Electronic Supplementary Information:

Quantitative Analysis of CO₂ Emissions Reduction Potential of Alternative Light Olefins Production Processes

Marian Flores-Granobles and Mark Saeys

S1 Process model assumptions

The following general assumptions were considered for the process models developed in Aspen Plus[®] (Figures S1-S6):

- 1. Naphtha is supplied at 25 °C and atmospheric pressure. The composition of naphtha is shown in Table S1.
- 2. Pure CO_2 is supplied at 40 °C and 130 kPa. The electricity requirements and CO_2 emissions due to CO_2 capture from the CO_2 source and CO_2 purification were not considered in the models.
- 3. Pure H₂ is produced by water electrolysis using Proton-Exchange-Membrane Electrolyzers (PEME) or Solid Oxide Electrolyzers (SOE). When PEME are used, water is pumped to the required pressure before the electrolysis. When SOE are used, steam is electrolyzed and the produced H₂ is compressed to the required pressure. More details are available in the section "H₂ and syngas production by electrolysis".
- 4. Pumps, compressors, and turbines operate with 70% of isentropic efficiency.
- 5. Cooling water was used to cool streams to 35 °C. The energy required for this cooling cycle was not considered in the energy balance.
- 6. Chilled water was used to cool streams to between 15 °C and 35 °C. This refrigeration cycle uses 0.06 kWh per MJ heat removed.¹
- Cooling to between -30 °C and 15 °C, to between -90 °C and -30 °C and to between -147 °C and -90 °C required cryogenic refrigeration cycles using C₃H₈, C₂H₄ and CH₄ as cooling media, respectively. The corresponding electricity requirements are calculated using separate Aspen Plus[®] models.
- 8. Electric boilers convert electrical energy to heat with 100% efficiency.
- 9. Membrane separation was used in the CO₂ to olefins (C²O) scenario to recover CO₂ and H₂ from the product stream for recycle to the C²O reactor. A cellulose acetate membrane is modeled in Matlab[®] using the permeability of the gas components in Table S2. The Matlab[®] model provides the pressure drop and split ratio per component to the permeate and retentate streams based on the system equations below²:

```
Variables:

P_1: Feed gas pressure [bar]

P_2: Permeate pressure [bar]

\delta: membrane thickness [cm]

\#_{comp}: number of components [-]

q_i: Permeability of component "i" [Barrer] based on Table S2

x_i: Molar fraction of component "i" in retentate stream [-]

y_i: Molar fraction of component "i" in permeate stream [-]

J_i: Local flux of component "i" to the permeate stream [mol/s]

F_i: Flowrate of component "i" in the feed stream [mol/s]

L_i: Flowrate of component "i" in the permeate stream [mol/s]

V_i: Flowrate of component "i" in the permeate stream [mol/s]
```

Equations:

$$J_{i} = 3.35 \times 10^{-9} \cdot q_{i} \cdot \delta \cdot (P_{1} \cdot x_{i} - P_{2} \cdot y_{i})$$

$$y_{i} = \frac{J_{i}}{\#_{comp}}$$

$$\sum_{1}^{\#} J_{i}$$

$$F = L + V$$

$$F.x_{i}^{feed} = L.\bar{x}_{i} + V.\bar{y}_{i}$$

- 10. Amine absorption is used to remove residual CO_2 from the light olefins ($C_{2,3}$ =) stream. A separate Aspen Plus[®] model for CO_2 capture from a natural gas power plant using 30 _{wt}% monoethanolamine (MEA) developed by Aspentech was used as a base case³. The process parameters were adjusted to limit the CO_2 concentration below 0.5 _{wt}%. in the $C_{2,3}$ =-rich stream and to avoid flooding or drying within the stages of the columns. A gas-liquid separation unit was included before the scrubber to separate part of the captured CO_2 by the pressure difference, this reduces the scrubber loading. The resulting energy requirements for this process model are within the boundaries of operation.⁴
- 11. A polymer-grade ethylene/propylene mixture (> 99.5 $_{wt}$ %)⁵ is produced in each scenario.
- 12. The minimum energy requirements for each process were evaluated using Aspen Energy Analyzer. Figure S7 shows the Composite curves for the C²O-SOE scenario.

Component	Mass fraction
n-butane	0.0216
isobutane	0.0012
n-pentane	0.2734
2-methyl-butane	0.2138
Cyclopentane	0.0358
n-hexane	0.2248
cyclohexane	0.0384
Benzene	0.0158
n-heptane	0.0711
Cycloheptane	0.0434
Cycloheptene	0.0157
n-octane	0.0224
Cyclooctane	0.0092
Cyclooctene	0.0055
n-nonane	0.0079

Table S1. Naphtha composition. ⁶	able S1.	S1. Naphtha	composition.	ô
---	----------	--------------------	--------------	---

Table S2. Permeability of gas components for the modeled cellulose acetate membrane.⁷

Component	Permeability (Barrer)
CO ₂	6.3
H ₂	5.46
СО	0.26
CH₄	0.21
C_2H_4	0.45
C₃H ₆	0.46
C_4H_{10}	0.18

Figure S1. Process model for NSC and RDR

Figure S2. Process model for C²O

Figure S3. Process model for C²M+MTO

Figure S4. Process model for CO₂red+COhyd

Figure S5. Process model for CO₂red+FTO

Figure S6. Process model for CO₂ removal using MEA absorption

Figure S7. Composite curves from the Pinch analysis for the C²O-SOE scenario

S2 C²O Scenario: separation section evaluation

In the C²O scenario, CO₂, H₂ and the recycled gases are fed to the reactor where CO₂ and H₂ are converted to light olefins. Due to the complex product mixture, the separation section is key in determining the performance of the process. The possible separation section configuration includes a combination of the following units:

- i. **Gas-liquid separation units:** the boiling points of H₂, CO, C₂H₄, CO₂ and C₃H₆ at atmospheric pressure are -252.8 °C, -191.5 °C, -103.7 °C, -78.5 °C and -47.7 °C, respectively. The product mixture is separated in a gas-liquid separation unit (flash) operating at -14 °C or -30 °C and 1.8 MPa or 3.5 MPa. Most of the H₂ and CO remains in the gaseous stream while most of the CO₂ and C_{2,3}= remains in the liquid stream. The gaseous stream is recycled to the C²O reactor, and the liquid stream continues to the next unit of the separation section.
- H₂ removal by Pressure Swing Adsorption (PSA): PSA is a popular method to produce high purity H₂. High H₂ recoveries are possible for gases with a H₂ content higher than 50%.⁸ A PSA unit was modelled using dry product gas at 2.06 MPa and with a H₂ recovery of 92%.
- iii. H_2 and CO_2 removal by cellulose acetate (CA) membranes: After gas-liquid separation, the CO_2 and H_2 molar fractions in the liquid stream are below 15% and 1%, respectively. CA membranes have shown high permeabilities for CO_2 and H_2 , thus additional CO_2 and H_2 removal can be achieved using such a unit.
- iv. CO₂ removal by absorption using a monoethanolamine (MEA) solution: Amine scrubbing is a mature technology for CO₂ removal.⁹ In this process, CO₂ is captured from the product gas at 40 °C by absorption using a 30 wt% MEA solution. Regeneration of the CO₂-rich amine requires a high heating input, i.e., between 3.3 and 6.4 GJ per t CO₂ removed.² The required heat is provided by the exothermic C²O reactor.

Eight C²O separation scenarios are evaluated considering 4 different combinations of the separation units (Table S3). Water is removed by condensation and drying before entering the separation section in all scenarios.

Scenario	Separation section configuration
C ² O-HP	H_2 -PSA \rightarrow Flash (10 °C and 3.54 MPa) \rightarrow Membrane \rightarrow MEA absorption
C ² O-NP	H_2 -PSA \rightarrow Flash (-14 °C and 1.76 MPa) \rightarrow Membrane \rightarrow MEA absorption
C ² O-2MEM	Membrane \rightarrow Flash (25 °C and 3.54 MPa) \rightarrow Membrane
C ² O-SMA	Flash (-29.7 °C and 1.795 MPa) \rightarrow Membrane \rightarrow MEA absorption
C ² O-SMT	Flash (-14 °C and 1.795 MPa) \rightarrow Membrane \rightarrow MEA absorption
C ² O-SHP	Flash (-29.7 °C and 3.55 MPa) \rightarrow Membrane \rightarrow MEA absorption
C ² O-STP	Flash (-14 °C and 3.55 MPa) \rightarrow Membrane \rightarrow MEA absorption
C ² O-NM	Flash (-29.7 °C and 1.795 MPa) \rightarrow MEA absorption

Table S3. Separation section configuration evaluated for the C²O scenarios

Key Performance Indicators (KPI) are defined to evaluate the performance of the C²O scenarios: Membrane load (Nm³ gas treated/t C_{2,3}=), CO₂ removed by MEA absorption (t CO₂ removed/t C_{2,3}=), Electricity required (MWh/t C_{2,3}=), Minimum cooling required (GJ/t C_{2,3}=), C_{2,3}= recovery in the separation section (%), C_{2,3}= molar fraction at the inlet of the C²O reactor (%) and CO₂ and H₂ conversions in the C²O reactor (%). An overview of the KPI for the 8 C²O scenarios is shown in Table S4.

Case	C ² O-HP	C²O- NP	C ² O- 2MEM	C²O- SMA	C²O- SMT	C ² O-SHP	C ² O-STP	C²O- NM
Electrolyzer type	PEM	PEM	PEM	PEM	PEM	PEM	PEM	PEM
Membrane load (Nm ³ gas/t C _{2,3} =)	1005	948	3787	765	717	879	811	-
CO ₂ removed by MEA absorption (t CO ₂ /t C _{2,3} =)	0.061	0.058	-	0.028	0.019	0.046	0.034	0.17
Electricity (MWh/t C _{2,3} =)	20.0	20.0	20.2	19.8	19.8	19.8	19.8	19.8
Cooling (GJ/t C _{2,3} =)	22.1	22.5	22.6	22.0	22.1	22.1	21.9	21.9
C _{2,3} = recovery in separation section (%)	68.5	68.9	54.3	55.5	40.7	66.2	56.4	63.6
C _{2,3} = molar feed to reactor (%)	2.89	2.84	5.09	4.91	8.43	3.21	4.74	3.60
CO ₂ conversion (%)	76.2	76.1	75.4	75.5	74.4	76.1	75.5	75.8
H ₂ conversion (%)	76.1	76.1	75.4	75.5	74.4	76.0	75.5	75.9

Table S4. Key performance indicators for the 8 evaluated C²O scenarios

C²O-2MEM removes H₂ and CO₂ from the dry product stream using a highly selective membrane. The production of polymer-grade $C_{2,3}$ = without MEA adsorption was possible using a 2-stage membrane separation (Figure 8). However, this scenario requires the most electricity per t $C_{2,3}$ = due to the additional electricity for recompression of the recycle gas. This scenario requires a 5 times larger membrane load with respect to other C²O cases. The removal of the residual CO₂ and H₂O using adsorption beds is required in this case. This configuration is sensitive to the performance of the C²O reactor and membranes.

 H_2 can be recovered using a H_2 -PSA unit because of the high H_2 content in the dry product gas. Scenarios C²O-HP and C²O-NP include a H_2 -PSA in the separation section (Figure S9). After H_2 recovery, CO and additional H_2 are separated in a gas-liquid separation unit. The liquid stream is vaporized and the $C_{2,3}$ = are recovered using membrane separation. To produce polymer-grade $C_{2,3}$ =, additional CO_2 is removed using MEA absorption and residual CO_2 and H_2O are removed using adsorption beds. When using the H_2 -PSA unit, the C²O process achieves higher $C_{2,3}$ = recoveries, lower $C_{2,3}$ = molar fractions at the inlet of the C²O reactor and slightly higher CO_2 conversions. Yet, these scenarios require the most electricity per t $C_{2,3}$ = and the largest CO_2 absorption removal, after C²O-2MEM.

Figure S9. Separation section for C²O-HP and C²O-NP. C²O-HP does not require the orange compressor and C²O-NP does not require the orange valve.

The simplest separation is applied in C²O-NM, this scenario does not use membranes (Figure S10). H_2 and CO are removed by a gas-liquid separation unit and the CO₂ is removed by MEA absorption. The H_2O from MEA absorption is removed by drying to achieve a polymer-grade product. The C²O reactor provides enough heat for the regeneration of the amines, thus no external heat is required.

C²O-SMA, C²O-SMT, C²O-SHP and C²O-STP use the separation configuration of C²O-HP and C²O-NP but without the H₂-PSA unit (Figure 11). The combination of 2 pressures (1.795 MPa and 3.55 MPa) and 2 temperatures (-29.7 °C and -14 °C) is evaluated in the gas-liquid separators. Most of the H₂ and CO are removed in the flash, thus the membrane loads are the lowest. Polymer-grade $C_{2,3}$ = is produced by removing CO₂ using MEA absorption and H₂O using a drying bed.

C²O-SHP, C²O-SMA, C²O-STP, C²O-SMT and C²O-NM require the least electricity among the 8 evaluated scenarios (in bold in Table S4). C²O-SHP is selected as the optimal C²O scenario because it has the

highest $C_{2,3}$ = recovery in the product, the lowest $C_{2,3}$ = molar feed to the reactor and the highest CO_2 and H_2 conversions.

S3 C²O-SOE Scenario: sensitivity analyses

Five additional simulations evaluate the sensitivity of the C²O-SOE scenario to the following parameters: (i) lower CO₂ conversion (C²O-LC), (ii) lower C_{2,3}= selectivity (C²O-LS), (iii) lower propylene/ethylene (C₃=/C₂=) ratio (C²O-C₃C₂R), (iv) lower CO₂ permeability for the membrane (C²O-LPM) and (v) including paraffins as possible products in the C²O reactor (C²O-paraffins). An overview of the KPIs is shown in Table S5.

(i) <u>C²O-LC: lower CO₂ conversion in the C²O reactor</u>

The CO₂ conversion is reduced from 75.5% to 30.0%, the product distribution was defined by the RGIBBS reactor. The selectivity to $C_{2,3}$ = is 100% and, due to the stoichiometric H₂:CO₂ molar feed, the H₂ conversion equals the CO₂ conversion. The lower conversions cause a larger gas recycle, thus the membrane size and the CO₂ removed by MEA absorption are 4 and 7 times larger, respectively. Around 6% more electricity and 70% more cooling are required, due to: (i) the compression of a larger gas recycle and (ii) lower temperature required by cryogenic refrigeration to reach a similar C_{2,3}= recovery in the flash. It is challenging to recover $C_{2,3}$ =, yet the $C_{2,3}$ = molar fraction at the inlet of the C²O reactor is halved.

(ii) <u>C²O-LS: lower C_{2,3}= selectivity in the C²O reactor</u>

The CO₂ conversion is fixed to 75.5% and the CO selectivity is increased from 0.01% to 80%. The H₂ conversion is lower than the CO₂ conversion due to the lower H₂ consumption for CO production (1:1 H₂:CO₂). The gaseous stream from the gas-liquid separation is rich in CO, thus a CO hydrogenation (RGIBBS) reactor is implemented to produce additional C_{2,3}=. This reactor operates at 420 °C and 4 MPa. This new section required an additional H₂O removal step and gas-liquid separation unit. The liquid streams from the flashes are mixed and vaporized for membrane separation. The CO₂ concentration is larger due to the lower yield to C_{2,3}=, thus the membrane size increases by 20% and 50% more CO₂ is removed by MEA absorption. The total electricity requirements increase by 0.4 MWh/t C_{2,3}= due to additional cryogenic cooling and compression. Around 60% additional cooling are required per t C_{2,3}=. This case achieves a lower C_{2,3}= recovery and a lower C_{2,3}= molar fraction at the inlet of the C²O reactor.

- (iii) $C^2O-C_3C_2R$: lower $C_3=/C_2=$ ratio in the C²O reactor The CO₂ conversion and CO selectivity are fixed to 75.5% and 0.01% and the C₃=/C₂= ratio is reduced from 95 to 3. The C_{2,3}= recovery decreases from 56% to 52% in the gas-liquid separation unit due to the slightly larger C₂= losses to the gaseous stream. More C_{2,3}= are recycled to the C²O reactor and the C_{2,3}= molar feed composition increases to 6.9%. The membrane size and CO₂ removed by MEA absorption increase by around 10% and the electricity requirements increase by around 1%, due to additional cryogenic cooling.
- (iv) C^2O-LPM : lower CO_2 permeability for the membrane The CO_2 permeability of the membrane was halved and the performance of the C^2O reactor is defined by the RGIBBS block. The membrane size slightly increases by around 2% but less CO_2 is separated in the unit, thus the CO_2 removed by MEA absorption doubles. Yet, the electricity and cooling requirements did not increase significantly. In this scenario, the $C_{2,3}$ = losses in the permeate slightly increase and the $C_{2,3}$ = recovery, $C_{2,3}$ = feed molar ratio and the CO_2 conversion slightly decrease.

(v) <u>C²O-paraffins: paraffins are possible products in the C²O reactor</u>

The CO₂ conversion and CO selectivity are fixed to 75.5% and 0.01% and the C_{2,3}= selectivies are adapted to produce a paraffins/olefins ratio of 5. Cryogenic distillation is required to remove the paraffins from the C_{2,3}=, this increases the C_{2,3}= recovery and decreases the recycle of C_{2,3}= to the C²O reactor. The H₂ conversion is slightly higher than the CO₂ conversion due to the stoichiometry of the CO₂ to paraffins reactions. The electricity required increases by 3% because more H₂ is required per t C_{2,3} but also because the process requires 1% more electricity and cryogenic refrigeration 54% more. This case does not produce enough excess steam for the SOE, thus electric boilers use additional 0.28 MWh/t C_{2,3} electricity. Around 20% additional cooling is required and the cooling water volume triplicates. The membrane separation and CO₂ removal by MEA absorption increase by 3% and 4%, respectively.

Case	C ² O	C ² O-LC	C ² O-LS	$C^2O-C_3C_2R$	C ² O-LPM	C ² O-paraffins
Electrolyzer type	SOE	SOE	SOE	SOE	SOE	SOE
Membrane load (Nm³ gas/t C _{2,3} =)	879	2799	1048	947	905	851 Nm³ gas/t C _{2,3}
CO ₂ removed by MEA absorption (t CO ₂ /t C _{2,3} =)	0.046	0.31	0.070	0.046	0.096	0.048
Electricity (MWh/t C _{2,3} =)	16.0	17.0	16.4	16.2	16.0	16.5
Cooling (GJ/t C _{2,3} =)	8.1	14.1	12.7	8.75	8.1	9.9
C _{2,3} = recovery in separation section (%)	66.2	62.4	63.8	51.9	64.4	65.6
C _{2,3} = molar feed to reactor (%)	3.21	1.54	1.91	6.92	3.46	2.99
CO ₂ conversion (%)	76.1	30.0	75.5	75.5	75.9	75.5
H ₂ conversion (%)	76.0	30.0	35.1	75.5	75.9	76.9

Table S5. Key performance indicators for the C²O sensitivity analyses

S4 Economic feasibility of the scenarios

The break-even electricity prices were estimated to evaluate the economic feasibility of the different scenarios. The Break-Even Electricity price (BEE) was calculated using the equation below and the assumed utilities and material costs in Table S6. Light olefins, fuel gas, by-products and excess steam produce a profit, while the operational costs included water for electrolysis, water for cooling and naphtha. The cost of CO_2 as feedstock was not considered.

$$BEE\left(\frac{EUR}{MWh}\right) = \frac{\sum profit\left(\frac{EUR}{ton C_{2,3}}\right) - \sum costs\left(\frac{EUR}{ton C_{2,3}}\right)}{Electricity required\left(\frac{MWh}{ton C_{2,3}}\right)}$$

Materials and Utilities	Value	Reference
Utilities:		
Water for cooling	0.35 EUR/GJ	Based on ¹⁰ .
Water for electrolysis	0.07 EUR/kg H ₂	Based on ¹¹ .
High pressure steam	17.7 EUR/GJ	Based on ¹⁰ .
Medium pressure steam	13.7 EUR/GJ	Average value between ¹⁰ and ¹¹ .
Low pressure steam	9.6 EUR/GJ	Based on ¹² .
Materials:		
Naphtha	640 EUR/t naphtha	Based on ¹³ .
Light olefins	1000 EUR/t C _{2,3} =	Average in the range given by ¹⁴ .
Fuel gas	11.4 EUR/GJ	Based on ¹⁵ .
By-products	854 EUR/t by-products	Selected to obtain a break-even electricity price of 50 EUR/MWh for NSC

The price of by-products was adjusted so the NSC case would break-even at an electricity price of 50 EUR/MWh, this would allow for a comparative analysis between scenarios. The break-even electricity prices are summarized in Table S7 considering: (a) profit from steam as by-product and no CO_2 tax, (b) profit from steam as by-product and including CO_2 tax (100 EUR/t CO_2), and (c) no profit from steam as by-product and including CO_2 tax (100 EUR/t CO_2).

The RDR scenarios are the most feasible due to the lower naphtha input per ton $C_{2,3}$ = than NSC and the lower electricity consumption than the CO₂-based routes. The e-NSC scenario requires a slightly more economic electricity than NSC (below 43 EUR/MWh) to be profitable. The C²O-SOE and CO₂red+COhyd cases are the next most feasible cases, mainly due to the lower electricity required per ton $C_{2,3}$ = among the other CO₂-based scenarios, they are break-even for an electricity price of 61-86 EUR/MWh, depending on the additional income from steam export and the CO₂ tax price. C²M+MTO-SOE is slightly less feasible due to the lower excess steam available for export. CO₂red+FTO is the least feasible among the CO₂-based routes due to the high electricity required per ton $C_{2,3}$ = and lack of steam available for export.

Scenario	Break-even electricity price steam as by-product and without CO ₂ tax [EUR/MWh]	Break-even electricity price steam as by-product and including CO ₂ tax [EUR/MWh]	Break-even electricity price including CO ₂ tax [EUR/MWh]
NSC	50	4	50
e-NSC	44	43	44
RDR	93	90	93
e-RDR	114	113	114
C ² O-PEME	58	73	50
C ² O-SOE	67	86	62
C ² M+MTO-PEME	53	68	50
C ² M+MTO-SOE	63	82	61
CO₂red+COhyd	67	85	61
CO₂red+FTO	41	46	41

Table S7. Break-even electricity price

References

- 1. C. Lee and Y. Chang, *IOP Conference Series: Earth and Environmental Science*, 2019, **252**, 032112.
- 2. W. L. McCabe and J. C. Harriot, Unit Operations in Chemical Engineering, McGraw-Hill, New York, 5th edition edn., 1993.
- 3. Aspentech, "CO2 Capture from Natural Gas Power Plant using MEA", 2021.
- 4. P. C. Chen and Y.-L. Lai, *Energies*, 2019, **12**, 2202.
- 5. A. Boulamanti and J. Moya Rivera, *Energy efficiency and GHG emissions: prospective scenarios for the chemical and petrochemical industry*, European Commission, Luxembourg, 2017.
- 6. M. Alyani, J. Towfighi and S. M. Sadrameli, *Korean Journal of Chemical Engineering*, 2011, **28**, 1351-1358.
- 7. T. N. Do and J. Kim, *Energy Conversion and Management*, 2020, **214**, 112866.
- 8. UOP LLC, US Pat., 0036671, 2018.

- 9. H. Mikulčić, I. Ridjan Skov, D. F. Dominković, S. R. Wan Alwi, Z. A. Manan, R. Tan, N. Duić, S. N. Hidayah Mohamad and X. Wang, *Renewable and Sustainable Energy Reviews*, 2019, **114**, 109338.
- 10. J. Collis, K. Duch, and R. Schomäcker, "Techno-economic assessment of jet fuel production using the Fischer-Tropsch process from steel mill gas," *Frontiers in Energy Research,* Original Research vol. 10, 2022-December-07 2022.
- 11. J. Collis and R. Schomäcker, "Determining the Production and Transport Cost for H2 on a Global Scale," Frontiers in Energy Research, Original Research vol. 10, 2022-May-27 2022.
- 12. M. Dreillard, P. Broutin, P. Briot, T. Huard and A. Lettat, Energy Procedia, 2017, 114, 2573–2589.
- 13. Trading Economics, Naphtha. https://tradingeconomics.com/commodity/naphtha (accessed March 26th, 2023)
- 14. Van Dael, Belgium, Market study report CCU. 2018.
- Trading Economics, Natural Gas EU Dutch TTF.
 https://tradingeconomics.com/commodity/eu-natural-gas (accessed March 26th, 2023)