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Section 1. Experimental Section

1.1 Materials

2,2'-Bipyridine-5,5'-dicarboxaldehyde (Bpy >97%) was purchased from Jilin Chinese
Academy of Sciences-Yanshen Technology Co. Cd(OAc),:2H,O (99.99%), 4-
cyanoacetanilide (98%), benzylamine (99%), propargyl bromide (97%), etc. were
purchased from J&K Scientific Co., Ltd., Energy Chemical Co., Ltd., or Shanghai
Aladdin Biochemical Co., Ltd. All chemicals were used without further purification.
1.2. Characterization

Fourier transform infrared (FTIR) spectra were recorded with KBr pellets using Thermo
Scientific Nicolet iS10 Instrument. Solid-state '3C cross-polarization/magic-angle
spinning solid-state nuclear magnetic resonance (CP/MAS ssNMR) spectra were
collected on a Bruker AVANCE III HD 400MHz instrument. N, and CO, adsorption
and desorption isotherms were measured using a Autosorb-iQ-MP system. The samples
were degassed at 120 °C for 12 h before the measurements. The N,
adsorption/desorption isotherms were measured at 77 K. Surface areas were calculated
based on Brunauer-Emmett-Teller (BET) method. Pore size distribution curves were
obtained via non-local density functional theory (NLDFT) method. The carbon dioxide
adsorption and desorption isotherms were measured at 273 K and 298 K.
Thermogravimetric analysis (TGA) was conducted on a STA449F3 instrument under
N, atmosphere. Power X-ray diffraction (PXRD) was performed on a Bruker D8
ADVANCE instrument with the X-ray source of Cu Ka radiation and data were

collected with a scan rate of 0.1 step/s in the range of 2°-40°. Transmission electron
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microscopy (TEM) were obtained from JEOL JEM-2100 Field Emission Electron
Microscope. Inductively coupled plasma-optical emission spectrometry (ICP-OES)
was carried out on a Agilent ICP-OES 730 instrument. XPS X-ray photoelectron spectra
(XPS) data were collected using a Thermo Scientific K-Alpha instrument, which were
analyzed by the calibration using the binding energy of 284.8 eV of C Is. 'H and 3C
NMR spectra were recorded on spectrometers at 400 and 100 MHz, respectively, by
using CDCl; as a locking solvent. Chemical shifts were reported in ppm relative to
TMS. Steady-state photoluminescence spectra were recorded on a HITACHI F-7000
spectrophotometer.

1.3. In situ ATR FT-IR spectra for carboxylative cyclization of propargylic amines
with CO,

In-situ ATR FT-IR spectra were collected on a Nicolet iS 10 Fourier transform infrared
spectrometer equipped with an ATR attachment. In a typical procedure, DBU (0.25
mmol), Cu-Bpy-COF (10 mg) and CH;CN (3.0 mL) were put into a 10 mL bottle flask,
the liquid sample (10 pL) was first collected as the background prior to the reaction.
After completion, CO, balloon (99.999%) and propargylic amines (0.5 mmol) were
added and the FT-IR spectra of liquid samples (10 pL) at different times were collected
by subtracting the background.

1.4. Experimental procedures

1.4.1. Synthesis of 1,3,5-tris-(4-aminophenyl)triazine (TAPT)

The TAPT was synthesized according to previous literature with a slight

modification.[!] Typically, N-(4-cyanophenyl)acetamide (5.0 g, 31.2 mmol) was added
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to a stirred solution of CF3SO;H (8.0 mL) at 0 °C. The reaction mixture was heated to
room temperature and stirred for 12 h. After completion, the mixture was poured to 300
mL ice water, which was then neutralized by adding ammonia until the pH = 7. The
solid product was filtered and repeatedly washed with distilled water, and obtained
N,N'.N"((1,3,5-triazine-2,4,6-triyl)tris(benzo-4,1-diyl))triacetamide in 98% yield,
which was used without further purification in the next step.
N,N'N"((1,3,5-triazine-2,4,6-triyl)tris(benzo-4, 1 -diyl) )triacetamide (1.0 g) and
1.8 M HCI solutions (20 mL) were taken in a round-bottom flask and the reaction
mixture was degassed with N, and heated to 110 °C for 8 h. Subsequently, the reaction
mixture was neutralized to pH=12 with 20% NaOH solutions at 0 °C. The resultant
white solid product was filtered and washed several times with distilled water, finally
yielding the desirable TAPT in 50% yield. The purified product was characterized by
'H and 3C NMR. '"H NMR (400 MHz, DMSO-dy): 8H (ppm) 8.36 (d, J = 8.0 Hz, 6H),
6.69 (d, J = 8.0 Hz, 6H), 5.89 (s, 6H). 3C NMR (100 MHz, DMSO-ds): 3C (ppm)
169.56, 152.98, 130.15, 122.90, 113.10.
1.4.2. Synthesis of M-bipyridine complex (Cd-Bpy)
Cd-bipyridine complex (Cd-Bpy) was synthesized according to previous literature.l?] A
solution of 2,2’-bipyridine (2.72 mmol) in 10 mL DMF was added to a stirred solution
of Cd(OAc),-2H,0 (4.08 mmol) in 20 mL DMF. The mixture was allowed to stir for 8
h at room temperature, and then filtered and washed with diethyl ether. The solid
product was dried in vacuo at 60 °C for overnight yielded a white powder of Cd-Bpy.

1.4.3. Synthesis of propargylic amines
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All the propargylic amines were synthesized according to previous report.’] The
spectroscopic data was consistent with those reported previously.

1.4.4. Procedure for the cycling test

In a typical experiment, propargylic amines (0.5 mmol), DBU (0.25 mmol), Cd-Bpy-
COF (10 mg) and CH;CN (3.0 mL) were put into a 10 mL bottle flask, and then a
balloon filled with CO; (99.999%) was installed in a bottleneck. To remove the residual
air, successively excluding and charging with CO, several times was performed and
finally purged CO, into the reaction system. After the reaction mixture was stirred at
60 °C for 12 h, the catalyst was collected by filtration, the liquid was calculated the
product yield by GC. The catalyst was washed with 3 x 5 mL of CH;0H and dried
under vacuum at 60°C. Finally, the recovered catalyst was directly used as the recycled
catalyst in the next cycling test. Two parallel experiments will be conducted
concurrently to ensure the catalyst dosage remains at 10 mg.

1.5. DFT Calculation Methods.

We carried out all the DFT calculations in the Vienna ab initio simulation (VASP5.4.4)
codel* The exchange-correlation is simulated with PBE functional and the ion-electron
interactions were described by the PAW method.5®) The vdWs interaction was
included by using empirical DFT-D3 method.!”l The Monkhorst-Pack-grid-mesh-based
Brillouin zone k-points are set as 1x1x1 for all periodic structure with the cutoff energy
of 400 eV. The convergence criteria are set as 0.05 eV Al and 107 eV in force and
energy, respectively. A 15 A vacuum layer along the z direction is employed to avoid

interlayer interference.
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The adsorption energy (E,4s) calculation follows as the equation:

Eqs = E (CO,-Cd-Bpy-COF) — E (Cd-Bpy-COF) — E (CO»)

S7



Section 2. Supplementary Figures

Table S1. Fractional atomic coordinates for the unit cell of Bpy-COF.

Bpy-COF space group :P6/m

a=b=43.6580A, ¢=3.5340A, a=p=90", y=120"

Atom | x y z Atom | x y z
Cl1 -0.08934 -0.52504 0 C13 |0.24193 -0.41009 |0
C2 -0.07822 -0.55017 0 C14 | 0.20531 -0.42957 |0
N3 -0.0435 -0.53951 0 C15 | 0.29764 -0.35247 |0
C4 -0.01852 -0.50481 0 N16 |0.3168 -0.36894 | 0
Cs5 -0.02854 -0.47882 0 H17 | -0.09687 -0.57829 |0
C6 -0.06421 -0.48914 0 HI8 | -0.00913 -0.45089 |0
C7 0.12681 -0.46341 0 H19 | -0.07215 -0.46927 |0
N8 0.14857 -0.42981 0 H20 | 0.13554 -0.48261 |0
C9 0.18591 -0.4119 0 H21 | 0.18804 -0.36156 | 0
C10 |0.20312 -0.37511 0 H22 | 0.25232 -0.32705 |0
Cl1 0.23962 -0.35563 0 H23 | 0.25658 -0.42409 |0
C12 | 0.25926 -0.37301 0 H24 | 0.19271 -0.45805 |0

Bpy-COF
Cd-Bpy-COF
0214 4 om
)
% 0.1
34nm 4.2nm
1.9 nm y/ /
004+ —F—————————

2 4 6 8 10 12 14
Pore width (nm)

Figure S1. Pore size distribution profiles of Bpy-COF and Cd-Bpy-COF calculated

by NL-DFT.
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Figure S2. Thermogravimetric analysis of (a) Bpy-COF and (b) Cd-Bpy-COF.
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Figure S3. High-resolution C 1s XPS spectra of Bpy-COF and Cd-Bpy-COF.
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Table S2. Solvent screening ?

Entry Catalyst Solvent Yield (%)P
1 Cd-Bpy-COF MeCN 99.9
2 Cd-Bpy-COF CH,0H 57.3
3 Cd-Bpy-COF THF 31.8
4 Cd-Bpy-COF Toluene 59.6

a Reaction conditions: 1a (0.5 mmol), Cd-Bpy-COF (10 mg), DBU (0.5 equiv.), CO,

(balloon), solvent (3 mL), 60 °C for 12 h, unless otherwise noted. ® Yield as determined

by gas chromatography using mesitylene as the internal standard.

Intensity (a.u.)

3C-labeled 2a
2a

160 140 120 100 80 60 40 20 O
Chemical shift (ppm)

Figure S4. 13C NMR spectra of 13C-labeled 2a and unlabeled 2a produced from the

carboxylative cyclization of 1a using 13CO, as substrate
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Figure S5. GC-MS spectra of 3C-labeled 2a and unlabeled 2a produced from the

carboxylative cyclization of 1a using 13CO, as substrate.
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Figure S6. Recycling tests under the similar conditions (60 °C, 6 h for each run).
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Figure S7. The Cd leaching amount for every single run in cycling tests.
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Figure S8. Hot filtration experiment using Cd-Bpy-COF for the carboxylative

cyclization reaction.
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Figure S9. XRD spectra of fresh and reused Cd-Bpy-COF.
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Figure S10. Cd 3d XPS spectra of fresh and reused Cd-Bpy-COF.
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Table S3. Comparison with previously reported catalytic systems.

T Time Yield Recycle
Entry Cat. Ref.
(°C) (h) (%) number

1 ZnC1(TBD), 60 12 96 . 8
2 [DBUH][MIm] 60 6 90 5 9
3 [Bmim][OAc] 100 12 84 5 10
4 Ag,,-MOF 25 6 97 4 11
5 Zn,,, 70 12 99 10 3
6 PASCS 80 16 99 ; 12
7 Ag@TpPa-1 60 18 96 5 13
8 AgN@COF 55 10 94 6 14
9 Co0@MIL-I01(Cr)- ) oy 97.5 5 15
DABCO
10 [Ru]/PPh; 100 8 80 ; 16
1 MOF-1a 60 24 99 4 17
12 Ag-HMP-2 60 20 95 5 18

13 Cd-Bpy-COF 60 12 99 10 This Work

S14



1a+Cd-Bpy-COF+DBU

| N

1a+Cd-Bpy-COF

1a+DBU

Intensity (a.u.)

1a

40 36 32 28 24 20
Chemical Shift (ppm)

Figure S11. '"H NMR spectral changes on different systems in DMSO-dg.
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Section 3. Data of NMR Spectra
0
jo
2a: pale yellow oil. 'H NMR (400 MHz, CDCls), 8H (ppm) 7.38 — 7.28 (m, 5H), 4.73
(s, 1H), 4.46 (s, 2H), 4.24 (s, 1H), 4.02 (s, 2H). '3C NMR (100 MHz, CDCL;), 8C (ppm)

155.74, 149.04, 135.06, 129.07, 128.26, 86.86, 47.93, 47.32.

s
Jo

2b: pale yellow oil. "H NMR (400 MHz, CDCls), H (ppm) 7.20 (d, J= 6.9 Hz, 2H),
6.89 (d, J = 8.6 Hz, 2H), 4.72 (t, J = 2.1 Hz, 1H), 4.40 (s, 2H), 4.28 — 4.16 (m, 1H), 4.00
(s, 2H), 3.81 (s, 3H). 3C NMR (100 MHz, CDCl;), 8C(ppm) 159.65, 155.65, 149.13,

129.70, 127.07, 114.40, 86.75, 55.40, 47.34, 47.18.

AP

2¢: pale yellow oil. '"H NMR (400 MHz, CDCl,), 6H (ppm) 7.26 (q,J=4.0 Hz, 2H),
7.05 (t, J = 8.6 Hz, 2H), 4.74 (q, J = 3.0 Hz, 1H), 4.44 (s, 2H), 4.27 (q, J = 4.0 Hz, 1H),
4.03 (s, 2H). 3C NMR (100 MHz, CDCl;), 8C (ppm) 163.89, 161.43, 155.66, 148.87,
130.94, 130.06, 116.08, 115.87, 87.01, 47.18.

O

oK

/\/N
2d: pale yellow oil. IH NMR (400 MHz, CDCl;), 6H (ppm) 7.39 — 7.29 (m, 5H), 5.26
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(dd, J; = 12.0 Hz, J> = 4.0, 1H), 4.70 (dt, J; = 4.8 Hz, J, =2.6 Hz, 1H), 4.22 (d, J= 2.1
Hz, 1H), 4.11 (dt, J,= 13.9, J, = 2.4 Hz, 1H), 3.77 (dt, J, = 14.2 Hz, J, =2.0 Hz, 1H),
1.60 (dd, J; = 7.2 Hz, J> = 1.5 Hz, 3H). 3C NMR (100 MHz, CDCl5) 5C (ppm) 155.14,

149.30, 138.86, 128.89, 128.19, 127.01, 86.59, 51.38, 43.70, 16.45.
L~

IN

2e: pale yellow oil. 'H NMR (400 MHz, CDCls), 8H (ppm) 7.32 — 7.20 (m, 5H), 4.68

(s, 1H), 4.21 (s, 1H), 3.99 (s, 2H), 3.53 (d, J = 6.9 Hz, 2H), 2.88 (t, J = 7.4 Hz, 2H). 3C

NMR (100 MHz, CDCl;) 6C (ppm) 155.48, 149.07, 137.97, 128.79, 128.61, 126.82,

86.45, 48.37, 45.14, 33.90.

i
POl
2f: pale yellow oil. 'H NMR (400 MHz, CDCls) 8H (ppm) 4.72 (d, J = 2.8 Hz, 1H),
4.28 (d,J=2.7Hz, 1H), 4.13 (t,J=2.4 Hz, 2H), 3.72 (t, J=7.1 Hz, 1H), 1.82 (d, J =
6.6 Hz, 4H), 1.68 (d,J=11.6 Hz, 1H), 1.35 (tdd, /= 12.1, 8.9, 3.9 Hz, 4H), 1.15 - 1.05

(m, 1H). 3C NMR (100 MHz, CDCls) 5C (ppm) 154.96, 149.77, 86.22, 52.49, 44.22,

30.34, 25.36.
{
pe,
2g: pale yellow oil. '"H NMR (400 MHz, CDCls) 6H (ppm) 4.74 (s, 1H), 4.29 (s, 1H),
4.16 (s, 2H), 3.31 (t, J= 6.6 Hz, 2H), 1.58 — 1.49 (m, 2H), 1.36 (m, 2H), 0.95 (t,J=6.6

Hz, 3H). 3C NMR (100 MHz, CDCl3) 8C (ppm) 155.68, 149.31, 86.42, 47.90, 43.59,
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29.39, 19.87, 13.70.
@) \\

2h: pale yellow oil. 'H NMR (400 MHz, CDCls) 8H 7.28 (dd, J = 5.2, 1.4 Hz, 1H),
7.02 (d, J=2.9 Hz, 1H), 6.98 (dd, J; = 5.1 Hz, J, = 3.5 Hz, 1H), 4.73 (d, J = 2.9 Hz,
1H), 4.64 (s, 2H), 4.27 (d, J= 3.2 Hz, 1H), 4.11 (s, 2H). 3C NMR (100 MHz, CDCl;)
0C (ppm) 155.20, 148.91, 137.15, 127.49, 127.22, 126.28, 86.92, 47.12, 42.25.

o’/Z)N _/_/

G

2j: pale yellow oil. '"H NMR (400 MHz, CDCls) 8H 7.58 (d, J = 7.5 Hz, 2H), 7.32 (t, J
=7.6 Hz, 2H), 7.19 (t, J= 7.4 Hz, 1H), 5.45 (s, 1H), 3.26-3.14 (m, 2H), 1.66 (p, J=7.9
Hz, 2H), 1.49 (s, 6H), 1.37 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H). 3*C NMR (100 MHz,
CDCly) 6C (ppm) 154.28, 153.67, 133.83, 128.56, 128.40, 126.81, 100.49, 62.28,

40.53,31.63, 27.69, 20.34, 13.82.

L~
T
2k : pale yellow oil. 'H NMR (400 MHz, CDCl3) 8H 7.56 (dd, J = 8.8, 5.5 Hz, 2H),
7.00 (t, J = 8.8 Hz, 2H), 5.42 (s, 1H), 3.25-3.11 (m, 2H), 1.69-1.62 (m, 2H), 1.49 (s,
6H), 1.38 (dt, J = 15.1, 7.5 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H).3C NMR (100 MHz,

CDCl;) 6C (ppm) 162.27, 154.05, 153.18, 153.17, 129.91, 129.86, 115.38, 115.24,

99.28, 62.13, 40.42, 31.49, 27.56, 20.21, 13.70.
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21 : white solid. 'H NMR (400 MHz, CDCl;) 8H 7.59 (d, J = 6.9 Hz, 2H), 7.39-7.27
(m, 7H), 7.20 (t, J = 7.4 Hz, 1H), 5.44 (s, 1H), 4.51 (s, 2H), 1.38 (s, 6H).13C NMR (100
MHz, CDCl3) 5C (ppm) 154.79, 153.42, 137.52, 133.58, 128.73, 128.50, 128.35,

127.82,127.77, 126.83, 100.67, 62.44, 44.18, 27.72.
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Section 4. Copies of NMR Spectra
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