Supplementary Information for

The design of alternative anodic reactions paired with electrochemical CO₂ reduction

Honglei Chen,^{+a} Chenglong Ding,^{+a} Caitao Kang,^{+a} Jiahong Zeng,^a Yao Li,^a Yanming Li,^a Yuanli Li,^b Changli Li,^{*a} Jingfu He,^{*a}

School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China *E-mail: lichli5@mail.sysu.edu.cn; hejf27@mail.sysu.edu.cn

E _{electrode} (V)	J (mA cm ⁻²)	Cathode catalyst	Cathode product(s), FE (%)	Anode reaction	Anode catalyst	Anode product(s), FE/DE (%)	Cell type	Ref
E _{cat} -0.59, E _{an}		GDL-						
0.73V vs. RHE,	67.79 (total)	deposited	CO (96.25)	Glycerol	Pt	HCOO ⁻ , C ₃ H ₆ O ₃	Flow cell	1
E_{cell} 1.4V		Ag						
E _{cat} -0.3, E _{an} 1.5V vs. RHE, E _{cell} 2.0V	~7 (total)	Fe- SAs/N-C	CO (99.6)	hypochlo rite	RuO ₂ /Ti	82	H-cell	2
E _{cat} -1.7V vs.	100 (total)	100 (total) A a	g CO (90)	urea	Ni foam	-	H-cell	3
SHE, $E_{cell} 2.5V$		Ag		oxidation				
E _{degra} -1.7V vs. Ag/AgCl	43 (cathode)	CNT40/E SGDE cathode	Formate (72.38)	МО	Ti/SnO ₂ -Sb anode	100	H-cell	4
E _{degra} -1.7V vs. Ag/AgCl	38 (cathode)	EBGDE- 60	Formate (91.46)	МО	Ti/SnO ₂ -Sb	100	H-cell	5

Supplementary Table 1 Alternative anode reactions paired with CO₂RR.

				crystal			two-	
$E_{cell} 2.8V$	9 (total)	Sn	HCOOH (14.1)	violet	Co ₃ O ₄	52.6	electrode	6
				(CV)			glass cell	
F 1.0V				p-				
$E_{degra} 1.8 V VS.$	18 (anode)	Cu/Bi	Formate (84.63)	nitrophen	Ti/SnO ₂ -Sb	97.31	H-cell	7
Ag/AgCl				ol				
E _{degra} -0.8V vs.		flower- like CuO	CH ₃ OH, C ₂ H ₅ OH (electron efficiency 73.1)	4-	Co ₃ O ₄ arrays	99.2	H-cell	8
Ag/AgCl	-0.9 (cathode)			nitrophen				
				4-	3D gear			
E _{degra} -1.3V vs.	-3 (cathode)	SnO ₂ /CC	HCOOH (24.1)	nitrophen	shaped	99.1	H-cell	9
Ag/AgCl				ol	Co ₃ O ₄			
		Sn	formic acid (45mM)	Acid	boron-doped	TOC (>80)	H-cell	
-	24 (total)			Orange 7	diamond			10
	-3.7 (cathode)	copper– indium cathode		Alcohol				
				to	platinum		H-cell	
E _{cat} -0.7V vs. RHE			CO >70	acetaldeh				
				yde and	anode	>75		11
				acetic				
				acid				
				1,2-				
	-15 (cathode)	gold plate	CO (76)	propaned	carbon felt	80	Flow cell	
E _{cell} 2.53-2.63V				iol to				12
				lactic				
				acid				
					[Ru(bis-			
E _{cat} -1.1V vs. Ag/AgCl E _{cell} 2 V	0.09 (total, E _{cell} 2 V)	[(tpy)(Me , bim- py)Ru ^{II} (O H ₂)] ²⁺	CO&H ₂ (30-40)	Ph–	Mebimpy)(4,			
				CH ₂ OH	4'-	Benzaldehyde (70)	H-cell	13
				oxidation	((OH) ₂ OPC			
					H ₂) ₂ -			

					$bnv)(OH_2)^{12+}$			
					ceric			
					ammonium			
E _{cat} -1.8, E _{an} 2.43		Re(bipy-		Syringald	nitrate			
V vs. Ag/AgCl,	2.4 (total)	tBu)(CO) ₃ Cl	CO (100)		(CAN)+syrin	65	H-cell	14
$E_{cell} 4 V$				benzimid	galdehyde+o			
				azole	-			
					phenylenedia			
E _{cell} 2.5 V	2 (total)	BiO _x	Formate (81)	HMFOR	mine NiO NPs	36 for biomass conversion	H-cell	15
						84.3 for HMFOR		
E _{cell} 2.7 V	103.5 (total)	PdO _x /ZIF-	CO (97)	HMFOR	PdO	(20.0 maleic acid,	H-cell	16
						64.3% of formic		
						acid)		
E _{cell} 3.8 V	100	TPPNi- CB/GDE	CO (~98.5)	CER	DSA	Cl ₂ (~80)	Flow cell	17
E _{cat} -2.241, E _{an} 1.36 V vs. SHE	15.7 (cathode), 2.53 (anode)	graphite rod	CO (92.23)	CER	Au foil	Cl ₂ (82.5)	H-cell	18
				Br ⁻ to Br ₂				
	-19 (cathode)	Cu foil	C ₂ H ₅ OH (12)	combined	Pt	2-bromoethanol (40)		
E _{cat} -1.01 V vs				*CHCH ₂			membranele	10
RHE				to form			ss cell	17
				BrCH ₂ C				
				H ₂ OH				
E _{cell} -3.75 V	12 (cathode)	e) Au	CO (48), H ₂ (33), MeOH to MeO ⁻	Br- to	glassy carbon	dimethyl carbonato	membranele	
				Br ₂ , to		(60)	ss cell	20
				form		(00)	55 0011	

				dimethyl				
				carbonate				
					N-			
-	10 (+ + 1)	Ni	-СООН	Au	bromoamino	N-bromoamino	undivided	21
	10 (total)				acids	acid (68)	cell	
					synthesis			
-		Pt plate	-COOH&-CHO	Pt wire	carboxylatio	N-methyl-N-	one-	
	20 (total)				n of benzyl	(phenylacetoxy)met	compartmen	22
					halides	hylformamide (69)	t cell	
					tetraalkylam			
E _{cell} 3.22 V		Pt plate	-СООН	Pt net	monium salt	Cyanoacetic Acid	H-cell	22
	15 (total) Pt plat				anion	(24.7)		23
					oxidation			

Reference

- 1. S. Verma, S. Lu and P. J. A. Kenis, *Nat. Energy*, 2019, 4, 466-474.
- F. J. Quan, G. M. Zhan, H. Shang, Y. H. Huang, F. L. Jia, L. Z. Zhang and Z. H. Ai, *Green Chem.*, 2019, 21, 3256-3262.
- X. V. Medvedeva, J. J. Medvedev, S. W. Tatarchuk, R. M. Choueiri and A. Klinkova, *Green Chem.*, 2020, 22, 4456-4462.
- Q. N. Wang, X. Q. Wang, C. Wu, Y. Y. Cheng, Q. Y. Sun and H. B. Yu, J. CO₂ Util., 2018, 26, 425-433.
- Q. N. Wang, C. Q. Zhu, C. Wu and H. B. Yu, *Electrochim. Acta.*, 2019, 319, 138-147.
- L. Chiayu, A. Balamurugan, L. Yihsuan and H. Kuochuan, *Talanta*, 2010, 82, 1905-1911.
- 7. Q. N. Wang, W. L. Wang, C. Q. Zhu, C. Wu and H. B. Yu, J. CO₂ Util., 2021,

47, 101497.

- J. P. Zou, Y. Chen, S. S. Liu, Q. J. Xing, W. H. Dong, X. B. Luo, W. L. Dai, X. Xiao, J. M. Luo and J. Crittenden, *Water Res.*, 2019, 150, 330-339.
- M. Zhu, L. S. Zhang, S. S. Liu, D. K. Wang, Y. C. Qin, Y. Chen, W. L. Dai,
 Y. H. Wang, Q. J. Xing and J. P. Zou, *Chinese Chem. Lett.*, 2020, **31**, 1961-1965.
- S. Sabatino, A. Galia, G. Saracco and O. Scialdone, *ChemElectroChem*, 2017, 4, 150-159.
- T. F. Li, Y. Cao, J. F. He and C. Berlinguette, ACS Cent.Sci., 2017, 3, 778-783.
- E. Pérez-Gallent, S. Turk, R. Latsuzbaia, R. Bhardwaj, A. Anastasopol, F. Sastre-Calabuig, A. C. Garcia, E. Giling and E. Goetheer, *Ind. Eng. Chem. Res.*, 2019, 58, 6195-6202.
- Y. Wang, S. Gonell, U. R. Mathiyazhagan, Y. M. Liu, D. G. Wang, J. M. Alexander and T. J. Thomas, ACS Appl. Energy Mater., 2018, 2, 97-101.
- M. Llorente, B. Nguyen, C. Kubiak and K. Moeller, J. Am. Chem. Soc., 2016, 138, 15110-15113.
- S. Choi, M. Balamurugan, K. Lee, K. Cho, S. Park, H. Seo and K. Nam, J. Phys. Chem. Lett., 2020, 11, 2941-2948.
- J. H. Bi, Q. G. Zhu, W. W. Guo, P. S. Li, S. Q. Jia, J. Y. Liu, J. Ma, J. L. Zhang, Z. M. Liu and B. X. Han, ACS Sustain. Chem. Eng., 2022, 10, 8043-8050.
- 17. J. H. Guo and W. Y. Sun, Appl. Catal. B-environ, 2020, 275, 119154.
- C. J. Li, J. Shi, J. X. Liu, Y. J. Duan, Y. X. Hua, S. Wu, J. Z. Zhang, X. G. Zhang, B. Yang and Y. N. Dai, *Electrochim. Acta.*, 2021, **389**, 138728.
- S. D. Zhong, Z. Cao, X. L. Yang, S. M. Kozlov, K. W. Huang, V. Tung, L. G. Cavallo, L. J. Li and Y. Han, *ACS Energy Lett.*, 2019, 4, 600-605.
- 20. K. M. Lee, J. H. Jang, M. Balamurugan, J. E. Kim, Y. I. Jo and K. T. Nam, *Nat. Energy*, 2021, **6**, 733-741.
- 21. C. H. Li, X. Z. Song, L. M. Tao, Q. G. Li, J. Q. Xie, M. N. Peng, L. Pan, C.

Jiang, Z. Y. Peng and M. F. Xu, Tetrahedron, 2014, 70, 1855-1860.

- 22. H. Senboku, K. Nagakura, T. Fukuhara and S. Hara, *Tetrahedron*, 2015, **71**, 3850-3856.
- B. Batanero, F. Barba, C. M. Sa'nchez-Sa'nchez and A. Aldaz, *J. Org. Chem.*, 2004, 69, 2423-2426.