Learning from the Trees: Biomimetic Crosslinking of Silicones by Phenolic Coupling

Angela Li,^a Miguel Melendez-Zamudio,^a Akop Yepremyen,^a Michael A. Brook*

Supporting Information

Figure S1 A) ¹H NMR and B) ¹³C NMR of **1**.

Figure S2. A,C) ¹H NMR and B,D) ¹³C NMR of **P15-Eu** and **T12-Eu**, respectively.

GC/MS

The GC/MS trace of the oxidation of **1** with BPO shows 6 principal compounds, labelled 1-6. Compounds 1/2; 3/4; and 5/6 are each related, with the latter being 2 amu less (missing the constituents of H2) that the earlier peak: 312 vs 310 (starting material **1**); 432 vs 430 and 622 vs 620 (dimeric product **3**). The compounds responsible for 432/430 are proposed to be compound **6** formed through equilibration from dimer **3**. Note that this compound was not seen in the starting materials. An alternative is the presence of small amounts of M^HM^H in the original formation of compound **1**. With these assumptions, the product mixture is 55% product. A more conservative value shows the peak at 312 **1** and its dimer **3** in a 5:1 ratio, or 20%. Sensitivity factors have been assumed to be identical for all compounds.

Analysis Name: MABTQ30457.D Method: FSTFS_340 Sample Name: Mmeu 1 BPO
 Print Date:
 2022-02-15
 1:39:05 PM

 Acq. Date:
 2022-02-14
 3:45:00 PM

Figure S4 GC trace, intensity table of the 6 GC peaks seen, and their mass spectra Figure 1 A \rightarrow C showing conversion of about 20% of **3** from **1**.

	то	-Eu		
T0-Eu (g)	Molar	mmol	Volume	
	equivalents	DTBP	(μL)	
	of DTBP			
0.4	1	0.86	159	
0.4	2	1.73	318	
0.4	5	4.32	794	
T0-Eu (g)	Molar	mmol BPO	weight	
	equivalents		(mg)	
	of BPO			
0.4	1	0.86	209.4	
0.4	2	1.73	418.8	
0.4	5	4.32	1047	
	T12	2-Eu		
T12-Eu (g)	Molar	mmol	Volume	
	equivalents	DTBP	(μL)	
	of DTBP			
0.4	1	0.27	49	
0.4	2	0.53	98	
0.4	5	1.33	245	
T12-Eu (g)	Molar	mmol BPO	weight	
	equivalents		(mg)	
	of BPO			
0.4	1	0.27	64.6	
0.4	2	0.53	129.1	
0.4	5	1.33	322.8	

Table S1. Chain extension parameters of T0-Eu and T12-Eu

Table S2. GPC data from chain extension studies using varying equivalents of BPO and DTBP

Eugenol-modified M ^H M ^H							
Peroxide	Equiv. peroxide	Mn	Mw	$\boldsymbol{\mathcal{D}}_{M}$			
No peroxide	0	285	300	1.0478			
DTBP	1	330	395	1.1953			
	2	615	685	1.1135			
	5	850	1255	1.4826			
BPO	1	340	400	1.1812			
	2	380	500	1.3102			
	5	1240	2100	1.695			
Eugenol-modified 1	۲ 12						
No peroxide	0	1555	2150	1.38			
DTBP	1	1720	2290	1.3329			
	2	1840	2650	1.4381			
	5	2465	5445	2.2104			
BPO	1	2655	5045	1.8994			
	2	2630	6200	2.3608			
	5	4830	12120	2.5102			

Oxidative coupling of eugenol-modified P50-Eu (0.5 g, 1.51 mmol EUG)					
Molar equiv. DTBP	mmol DTBP	vol (µL)			
0	0	0			
0.2	0.30	56			
0.4	0.60	111			
0.6	0.90	167			
0.8	1.21	222			
1	1.51	278			
1.5	2.27	417			
Oxidative coupling of eugenol-r	nodified P30-Eu (0.8 g 1	.95 mmol EUG)			
0	0	0			
0.2	0.39	72			
0.4	0.78	143			
0.6	1.17	215			
0.8	1.56	287			
1	1.95	359			
1.5	2.93	538			
Oxidative coupling of eugenol-modified P15-Eu (0.8 g 2.46 mmol EUG)					
0	0	0			
0.2	0.49	49			
0.4	0.98	98			
0.6	1.48	147			
0.8	1.97	196			
1	2.46	245			
1.5	3.69	367			

Table S3. Oxidative coupling to create elastomers with DTBP

Figure S5. Swelling (wt% increase) of A) first prepared elastomers and B) after extraction with toluene. Shore OO hardness of C) first prepared elastomers and D) after extraction with toluene.

raw elastomers							
 P50							
equivalents DTBP	Shore OO	starting	swollen	final	% swelling	%sol ^a	
0.2	60	0.1622	0.3472	0.1104	214.1		31.9
0.4	65	0.1604	0.3141	0.1275	195.8		20.5
0.6	68	0.163	0.3095	0.1291	189.9		20.8
0.8	74	0.1611	0.2903	0.1331	180.2		17.4
1	83	0.1608	0.2826	0.1341	175.7		16.6
1.5	84	0.1622	0.2564	0.1436	158.1		11.5
			P30				
equivalents DTPB	Shore OO	starting	swollen	final	% swelling	%sol	
0.2	34	0.1661	0.7204	0.1047	433.7		37.0
0.4	44	0.1579	0.6307	0.0999	399.4		36.7
0.6	67	0.1658	0.4014	0.1405	242.1		15.3
0.8	74	0.1615	0.3119	0.1471	193.1		8.9
1	82	0.1665	0.3159	0.154	189.7		7.5
1.5	84	0.1583	0.3148	0.1424	198.9		10.0
			P15				
equivalents DTBP	Shore OO	starting	swollen	final	% swelling	%sol	
0.2	23	0.1649	1.1899	0.0563	721.6		65.9
0.4	30	0.1637	0.8965	0.0803	547.6		50.9
0.6	63	0.1659	0.4963	0.1234	299.2		25.6
0.8	66	0.1658	0.3845	0.1345	231.9		18.9
1	70	0.1645	0.3832	0.141	232.9		14.3
1.5	78	0.1619	0.3576	0.1364	220.9		15.6

Table S4. Mass loss after first swelling in solvent and Shore OO data before and after extraction in toluene.

^a Mass loss after 1 extraction with toluene.

extracted elastomers								
				P50				
equivalents DTBP		Shore OO	starting	swollen	final	% swelling	% sol ^a	
	0.2	60	49	91.7	45.5	187.2		7.1
	0.4	65	49.4	88.3	46.6	178.7		5.7
	0.6	68	46.3	85.1	44.1	183.8		4.8
	0.8	74	51.1	89.3	49.5	174.8		3.1
	1	83	50.4	85.5	47.9	169.6		5.0
	1.5	84	50	78	47.6	156.0		4.8
				P30				
equivalents DTPB		Shore OO	starting	swollen	final	% swelling	% sol	
	0.2	34	52.8	117.8	47.7	223.1		9.7
	0.4	44	52.9	188.4	43.2	356.1		18.3
	0.6	67	50.1	171.6	47.1	342.5		6.0
	0.8	74	48.3	91.4	45.8	189.2		5.2
	1	82	54.3	99.5	51.4	183.2		5.3
	1.5	84	46.5	90.7	44.4	195.1		4.5
				P15				
equivalents DTBP		Shore OO	starting	swollen	final	% swelling	% sol	
	0.2	23	40.9	111.6	31.3	272.9		23.5
	0.4	30	52.6	227.9	44.6	433.3		15.2
	0.6	63	53.1	132.5	48	249.5		9.6
	0.8	66	53.8	129	49.4	239.8		8.2
	1	70	48.8	121.7	45.8	249.4		6.2
	1.5	78	54.8	112.6	52.5	205.5		4.2

^a Mass loss after 3 extractions with toluene.

Table S5. Serial dilutions for DPPH assays

serial	[eugenol]	[DPPH]	total vol
dilutions	(mM)	(mM)	(mL)
100%	50	0.1	1
50%	25	0.1	1
10%	5	0.1	1
1%	0.5	0.1	1
0.10%	0.05	0.1	1
0.01%	0.005	0.1	1
0.001%	0.0005	0.1	1

Figure S6 Antioxidant activity, by DPPH assay, of A) **P15-Eu-E**; **P30-Eu-E**; **P50-Eu-E** as prepared, and after extraction. B) Typical color change upon reaction of DPPH with phenols (left - before, right - after reaction).

The differences between Shore hardness (or Young's modulus¹) for filled and unfilled silicones is rather significant. Note that Sylgard is typically filled with MQ resins, a related but distinct type of reinforcing agent.² Selected examples of elastomers cured using hydrosilylation, moisture cure (RTV) and phenolic coupling have comparable Shore hardness values (Table S6).

Commercial Platinum-cure silicone rubber (Sylgard 184) ^a							
Crosslinker	Chain extender	Pt ^b	Filler	Cure temp.	Shore OO		
H-PDMS	vinyl-terminated PDMS	5-20 ppm	MQ resins	RT, 24 h	~ 83 (43 Shore A) ¹		
Homemade Plati	num cure silicone						
H-PDMS	vinyl-terminated PDMS	5 ppm	none	RT, 24 h	40x		
Commercial RTV	(Dowsil 786)						
Crosslinker	Chain extender	mol% of Sn ^c	Filler	Cure temp.	Shore OO		
Si(OAc) ₄	HO-terminated PDMS	<1%	silica	RT, 24h	(25 Shore A) ^d		
Homemade RTV (moisture cure)							
MeSi(OMe)₃	HO-terminated PDMS	1%	none	RT <i>,</i> 24h	80 (25 Shore A)		
P30-Eu-E							
Crosslinker	Chain extender	DTBP	Filler	Cure temp.	Shore OO		
Pendent							
eugenol silicone	NA	195%	none	130 °C, 6 h	75-85		

Table S6. A comparison of curing techniques for silicone elastomers (to prepare 0.8 g elastomer).

^a If higher temperatures are used, Sylgard will completely cure in about one hour at 100 °C, or 15 minutes at 150 °C (www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/11/11-31/11-3184-sylgard-184-elastomer.pdf accessed May 30, 2023.). ^b Karstedt's Pt catalyst. ^c Dibutyltin dilaurate. ^d

www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/95/95-10/95-1047-01-dowsil-786silicone-sealant.pdf?iframe=true, accessed May 30, 2023. Note: full cure is not noted on this sheet, but all data reported was 1 week after starting cure.

References

- 1. A. W. Mix and A. J. Giacomin, *J. Testing Eval.*, 2011, **39**, 696-705.
- 2. D. H. Flagg and T. J. McCarthy, *Macromolecules*, 2016, **49**, 8581-8592.