.86, 138.52, 137.55, 133.21, 132.89, 129.29, 128.41, 125.98, 58.94, 21.32. HRMS (ESI) calculated for C₁₂H₁₁NNaO₂S [M+Na]⁺: 256.0403; found: 256.0405.

(3-Bromophenyl)(2-methoxythiazol-5-yl)methanone (17b): Yield 68% (60.6 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (t, J = 1.8 Hz, 1H), 7.69 – 7.61 (m, 2H), 7.60 (s, 1H), 7.30 (t, J = 7.9 Hz, 1H), 4.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.62, 180.19, 146.30, 139.25, 135.28, 132.25, 131.65, 130.14, 127.22, 122.79, 59.08. HRMS (ESI) calculated for C₁₁H₈NBrNaO₂S [M+Na]⁺: 319.9351; found: 319.9352.

(3,4-Dimethylphenyl)(2-methoxythiazol-5-yl)methanone (18b): Yield 56% (41.6 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1H), 7.51 (s, 1H), 7.47 (d, J = 7.8 Hz, 1H), 7.16 (d, J = 7.7 Hz, 1H), 4.06 (s, 3H), 2.25 (s, 3H), 2.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.09, 179.52, 145.35, 141.92, 137.03, 135.16, 132.93, 129.89, 129.65, 126.48, 58.80, 19.86, 19.65. HRMS (ESI) calculated for C₁₃H₁₃NNaO₂S [M+Na]⁺: 270.0559; found: 270.0561.

Benzo[d][1,3]dioxol-5-yl(2-methoxythiazol-5-yl)methanone (19b): Yield 56% (44.3 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.37 (dd, J = 8.1, 1.7 Hz, 1H), 7.24 (d, J = 1.8 Hz, 1H), 6.82 (d, J = 8.1 Hz, 1H), 6.00 (s, 2H), 4.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.45, 179.53, 151.51, 148.11, 145.00, 132.68, 131.77, 124.90, 108.93, 107.99, 101.87, 58.90. HRMS (ESI) calculated for C₁₂H₉NNaO₄S [M+Na]⁺: 286.0144; found: 368. 286.0147.

(3,4-Dichlorophenyl)(2-methoxythiazol-5-yl)methanone (20b): Yield 55% (47.9 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 1.9 Hz, 1H), 7.68 (s, 1H), 7.65 (dd, J = 8.3, 1.9 Hz, 1H), 7.59 (d, J = 8.3 Hz, 1H), 4.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 184.64, 180.32, 146.23, 137.04, 137.01, 133.28, 132.03, 130.74, 130.67, 127.77, 59.15. HRMS (ESI) calculated for C₁₁H₇NNaO₂S [M+Na]⁺: 309.9467; found: 309.9468.

(2-Methoxythiazol-5-yl)(naphthalen-2-yl)methanone (21b): Yield 32% (25.9 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 1.8 Hz, 1H), 7.99 – 7.86 (m, 4H), 7.77 (s, 1H), 7.65 – 7.55 (m, 2H), 4.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.31, 179.93, 145.94, 135.27, 134.82, 132.99, 132.38, 130.14, 129.26, 128.70, 128.32, 127.86, 127.01, 124.90, 59.01. HRMS (ESI) calculated for C₁₅H₁₁NNaO₂S [M+Na]⁺: 292.0403; found: 292.0403.

Furan-2-yl(2-methoxythiazol-5-yl)methanone (22b): Yield 71% (44.8 mg), white

solid. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.59 (dd, J = 1.7, 0.8 Hz, 1H), 7.27 (d, J = 3.5 Hz, 1H), 6.53 (dd, J = 3.6, 1.7 Hz, 1H), 4.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.74, 172.53, 152.15, 146.21, 145.18, 131.37, 118.15, 112.44, 58.88. HRMS (ESI) calculated for C₉H₇NNaO₃S [M+Na]⁺: 232.0039; found: 232.0042.

(2-Methoxythiazol-5-yl)(thiophen-2-yl)methanone (23b): Yield 83% (56.1 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.75 (dd, J = 3.8, 1.1 Hz, 1H), 7.62 (dd, J = 4.9, 1.1 Hz, 1H), 7.11 (dd, J = 4.9, 3.8 Hz, 1H), 4.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.46, 177.72, 143.99, 142.11, 133.32, 132.39, 132.11, 128.00, 58.95. HRMS (ESI) calculated for C₉H₇NNaO₂S₂ [M+Na]⁺: 247.9810; found: 247.9811.

(2-Methoxythiazol-5-yl)(pyridin-2-yl)methanone(24b): Yield 55% (37.0 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 5.4 Hz, 1H), 8.52 (s, 1H), 8.19 (d, J = 7.9 Hz, 1H), 7.90 (td, J = 7.7, 1.7 Hz, 1H), 7.60 – 7.44 (m, 1H), 4.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 182.83, 182.32, 152.94, 148.22, 148.17, 137.18, 127.17, 127.00, 123.25, 58.68. HRMS (ESI) calculated for C₁₀H₈N₂NaO₂S [M+Na]⁺: 243.0199; found: 243.0202.

(2-Methoxythiazol-5-yl)(pyridin-4-yl)methanone (25b): Yield 72% (47.5 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 4.9 Hz, 2H), 7.61 (s, 1H), 7.58 – 7.45 (m, 2H), 4.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.85, 180.79, 150.58, 147.07, 144.16, 131.94, 130.88, 122.01, 59.30. HRMS (ESI) calculated for C₁₀H₈N₂NaO₂S [M+Na]⁺: 243.0199; found: 243.0200.

Cyclopropyl(2-methoxythiazol-5-yl)methanone (26b): Yield 42% (23.1 mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 4.14 (s, 3H), 2.47 – 2.33 (m, 1H), 1.25 – 1.20 (m, 2H), 1.07 – 0.99 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 192.27, 179.65, 142.62, 134.00, 58.83, 29.66, 17.64, 11.10. HRMS (ESI) calculated for C₈H₉NNaO₂S [M+Na]⁺: 206.0246; found: 206.0248.

(2-Ethoxythiazol-5-yl)(phenyl)methanone (27b): Yield 36% (25.5mg), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.79 (m, 2H), 7.68 (s, 1H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 3H), 4.55 (q, *J* = 7.1 Hz, 2H), 1.48 (t, *J* = 7.1 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 187.42, 179.51, 146.19, 137.68, 132.41, 128.80, 128.61, 68.69, 14.38. HRMS (ESI) calculated for C₁₂H₁₁NNaO₂S [M+Na]⁺: 256.0403; found: 256.0405.

(**Z**)-3-(dimethylamino)-1-phenyl-2-thiocyanatoprop-2-en-1-one (1c): Yield 36% (25.5mg), pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.53 – 7.38 (m, 5H), 3.37 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 192.67, 158.37, 139.74, 130.30, 128.18, 127.93, 113.21, 87.34. HRMS (ESI) calculated for C₁₂H₁₂N₂NaOS [M+Na]⁺: 255.0563; found: 255.0566.

4. References

- F. Wang, R. Fu, J. Chen, J. Rong, E. Wang, J. Zhang, Z. and Zhang, Y. Jiang, *Chem. Commun.*, 2022, 58, 3477-3480.
- 2. Y. Gao, Y. Liu, ,L.Wei, and J. Wan, Res. Chem. Intermed., 2017, 43, 5547-5555.

5. Copies of product NMR Spectra

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹⁹F NMR

¹⁹F NMR

¹⁹F NMR

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

24b

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

26b

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

S46

6. Crystallography Data

Crystallography Data of **1b**: CCDC 2245830 contain the supplementary crystallographic data for **1b**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.CCDC

Table 1 C	rystal data	and structure	. rafinamant	for 1h
Table I C	rystai uata	and structure	e rennement	10r 1D.

Identification code	1
Empirical formula	$C_{11}H_9NO_2S$
Formula weight	219.25
Temperature/K	296(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	12.545(5)
b/Å	3.9268(16)

c/Å	21.018(9)
α/°	90
β/°	106.758(6)
$\gamma^{/\circ}$	90
Volume/Å ³	991.5(7)
Ζ	4
$\rho_{calc}g/cm^3$	1.469
µ/mm ⁻¹	0.302
F(000)	456.0
Crystal size/mm ³	$0.260 \times 0.250 \times 0.220$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/ ^c	5.984 to 49.994
Index ranges	$-10 \le h \le 14, -4 \le k \le 4, -24 \le l \le 24$
Reflections collected	4629
Independent reflections	1748 [$R_{int} = 0.0157, R_{sigma} = 0.0177$]
Data/restraints/parameters	1748/0/137
Goodness-of-fit on F ²	1.010
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0305, wR_2 = 0.0943$
Final R indexes [all data]	$R_1 = 0.0349, wR_2 = 0.0979$
Largest diff. peak/hole / e Å ⁻³	0.18/-0.26

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for 1b. U_{eq} s defined as 1/3 of of the trace of the orthogonalised

U _{1J} tensor.						
Atom	x	y	Z	U(eq)		
S1	4865.0(3)	4800.1(10)	3262.7(2)	33.55(18)		
02	6981.6(10)	5921(4)	3985.5(6)	44.4(3)		

01	2474.3(11)	5010(4)	2716.8(6)	51.5(4)
N1	5595.9(11)	7639(4)	4411.5(6)	37.3(3)
C6	1882.5(13)	6758(4)	3631.2(7)	31.3(4)
C7	2737.9(14)	5918(4)	3298.2(7)	33.2(4)
C8	3914.6(13)	6211(4)	3657.5(7)	29.3(4)
C5	893.2(14)	8188(5)	3247.8(8)	37.8(4)
С9	4465.9(13)	7641(4)	4248.1(7)	33.1(4)
C1	2001.8(14)	6024(5)	4293.5(8)	37.9(4)
C4	49.7(15)	8896(5)	3522.1(10)	44.8(4)
C10	5909.2(13)	6210(4)	3939.0(8)	32.6(4)
C3	179.2(15)	8178(5)	4181.9(9)	46.8(5)
C2	1144.7(15)	6740(5)	4562.2(9)	45.9(5)
C11	7261.1(17)	4262(5)	3447.7(10)	49.2(5)

Table 3 Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for 1b. The Anisotropic

	•	•		L		,
Atom	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S1	38.1(3)	37.3(3)	26.3(3)	-4.97(16)	10.94(18)	-0.03(16)
O2	32.6(7)	60.2(8)	41.3(7)	-1.6(6)	12.1(5)	4.1(6)
01	43.0(7)	79.0(10)	29.9(7)	-16.1(6)	6.5(6)	-5.0(6)
N1	35.9(8)	45.7(8)	28.3(7)	-5.3(6)	6.1(6)	-0.5(6)
C6	32.5(8)	31.8(8)	27.6(8)	-1.4(6)	5.7(6)	-2.9(7)
C7	36.7(9)	34.7(8)	25.9(8)	-0.8(7)	5.4(6)	-2.4(7)
C8	33.9(8)	29.4(8)	25.6(7)	-0.3(6)	9.9(6)	0.2(6)
C5	37.8(9)	44.4(10)	27.5(8)	1.7(7)	3.5(7)	0.2(8)
С9	35.4(9)	37.2(9)	26.8(8)	-3.0(7)	8.9(7)	0.8(7)
C1	34.4(9)	45.9(10)	31.0(8)	5.5(8)	5.7(7)	0.5(8)
C4	33.7(9)	51.3(11)	45.6(10)	1.3(9)	5.4(7)	5.9(8)

C10	33.7(8)	34.1(8)	29.4(8)	4.3(7)	8.1(6)	2.0(7)
C3	37.9(10)	59.6(12)	46.7(10)	-2.4(9)	18.0(8)	2.2(8)
C2	45.3(10)	61.5(12)	32.6(9)	3.6(8)	13.9(8)	-1.0(9)
C11	45.9(11)	54.1(11)	55.2(12)	0.2(9)	26.8(9)	7.0(9)

Table 4 Bond Lengths for 1b.

Atom Atom		Length/Å	Atom	Atom	Length/Å
S 1	C10	1.7232(17)	C6	C5	1.389(2)
S 1	C8	1.7285(16)	C6	C7	1.478(2)
02	C10	1.325(2)	C7	C8	1.456(2)
02	C11	1.433(2)	C8	С9	1.356(2)
01	C7	1.223(2)	C5	C4	1.372(3)
N1	C10	1.297(2)	C1	C2	1.380(2)
N1	С9	1.359(2)	C4	C3	1.378(3)
C6	C1	1.387(2)	C3	C2	1.366(3)

Table 5 Bond Angles for 1b.

Atom Atom Atom			Angle/°	Atom Atom Atom			Angle/°
C10	S 1	C8	88.08(8)	C7	C8	S 1	117.54(12)
C10	02	C11	117.05(14)	C4	C5	C6	120.46(16)
C10	N1	С9	109.34(14)	N1	С9	C8	116.78(14)
C1	C6	C5	119.09(15)	C2	C1	C6	119.82(16)
C1	C6	C7	123.11(14)	C5	C4	C3	120.00(17)
C5	C6	C7	117.71(14)	N1	C10	02	120.40(15)
01	C7	C8	118.87(15)	N1	C10	S 1	116.41(13)
01	C7	C6	120.93(15)	02	C10	S1	123.19(12)
C8	C7	C6	120.19(14)	C2	C3	C4	120.05(16)

C9	C8	C7	132.89(15)	C3	C2	C1	120.58(17)
С9	C8	S1	109.38(12)				

ABCD	Angle/°	ABCD	Angle/°
C1 C6 C7 O1	143.99(18)	S1 C8 C9 N1	-1.01(19)
C5 C6 C7 O1	-32.6(2)	C5 C6 C1 C2	-0.4(3)
C1 C6 C7 C8	-36.9(2)	C7 C6 C1 C2	-176.96(17)
C5 C6 C7 C8	146.50(16)	C6 C5 C4 C3	-0.2(3)
O1 C7 C8 C9	167.31(18)	C9 N1 C10 O2	179.77(15)
C6 C7 C8 C9	-11.8(3)	C9 N1 C10 S1	0.49(19)
O1 C7 C8 S1	-6.9(2)	C11 O2 C10 N1	179.03(16)
C6 C7 C8 S1	173.93(12)	C11 O2 C10 S1	-1.8(2)
C10 S1 C8 C9	1.00(13)	C8 S1 C10N1	-0.90(14)
C10 S1 C8 C7	176.54(14)	C8 S1 C10O2	179.85(15)
C1 C6 C5 C4	0.6(3)	C5 C4 C3 C2	-0.4(3)
C7 C6 C5 C4	177.36(16)	C4 C3 C2 C1	0.6(3)
C10N1C9C8	0.4(2)	C6 C1 C2 C3	-0.2(3)
C7 C8 C9 N1	-175.60(17)		

Table 6 Torsion Angles for 1b.

Table 7 Hydrogen Atom Coordinates (Å $\times\,10^4$) and Isotropic Displacement Parameters (Å^2

Atom	x	У	Z	U(eq)		
Н5	802	8669	2802	45		
Н9	4089	8578	4528	40		
H1	2658	5053	4556	45		
H4	-610	9861	3263	54		

 $\times 10^3$) for 1b.

Н3	-391	8673	4368	56
H2	1225	6240	5006	55
H11A	6966	5546	3047	74
H11B	6949	2011	3391	74
H11C	8056	4116	3545	74