Supporting Information

Photocarboxylation of Remote C-H Bond through Nitrogen-

Centred Radicals 1,5-Hydrogen Atom Transfer

Wenke Li, Beiqi Sun, Lei Zhang, Fanyang Mo*

Contents

1.		General information	. 3
	2.	Complementary Reaction Optimization Data	. 4
	3.	General Procedure for Carbocarboxylation of substrates	. 7
	4.	Preparation of substrates	. 8
	5.	Structures of hydroxylamine derivatives	. 9
	6.	Structures of carboxylation products	10
	7.	Analytical Data of the Substrates and Products	12
	8. R	References	66

1. General information

Unless otherwise noted, all experiments were carried out under an inert atmosphere in a nitrogen-filled glovebox or by standard Schlenk techniques. All solvents were purchased from J&K Scientific and stored in a nitrogen-filled glovebox over 4Å molecular sieves. Bis(catecholato)diboron (B₂cat₂) was purchased from Beijing Innochem Science & Technology co., LTD (Innochem) and stored in the glovebox. Purification of the products was conducted by column chromatography on silica gel (200 - 300 mesh, in some cases 300-400 mesh were used, from Qingdao, China). Thin-layer chromatography (TLC) was performed on silica gel plates (10 - 40 μ m) purchased from WISH CHEMICAL, using UV light (254/366 nm) or phosphomolybdic acid (PMA) in ethanol (5%) for detection. The substrates were purchased from commercial sources unless otherwise noted.

NMR spectra were measured on a Bruker ARX400 (¹H at 400 MHz, ¹³C at 101 MHz,) magnetic resonance spectrometer. The chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; CHCl₃, δ H (7.26 ppm) and δ C (77.00 ppm); Coupling constants are reported in Hertz (Hz). Data for 1H NMR spectra are reported as follows: chemical shift (ppm, referenced to protium; s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = multiplet, coupling constant (Hz), and integration). HRMS data were obtained on a VG ZAB-HS mass spectrometer, Brucker Apex IV FTMS spectrometer. GC-MS or FID data were measured using the Agilent Technologies 7890B GC and the Agilent Technologies 5977B MSD. The FID yields were all based on standard curves with 5 points and minimum 0.996 R² value (or 4 points and minimum 0.997 R² value).

2. Complementary Reaction Optimization Data

Table S1 Optimization of reaction conditions of three-component

Photocarboxylation^a

н 1а 0.2 m	mol 1	co_2 + c	Ir(III) DIPEA Cs ₂ CO ₃ (2 eq) 467 nm Kessil	(5%) (2 eq) + DMF (2 mL) lamp, 48 h, r.t	Соон
entry	acrylic ester (equiv)	PC (equiv)	light source	additive (equiv)	yield ^b (%)
1	2.0	(Ir[dF(CF ₃)ppy] ₂ (dt bpy))PF ₆ (2%)	456 nm	DIPEA (2.0)	42%
2	2.0	lr(p-F-ppy)₃ (2%)	456 nm	DIPEA (2.0)	35%
3	2.0	(Ir[dF(CF ₃)ppy] ₂ (4, 4'-CF ₃ bpy)PF ₆ (2%)	456 nm	DIPEA (2.0)	32%
4	2.0	Eosin Y (2%)	456 nm	DIPEA (2.0)	47%
5	2.0	4CzIPN (2%)	456 nm	DIPEA (2.0)	29%
6	2.0	[Ir(dFCF ₃ ppy) ₂ - (5,5'-dCF ₃ bpy)]PF ₆ (2%)	456 nm	DIPEA (2.0)	27%
7	2.0	[Ir{dFCF ₃ ppy} ₂ (bpy)]PF ₆ (2%)	456nm	DIPEA (2.0)	23%
8	5.0	(Ir[dF(CF ₃)ppy] ₂ (dt bpy))PF ₆ (2%)	456 nm	DIPEA (2.0)	58%
9	5.0	(Ir[dF(CF ₃)ppy] ₂ (dt bpy))PF ₆ (2%)	467 nm	DIPEA (2.0)	71%
10	5.0	(Ir[dF(CF ₃)ppy] ₂ (dt bpy))PF ₆ (2%)	467 nm	DBU (2.0)	trace
11	5.0	(Ir[dF(CF ₃)ppy] ₂ (dt bpy))PF ₆ (2%)	467 nm	DMAP (2.0)	10.5%

12 ^c	5.0	(Ir[dF(CF₃)ppy]₂(dt bpy))PF ₆ (5%)	467 nm	DIPEA (2.0)	82% (75%)
13	5.0	none	467 nm	DIPEA (2.0)	none
14	5.0	(Ir[dF(CF ₃)ppy] ₂ (dt bpy))PF ₆ (5%)	none	DIPEA (2.0)	trace
15	5.0	(Ir[dF(CF ₃)ppy] ₂ (dt bpy))PF ₆ (5%)	467 nm	none	none

a: Reaction Condition: **1a** (0.2 mmol), acrylic ester (Benzyl acrylate), photocatalyst, DMF (N,N-Dimethylformamide) (2 mL), additive, then irradiated by Kessil 40 W blue LED for 24 h. After the reaction, the resulting mixture was diluted with 3 mL EA and quenched by 3 mL 1 N HCl, then stirred for 5 min. The reaction mixture was extracted by EA six times and the combined organic phases were concentratedin vacuo.

b: NMR yield, the yield in bracket is isolated yield.

c: The reaction time was 48 h.

Table S2 Optimization of reaction conditions of remote benzylic C-H bond carboxylation

$(\operatorname{Ir[d+(CF_3)ppy]_2(dtbpy))PF_6(5\%)}_{H} + \operatorname{Co}_2$ $(\operatorname{Ir[d+(CF_3)ppy]_2(dtbpy))PF_6(5\%)}_{Cs_2CO_3(2.0 eq), DMF(2 mL)} + \operatorname{Ir[d+(CF_3)ppy]_2(dtbpy))PF_6(5\%)}_{H} + \operatorname{Ir[d+(CF_3)ppy]_2(dtbpy))PF_6(5\%)}_{H}$ $\operatorname{Ir[d+(CF_3)ppy]_2(dtbpy))PF_6(5\%)}_{Cs_2CO_3(2.0 eq), DMF(2 mL)} + \operatorname{Ir[d+(CF_3)ppy]_2(dtbpy))PF_6(5\%)}_{H}$ $\operatorname{Ir[d+(CF_3)ppy]_2(dtbpy))PF_6(5\%)}_{Cs_2CO_3(2.0 eq), DMF(2 mL)} + \operatorname{Ir[d+(CF_3)ppy]_2(dtbpy))PF_6(5\%)}_{Cs_2CO_3(2.0 eq), DMF(2 mL)}$ $\operatorname{Ir[d+(CF_3)ppy]_2(dtbpy))PF_6(5\%)}_{Cs_2CO_3(2.0 eq), DMF(2 mL)} + \operatorname{Ir[d+(CF_3)ppy]_2(dtbpy))PF_6(5\%)}_{Cs_2CO_3(2.0 eq), DMF(2 mL)}$ $\operatorname{Ir[d+(CF_3)ppy]_2(dtbpy))PF_6(5\%)}_{Cs_2CO_3(2.0 eq), DMF(2 mL)} + \operatorname{Ir[d+(CF_3)ppy]_2(dtbpy)]PF_6(5\%)}_{Cs_2CO_3(2.0 eq), DMF(2 mL)}$

Entry	Deviations	Yields [%] ^(b) 2 a	2 b
1	none	75 (71)	20
2	no light	trace	trace
3	no (Ir[dF(CF ₃)ppy] ₂ (dtbpy))PF ₆	trace	63
4	N_2 instead of CO_2	trace	85
5	no Cs ₂ CO ₃	67	23
6	4CzIPN instead of	45	44
7		tra a a	FF
1	no DIPEA	trace	55
8	Eosin Y instead of (Ir[dF(CF ₃)ppy] ₂ (dtbpy))PF ₆	32	55
9	CH ₃ CN instead of DMF	44	50
10	(Ir[dF(CF ₃)ppy] ₂ (dtbpy))PF ₆ (2%)	65	18
11	24 h	67	19

[a] Reaction condition: 1a (0.2 mmol), (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (5%), DIPEA (1.0 eq), Cs₂CO₃(2.0 eq), DMF (2 mL), irradiation by Kessil 40 W blue LED for 48 h under 1 atm CO₂ at ambient temperature. [b] 1H NMR yields using 1,1,2,2-tetrachloroethane as an internal standard and yields of isolated products in parentheses. DMF= N,N-Dimethylformamide, DIPEA= N,N-Diisopropylethylamine, 4CzIPN=2,4,5,6-tetrakis(carbazol-9- yl)-1,3-dicyanobenzene, Eosin Y= Solvent Red 43.

3. General Procedure for Carbocarboxylation of substrates

A 50 mL Schlenk tube equipped with a magnetic stir bar was added substrate(0.2 mmol 1eq), alkene(1 mmol, 5 eq), base (0.4 mmol, 2 eq), PC (5%), DIPEA(0.4 mmol, 2 eq),solvent (2 ml) in glovebox. Then the Schlenk tube was sealed and degassed via vacuum evacuation and subsequent backfilled with CO₂ for three times. Then, the reaction was placed under a blue LED (2-meter strips, 18 W) and irradiated for 48 hr. at rt. The reaction was quenched with 1 M HCI, then extracted 3 times with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography isolation on silica gel or prepared TLC to give the product.

4. Preparation of substrates

The procedure was according to the literature¹.

Step 1: To a solution of carboxylic acid (1.0 equiv) and 3-5 drops of anhydrous DMF in anhydrous CH_2Cl_2 (0.5 M) at 0 °C, oxalyl chloride (1.5 equiv) was added dropwise over 10 minutes. The reaction was vigorously stirred at room temperature for 3 h. The solvent was removed in vacuum. Anhydrous CH_2Cl_2 was added to remove the residual oxalyl chloride in vacuum. Then the resulting acyl chloride was dissolved in anhydrous DCM and used directly for the next step without further purification.

Step 2: A solution of the N-(tert-butyl)hydroxylamine hydrochloride (1.0 equiv, or Nisopropylhydroxylamine hydrochloride for **1f**, or N-cyclohexylhydroxylamine hydrochloride for **1g**) in anhydrous THF (0.4 M) was cooled to 0 °C, treated with DIPEA (2.0 equiv) and stirred for 15 minutes. The acyl chloride (1.0 equiv) in anhydrous acetonitrile was added dropwise over 15 minutes. The mixture was allowed to warm to room temperature overnight. The mixture was diluted with saturated NaHCO₃ and EtOAc, the layers were separated. The aqueous layer was extracted with EtOAc (2 x), the combined organic layers were washed with 1 M HCl, saturated NaHCO₃ and brine, successively, and then evaporated. Purification by column chromatography on silica gel eluting with Petroleum ether and EtOAc gave the hydroxylamine **S1**.

Step 3: To a solution of hydroxylamine **S1** (1.05 equiv) in anhydrous CH_2Cl_2 (0.35 M) at 0 °C, Et₃N (1.5 equiv) was added dropwise. 4-trifluoromethyl-benzoyl chloride (1.0 equiv) was then added dropwise over 5 minutes. The reaction was vigorously stirred at room temperature for 2 h. After removing the solvent, the resulting residue was added saturated NaHCO₃ and THF and stirred for 30 minutes. Then, the layers were separated. The aqueous layer was extracted with EtOAc again, the combined organic layers were washed with 1 M HCl, saturated NaHCO₃ and brine, successively, and then evaporated. Purification by column chromatography on silica gel gave **1a-1p**.

5. Structures of hydroxylamine derivatives

1a

1b

1c

1g

1m

1n

10

6. Structures of carboxylation products

2d

2e

3a

3g

3b

7. Analytical Data of the Substrates and Products

N-(tert-butyl)-4-methyl-N-((4-(trifluoromethyl)benzoyl)oxy)pentanamide (1a) 76% overall yield, white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (d, J = 8.1 Hz, 2H), 7.80 (d, J = 8.2 Hz, 2H), 2.26 (dt, J = 15.0, 7.1 Hz, 1H), 2.10 (dt, J = 18.1, 7.0 Hz, 1H), 1.48 (s, 12H), 0.84 –0.76 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.11, 164.63, 135.88 (q, J = 33.0 Hz), 130.49, 130.27, 126.14 (q, J = 3.7 Hz), 123.44 (q, J = 272.9 Hz), 62.95, 33.01, 32.36, 27.64, 27.59, 22.46, 22.37.

All data matched that reported in the literature¹.

1b

N-(tert-butyl)-3-cyclopentyl-N-((4-

(trifluoromethyl)benzoyl)oxy)propanamide (1b) 54% overall yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.1 Hz, 2H), 7.79 (d, J = 8.3 Hz, 2H),

2.28 (dt, J = 15.3, 7.5 Hz, 1H), 2.11 (dt, J = 15.7, 7.5 Hz, 1H), 1.71 - 1.53 (m, 5H), 1.52 - 1.37 (m, 13H), 1.05 - 0.92 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 174.97, 164.58, 135.79 (q, J = 33.0 Hz), 130.45, 130.29, 126.07 (q, J = 3.7 Hz), 123.41 (q, J = 272.9 Hz), 62.86, 39.58, 33.55, 32.50, 32.45, 30.35, 27.52, 25.04.

All data matched that reported in the literature¹.

N-(tert-butyl)-3-cyclohexyl-N-((4-(trifluoromethyl)benzoyl)oxy)propanamide (1c) 70% overall yield, white solid. ¹**H** NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.1 Hz, 2H), 7.79 (d, J = 8.2 Hz, 2H), 2.26 (dt, J = 15.8, 7.8 Hz, 1H), 2.10 (dt, J = 15.8, 7.7 Hz, 1H), 1.66 – 1.52 (m, 5H), 1.52 – 1.40 (m, 11H), 1.20 – 1.01 (m, 4H), 0.91 – 0.71 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 175.26, 164.61, 135.86 (q, J = 33.0 Hz), 130.50, 130.30, 126.12 (q, J = 3.7 Hz), 123.44 (q, J = 272.9 Hz), 62.95, 37.15, 33.21, 33.15, 31.81, 31.60, 27.60, 26.58, 26.27.

All data matched that reported in the literature¹.

N-(tert-butyl)-4-ethyl-N-((4-(trifluoromethyl)benzoyl)oxy)octanamide (1d)

37% overall yield, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.1 Hz, 2H), 7.81 (d, J = 8.2 Hz, 2H), 2.23 (dt, J = 16.1, 8.0 Hz, 1H), 2.09 (dt, J = 15.8, 8.0 Hz, 1H), 1.59 – 1.53 (m, 2H), 1.49 (s, 9H), 1.23 – 1.11 (m, 9H), 0.85 – 0.75 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.20, 164.59, 135.82 (q, J = 33.0 Hz), 130.44, 130.29, 126.05 (q, J = 3.7 Hz), 123.40 (q, J = 272.9 Hz), 62.87, 38.39, 32.58, 32.00, 28.75, 27.67, 27.52, 25.73, 23.01, 13.98, 10.69.

All data matched that reported in the literature¹.

N-(tert-butyl)-2-methyl-N-((4-(trifluoromethyl)benzoyl)oxy)benzamide (1e) 14% overall yield, white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, J = 7.7 Hz, 2H), 7.60 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 7.4 Hz, 1H), 7.10 – 6.98 (m, 3H), 2.42 (s, 3H), 1.61 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.49, 164.27, 136.10, 135.20 (q, J = 32.9 Hz), 134.71, 130.09, 130.05, 129.76, 129.01, 125.72, 125.56 (q, *J* = 3.7 Hz), 125.16, 123.30 (q, *J* = 272.9 Hz), 63.08, 27.61, 18.89.

All data matched that reported in the literature¹.

1f

N-isopropyl-2-methyl-N-((4-(trifluoromethyl)benzoyl)oxy)benzamide (1f) 28% overall yield, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.13 (s, 2H), 7.72 (d, *J* = 8.1 Hz, 2H), 7.42 – 7.09 (m, 4H), 4.44 (s, 1H), 2.49 (s, 3H), 1.29 (d, J = 6.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 163.34,135.44 (q, *J* = 32.8 Hz), 134.43,130.74, 130.53, 130.43, 129.92, 126.44,125.79 (q, *J* = 3.8 Hz), 123.53 (d, *J* = 272.8 Hz), 20.00, 19.21.

All data matched that reported in the literature¹.

1g

N-cyclohexyl-2-methyl-N-((4-(trifluoromethyl)benzoyl)oxy)benzamide (1g) 45% overall yield, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.08 (s, 2H), 7.70 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 7.5 Hz, 1H), 7.27 – 7.12 (m, 3H), 4.73 – 3.49 (m, 1H), 2.48 (s, 3H), 2.11 – 1.92 (m, 2H), 1.79 (d, J = 12.8 Hz, 2H), 1.59 (d, J = 13.2 Hz, 2H), 1.34 – 1.15 (m, 2H), 1.13 – 0.95 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.36, δ 135.26 (q, *J* = 32.8 Hz), 134.39, 132.70, 131.60, 130.52, 130.40, 130.26, 129.70, 129.44, 126.24, 125.67 (q, *J* = 3.7 Hz), 123.40 (q, *J* = 272.9 Hz), 30.32, 25.34, 25.02, 19.07.

All data matched that reported in the literature¹.

N-(tert-butyl)-2,4-dimethyl-N-((4-(trifluoromethyl)benzoyl)oxy)benzamide (1h)

30% overall yield, white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H),

7.11 (d, J = 7.8 Hz, 1H), 6.89 (s, 1H), 6.82 (d, J = 7.8 Hz, 1H), 2.38 (s, 3H), 2.16 (s, 3H), 1.60 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.76, 164.31, 138.86, 135.17 (q, J = 32.7 Hz), 133.25, 130.81, 130.24, 129.84, 125.86, 125.77, 125.56 (q, J = 3.9 Hz), 123.33 (q, J = 272.9 Hz), 63.03, 27.70, 21.10, 18.89.

All data matched that reported in the literature².

N-(tert-butyl)-4-methoxy-2-methyl-N-((4-(trifluoromethyl)benzoyl)oxy)benzamide (1i)

30% overall yield, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.4 Hz, 1H), 6.62 (d, J = 2.7 Hz, 1H), 6.56 (dd, J = 8.4, 2.7 Hz, 1H), 3.68 (s, 3H), 2.42 (s, 3H), 1.60 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.59, 164.40, 159.99, 135.32 (q, J = 33.0 Hz), 130.29, 129.97, 128.69, 127.81, 125.73 (q, J = 3.9 Hz), 123.42 (q, J = 272.9 Hz), 115.66, 110.48, 63.10, 55.18, 27.85, 19.41.

All data matched that reported in the literature².

1j

N-(tert-butyl)-4-fluoro-2-methyl-N-((4-(trifluoromethyl)benzoyl)oxy)benzamide (1j)

25% overall yield, colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.1 Hz, 2H), 7.64 (d, *J* = 8.3 Hz, 2H), 7.21 (dd, *J* = 8.4, 5.8 Hz, 1H), 6.79 (dd, *J* = 9.7, 2.3 Hz, 1H), 6.73 (td, *J* = 8.4, 2.3 Hz, 1H), 2.42 (s, 3H), 1.60 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.54, 164.16, 162.60 (q, J = 248.3 Hz), 137.8, 135.31 (q, J = 33.0 Hz), 132.10, 129.80, 127.91 (q, J = 8.8 Hz), 125.74 (q, J = 3.7 Hz), 124.61, 123.26 (d, J = 272.9 Hz), 121.90, 116.92 (q, J = 21.4 Hz), 112.15 (q, J = 21.7 Hz), 63.24, 27.63, 19.06.

All data matched that reported in the literature².

N-(tert-butyl)-4-chloro-2-methyl-N-((4-(trifluoromethyl)benzoyl)oxy)benzamide (1k)

14% overall yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.1 Hz, 2H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.17 (d, *J* = 8.2 Hz, 1H), 7.09 (s, 1H), 7.02 (dd, *J* = 8.2, 1.5 Hz, 1H), 2.40 (s, 3H), 1.60 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ170.34, 164.16, 136.85, 135.52 (q, *J* = 33.0 Hz), 134.71, 134.47, 130.12, 129.84, 129.77, 127.29, 125.78 (q, *J* = 3.7 Hz), 125.36, 123.26 (q, *J* = 273.0 Hz), 63.33, 27.62, 18.84.

All data matched that reported in the literature².

4-bromo-N-(tert-butyl)-2-methyl-N-((4-(trifluoromethyl)benzoyl)oxy)benzamide (11)

10% overall yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, J = 8.3 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 2.1 Hz, 1H), 7.18 (dd, J = 8.2, 2.1 Hz, 1H), 7.10 (d, J = 8.2 Hz, 1H), 2.40 (s, 3H), 1.60 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.46, 164.28, 137.18, 135.64 (q, J = 33.0 Hz), 135.06, 133.14, 129.96, 129.87, 128.40, 127.57, 125.90 (q, J = 3.9 Hz), 123.37 (q, J = 273.1 Hz), 123.13, 63.46, 27.73, 18.89.

HRMS (ESI) (m/z): Calcd. $C_{20}H_{20}BrF_3NO_3^+$ [M+H]⁺ : 458.0500. Found: 458.0573

N-(tert-butyl)-3-fluoro-2-methyl-N-((4-

(trifluoromethyl)benzoyl)oxy)benzamide (1m)

32% overall yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.1 Hz, 2H), 7.63 (d, *J* = 8.2 Hz, 2H), 7.01 (q, *J* = 3.3 Hz, 2H), 6.85 (ddt, *J* = 9.5, 5.9, 3.7 Hz, 1H), 2.32 (d, *J* = 2.1 Hz, 3H), 1.61 (s, 9H)

¹³C NMR (101 MHz, CDCl₃) δ 169.87, 164.13, 160.82 (q, *J* = 245.5 Hz), 138.23, 135.45 (q, *J* = 32.9 Hz), 129.80, 127.32, 126.73 (q, *J* = 6.8 Hz), 125.70 (q, *J* = 3.7 Hz), 123.25 (q, *J* = 272.9 Hz), 121.47, 121.44, 115.67 (q, *J* = 22.7 Hz), 63.37, 27.57, 11.16.

HRMS (ESI) (m/z): Calcd. $C_{20}H_{20}F_4NO_3^+$ [M+H]⁺: 398.1301. Found: 398.1373.

N-(tert-butyl)-2,4,5-trimethyl-N-((4-(trifluoromethyl)benzoyl)oxy)benzamide (1n)

18% overall yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 8.3 Hz, 2H), 6.99 (s, 1H), 6.83 (s, 1H), 2.35 (s, 3H), 2.06 (d, *J* = 8.2 Hz, 6H), 1.60 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.80, 164.31, 137.43, 135.09 (q, *J* = 32.8 Hz), 133.50, 133.19, 131.34, 130.33, 129.82, 127.05, 125.47 (q, *J* = 3.7 Hz), 123.33 (q, *J* = 272.9 Hz), 119.26, 62.96, 27.68, 19.32, 18.83, 18.37.

HRMS (ESI) (m/z): Calcd. $C_{22}H_{25}F_3NO_3^+$ [M+H]⁺: 408.1708. Found: 408.1782.

N-(tert-butyl)-3-methoxy-2-methyl-N-((4-(trifluoromethyl)benzoyl)oxy)benzamide (10)

15% overall yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, *J* = 6.1 Hz, 2H), 7.59 (d, *J* = 8.1 Hz, 2H), 7.06 – 6.94 (m, 1H), 6.82 (d, *J* = 7.5 Hz, 1H), 6.65 (d, *J* = 8.1 Hz, 1H), 3.71 (s, 3H), 2.27 (s, 3H), 1.62 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.31, 164.23, 157.44, 135.12 (q, *J* = 32.9 Hz), 130.19, 129.82, 127.39, 125.49 (q, *J* = 3.7 Hz), 123.32 (d, *J* = 272.9 Hz), 117.82, 110.51, 63.10, 55.42, 27.54, 12.39

HRMS (ESI) (m/z): Calcd. $C_{21}H_{23}F_3NO_4^+$ [M+H]⁺ : 410.1501. Found: 410.1573.

2-((benzyloxy)carbonyl)-7-(tert-butylamino)-4,4-dimethyl-7-oxoheptanoic acid (2a)

Yield : 82%, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 5H), 5.48 (s, 1H), 5.17 (s, 2H), 3.49 (t, J = 6.1 Hz, 1H), 2.06 (ddd, J = 14.3, 10.7, 7.2 Hz, 2H), 2.00 – 1.88 (m, 2H), 1.60 – 1.44 (m, 2H), 1.33 (s, 9H), 0.84 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 173.91, 172.89, 170.38, 135.36, 128.55, 128.36, 128.31, 128.15, 67.29, 51.37, 48.18, 39.04, 37.27, 32.85, 32.59, 28.71, 26.76, 26.68.
HRMS (ESI) (m/z): Calcd. C₂₁H₃₂NO₅⁺ [M+H]⁺: 378.2202. Found: 378.2275.

3-(benzyloxy)-2-((1-(3-(tert-butylamino)-3-oxopropyl)cyclohexyl)methyl)-3oxopropanoic acid (2b)

Yield : 76%, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 10.81 (s, 1H), 7.33 (q, *J* = 3.7, 3.3 Hz, 5H), 5.69 (s, 1H), 5.16 (d, *J* = 4.2 Hz, 2H), 3.44 (q, *J* = 7.9, 6.8 Hz, 1H), 2.17 – 1.91 (m, 4H), 1.61 – 1.52 (m, 4H), 1.44 – 1.13 (m, 14H).

¹³C NMR (101 MHz, CDCl₃) δδ 174.23, 173.15, 170.91, 135.42, 128.55, 128.29, 128.16, 67.19, 51.18, 47.53, 35.43, 35.13, 31.62, 28.71, 26.11, 21.30.
 HRMS (ESI) (m/z): Calcd. C₂₄H₃₆NO₅⁺ [M+H]⁺ : 418.2515 Found: 418.2588.

2c

3-(benzyloxy)-2-((1-(3-(tert-butylamino)-3-oxopropyl)cyclopentyl)methyl)-3oxopropanoic acid (2c)

Yield : 81%, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 10.33 (s, 1H), 7.36 – 7.31 (m, 6H), 5.66 (s, 1H), 5.21 – 5.12 (m, 2H), 3.45 (t, *J* = 5.9 Hz, 1H), 2.15 – 1.97 (m, 4H), 1.58 (tt, *J* = 9.2, 4.0 Hz, 4H), 1.40 – 1.20 (m, 15H).

¹³C NMR (101 MHz, CDCl₃) ¹³C NMR (101 MHz, CDCl₃) δ 174.08, 173.13, 170.56, 135.29, 128.58, 128.36, 128.14, 67.33, 51.30, 48.82, 45.00, 37.31, 37.26, 28.70, 24.05, 24.02.

HRMS (ESI) (m/z): Calcd. C₂₃H₃₄NO₅⁺ [M+H]⁺ : 404.2359 Found: 404.2427.

2d

2-((benzyloxy)carbonyl)-4-(3-(tert-butylamino)-3-oxopropyl)-4ethyloctanoic acid (2d)

Yield : 79%, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 9.88 (s, 1H), 7.36 – 7.30 (m, 5H), 5.65 (d, *J* = 4.7 Hz, 1H), 5.23 – 5.11 (m, 2H), 3.45 (t, *J* = 5.9 Hz, 1H), 2.08 – 1.80 (m, 4H), 1.48 – 1.37 (m, 2H), 1.32 (d, *J* = 4.2 Hz, 9H), 1.22 – 1.02 (m, 8H), 0.91 – 0.65 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 173.97, 170.38, 135.24, 128.59, 128.39, 128.25, 128.16, 77.37, 77.05, 76.73, 67.40, 51.26, 47.39, 37.91, 37.74, 35.05, 34.12, 32.05, 31.82, 28.72, 28.03, 24.82, 23.41, 14.08, 7.32.

HRMS (ESI) (m/z): Calcd. $C_{25}H_{40}NO_5^+$ [M+H]⁺ : 434.2828 Found: 434.2894.

7-(tert-butylamino)-4,4-dimethyl-7-oxo-2-((2-phenoxyethoxy)carbonyl)heptanoic acid (2e)

Yield : 66%, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H), 7.27 (t, *J* = 6.3, 5.5, 2.6 Hz, 2H), 6.95 (t, *J* = 7.3 Hz, 1H), 6.89 (d, *J* = 8.1 Hz, 2H), 5.59 (s, 1H), 4.54 – 4.41 (m, 2H), 4.18 (t, *J* = 4.9 Hz, 2H), 3.46 (t, *J* = 7.2, 5.0 Hz, 1H), 2.12 – 2.03 (m, 2H), 2.02 – 1.84 (m, 2H), 1.62 – 1.41 (m, 2H), 1.31 (s, 9H), 0.85 (d, *J* = 3.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 173.88, 172.63, 170.55, 158.38, 129.53, 129.47, 121.22, 114.69, 114.63, 65.51, 63.72, 51.37, 48.09, 39.06, 37.25, 32.85, 32.55, 28.76, 28.70, 26.72, 26.69, 19.47.

HRMS (ESI) (m/z): Calcd. C₂₂H₃₄NO₆⁺ [M+H]⁺ : 408.2308 Found: 408.2393.

7-(tert-butylamino)-2-(((2-ethylhexyl)oxy)carbonyl)-4,4-dimethyl-7oxoheptanoic acid (2f)

Yield : 71%, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 10.57 (s, 1H), 5.60 (s, 1H), 4.12 – 4.00 (m, 2H), 3.42 (t, *J* = 6.1 Hz, 1H), 2.16 – 2.05 (m, 2H), 2.01 – 1.84 (m, 2H), 1.65 – 1.46 (m, 3H), 1.43 – 1.22 (m, 19H), 0.93 – 0.85 (m, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 173.76, 173.73, 170.58, 68.07, 68.05, 51.34, 48.13, 39.02, 38.61, 37.26, 32.83, 32.61, 30.25, 28.85, 28.82, 28.71, 26.74, 26.67, 23.68, 22.98, 22.94, 22.91, 14.04, 10.92, 10.90.

HRMS (ESI) (m/z): Calcd. C₂₂H₄₂NO₅⁺ [M+H]⁺ : 400.2985 Found: 400.3057.

7-(tert-butylamino)-2-((dodecyloxy)carbonyl)-4,4-dimethyl-7-oxoheptanoic acid (2g)

Yield : 71%, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 10.66 (s, 1H), 5.60 (s, 1H), 4.13 (t, *J* = 6.8 Hz, 2H), 3.42 (t, *J* = 6.9, 5.3 Hz, 1H), 2.18 – 2.05 (m, 2H), 1.93 (qd, *J* = 14.5, 6.1 Hz,

2H), 1.64 (p, *J* = 7.0 Hz, 2H), 1.55 – 1.44 (m, 2H), 1.30 (d, *J* = 30.3 Hz, 28H), 0.88 (d, *J* = 2.8 Hz, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 173.81, 173.54, 170.52, 65.88, 51.36, 48.11, 39.04, 37.22, 32.85, 32.61, 31.92, 29.65, 29.64, 29.59, 29.51, 29.35, 29.20, 28.71, 28.38, 26.78, 26.70, 25.78, 22.69, 14.12.

HRMS (ESI) (m/z): Calcd. $C_{26}H_{50}NO_5^+$ [M+H]⁺ : 456.3611 Found: 456.3680.

7-(tert-butylamino)-2-((cyclohexyloxy)carbonyl)-4,4-dimethyl-7oxoheptanoic acid (2)

Yield : 71%, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 10.25 (s, 1H), 5.61 (s, 1H), 4.82 (tt, J = 8.7, 3.8 Hz, 1H), 3.39 (dd, J = 7.0, 5.2 Hz, 1H), 2.09 (q, J = 7.6, 6.7 Hz, 2H), 1.97 (dd, J = 14.4, 7.2 Hz, 1H), 1.92 – 1.78 (m, 5H), 1.77 – 1.66 (m, 4H), 1.61 – 1.39 (m, 8H), 1.34 (d, J = 4.0 Hz, 14H).

¹³C NMR (101 MHz, CDCl₃) δ 173.76, 173.74, 169.92, 73.94, 51.30, 48.42, 38.98, 37.21, 32.87, 32.64, 31.24, 31.19, 28.71, 26.81, 25.30, 23.55, 23.52.

HRMS (ESI) (m/z): Calcd. $C_{20}H_{36}NO_5^+$ [M+H]⁺ : 370.2515 Found: 370.2585.

7-(tert-butylamino)-2-(4-cyanophenyl)-4,4-dimethyl-7-oxoheptanoic acid (2i) Yield : 71%, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 – 7.57 (m, 2H), 7.49 – 7.43 (m, 2H), 5.42 (s, 1H), 3.75 (dd, J = 8.2, 4.4 Hz, 1H), 2.29 (dd, J = 14.2, 8.2 Hz, 1H), 2.13 – 1.94 (m, 2H), 1.62 – 1.45 (m, 3H), 1.31 (s, 9H), 0.83 (d, J = 3.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 177.08, 173.58, 146.48, 132.36, 128.91, 118.72, 110.89, 51.40, 48.07, 44.62, 37.22, 33.42, 32.63, 28.69, 27.16, 26.94.

HRMS (ESI) (m/z): Calcd. $C_{20}H_{36}NO_5^+$ [M+H]⁺ : 370.2515 Found: 370.2585.

7-(tert-butylamino)-2-(4-(methoxycarbonyl)phenyl)-4,4-dimethyl-7oxoheptanoic acid (2j)

Yield : 75%, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.2 Hz, 2H), 7.45 – 7.39 (m, 2H), 5.51 (s, 1H), 3.90 (d, J = 1.8 Hz, 4H), 3.74 (dd, J = 8.3, 4.4 Hz, 1H), 2.29 (dd, J = 14.3, 8.3 Hz, 1H), 2.14 – 1.96 (m, 1H), 1.62 – 1.41 (m, 3H), 1.30 (s, 9H), 0.85 (d, J = 4.5 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ178.09, 176.68, 174.01, 166.89, 166.76, 145.63, 142.89, 130.16, 129.99, 129.51, 129.10, 128.14, 128.04, 52.20, 52.15, 51.53, 47.65, 46.41, 46.09, 44.39, 37.46, 33.44, 32.70, 29.94, 28.66, 27.06, 26.91.

HRMS (ESI) (m/z): Calcd. C₂₁H₃₂NO₅⁺ [M+H]⁺ : 377.2202 Found: 378.2274.

2-(2-(tert-butylcarbamoyl)phenyl)acetic acid (3a)

75% overall yield, colorless liquid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (d, *J* = 4.9 Hz, 3H), 7.33 (td, *J* = 7.9, 6.6, 3.9 Hz, 1H), 6.14 (s, 1H), 3.72 (s, 2H), 1.50 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 172.51, 171.10, 163.16, 135.55, 132.97, 131.54, 131.37, 127.74, 127.62, 52.96, 41.68, 36.80, 31.69, 28.54.

All data matched that reported in the literature³.

2-(2-(tert-butylcarbamoyl)-5-methylphenyl)acetic acid (3b)

67% overall yield, colorless liquid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 (d, *J* = 7.8 Hz, 1H), 7.12 (d, *J* = 7.8 Hz, 1H), 6.11 (s, 1H), 3.68 (s, 2H), 2.35 (s, 3H), 1.49 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.79, 171.29, 142.24, 133.45, 132.53, 132.31, 128.44, 127.34, 52.98, 42.15, 28.82, 28.62, 21.20.

All data matched that reported in the literature³.

3c

2-(2-(cyclohexylcarbamoyl)phenyl)acetic acid (3c)

82% overall yield, colorless liquid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 – 7.43 (m, 1H), 7.39 (ddd, J = 16.0, 7.6, 1.5 Hz, 2H), 7.32 – 7.26 (m, 1H), 6.70 (d, J = 8.1 Hz, 1H), 3.94 (th, J = 13.9, 3.7 Hz, 1H), 3.69 (s, 2H), 2.02 (dq, J = 11.9, 3.6 Hz, 2H), 1.78 (dp, J = 11.1, 3.7 Hz, 2H), 1.67 (dt, J = 12.9, 3.7 Hz, 1H), 1.48 – 1.12 (m, 7H).

¹³C NMR (101 MHz, CDCl₃) δ 172.02, 170.44, 134.49, 133.36, 131.63, 127.81, 127.72, 77.40, 77.08, 76.76, 49.86, 42.04, 32.65, 25.34, 24.84.

HRMS (ESI) (m/z): Calcd. $C_{15}H_{20}NO_3^+[M+H]^+$: 262.1365. Found: 262.1438.

3d

2-(2-(tert-butylcarbamoyl)-5-methoxyphenyl)acetic acid (3d)

64% overall yield, colorless liquid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.6 Hz, 1H), 6.94 (d, J = 2.5 Hz, 1H), 6.81 (dd, J = 8.6, 2.6 Hz, 1H), 6.06 (s, 1H), 3.82 (s, 3H), 3.71 (s, 2H), 1.49 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.62, 171.01, 161.86, 135.79, 129.05, 127.36, 116.43, 113.79, 55.57, 52.94, 42.49, 28.64.

All data matched that reported in the literature³.

3e

2-(5-bromo-2-(tert-butylcarbamoyl)phenyl)acetic acid (3e)
57% overall yield, colorless liquid.
¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 5.6 Hz, 2H), 7.36 – 7.28 (m, 1H),
6.15 (s, 1H), 3.72 (s, 2H), 1.50 (s, 9H).
¹³C NMR (101 MHz, CDCl₃) δ 171.60, 171.21, 135.26, 133.43, 131.84, 131.67,
127.85, 127.28, 53.11, 42.11, 28.60..
All data matched that reported in the literature³.

2-(2-(tert-butylcarbamoyl)-5-chlorophenyl)acetic acid (3f)

64% overall yield, colorless liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.33 (m, 2H), 7.29 (dd, *J* = 8.3, 2.0 Hz, 1H), 6.28 (s, 1H), 3.70 (s, 2H), 1.48 (s, 9H).
¹³C NMR (101 MHz, CDCl₃) δ 171.20, 170.09, 137.57, 135.12, 133.78, 131.75,

130.53, 128.70, 128.00, 125.49, 53.25, 41.64, 28.57.

All data matched that reported in the literature³.

2-(2-(isopropylcarbamoyl)phenyl)acetic acid (3g) 64% overall yield, colorless liquid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.40 (m, 3H), 7.36 – 7.29 (m, 1H), 6.29 (s, 1H), 4.28 (dt, *J* = 13.3, 6.7 Hz, 1H), 3.72 (s, 2H), 1.31 (d, *J* = 6.5 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.55, 170.59, 134.27, 133.62, 131.89, 131.87, 127.89, 127.41, 43.07, 42.20, 22.46.

HRMS (ESI) (m/z): Calcd. $C_{12}H_{16}NO_3^+ [M+H]^+$: 222.1052. Found: 222.1124.

ÓMe COOH

3h

2-(2-(tert-butylcarbamoyl)-6-methoxyphenyl)acetic acid (3h)

57% overall yield, colorless liquid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.0 Hz, 1H), 7.04 – 6.94 (m, 2H), 6.08 (s, 1H), 3.88 (s, 3H), 3.75 (s, 2H), 1.49 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.09, 170.86, 158.70, 137.36, 128.80, 121.93, 118.61, 113.18, 56.09, 52.96, 35.21, 28.62.

HRMS (ESI) (m/z): Calcd. $C_{14}H_{20}NO_4^+$ [M+H]⁺ : 266.1314. Found: 266.1386.

3i

2-(2-(tert-butylcarbamoyl)-4,5-dimethylphenyl)acetic acid (3i)

60% overall yield, colorless liquid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (s, 1H), 7.17 (s, 1H), 3.65 (s, 2H), 2.26 (d, *J* = 3.5 Hz, 6H), 1.49 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 172.13, 171.36, 140.94, 136.41, 133.08, 132.47, 130.89, 130.56, 128.24, 125.55, 52.94, 41.74, 28.65, 19.57, 19.35.

HRMS (ESI) (m/z): Calcd. $C_{15}H_{22}NO_3^+$ [M+H]⁺ : 264.1521. Found: 264.1596.

2-(2-(tert-butylcarbamoyl)-5-fluorophenyl)acetic acid (3j)

61% overall yield, colorless liquid.

¹**H** NMR(400 MHz, CDCl₃) δ 7.46 (dd, J = 8.6, 5.5 Hz, 1H), 7.12 (dd, J = 9.1, 2.5 Hz, 1H), 7.00 (td, J = 8.2, 2.6 Hz, 1H), 6.22 (s, 1H), 3.70 (s, 2H), 1.49 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.93, 170.22, 163.92 (d, *J* = 253.5 Hz), 136.39, 136.31, 131.58, 131.54, 129.67, 129.58, 118.82, 118.60, 114.98, 114.76, 53.21, 42.00, 28.57.

HRMS (ESI) (m/z): Calcd. C₁₃H₁₇FNO₃⁺ [M+H]⁺ : 254.1114. Found: 254.1186.

2-(2-(tert-butylcarbamoyl)-6-fluorophenyl)acetic acid (3k)

58% overall yield, colorless liquid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 1H), 7.28 – 7.15 (m, 2H), 6.19 (s, 1H), 3.79 (s, 2H), 1.49 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.67, 169.56, 161.55 (d, *J* = 250.5 Hz), 137.98, 129.35, 129.26, 122.83, 122.79, 120.78 (d, *J* = 17.5 Hz), 118.30 (d, *J* = 22.8 Hz), 53.12, 33.98, 33.95, 28.58.

HRMS (ESI) (m/z): Calcd. C₁₃H₁₇FNO₃⁺ [M+H]⁺ : 254.1114. Found: 254.1186.

8. NMR Spectra of New Compounds and Products

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

68.07 68.05 68.05 33.0 33.02 3

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H HMR of mixture (a:b molar ratio = 1:1)

¹H HMR of mixture (a:b molar ratio = 1:3)

8. References

1. Chen, H.; Guo, L.; Yu, S., Primary, Secondary, and Tertiary gamma-C(sp(3))-H Vinylation of Amides via Organic Photoredox-Catalyzed Hydrogen Atom Transfer. *Org Lett* **2018**, *20* (19), 6255-6259.

Ruan, X.-Y.; Zhang, T.; Li, W.-A.; Yin, Y.-Z.; Han, Z.-Y.; Gong, L.-Z., Photoinduced and palladium-catalyzed hydrogen atom transfer triggered 1,2-difunctionalization of 1,3-dienes with hydroxamides. *Science China Chemistry* **2022**, *65* (5), 863-869.
 Xia Y, Liu Z, Feng S, et al. Ir (III)-catalyzed aromatic C–H bond functionalization via

metal carbene migratory insertion[J]. The Journal of Organic Chemistry, 2015, 80(1): 223-236.