Supplementary Information

Tab. S1 Traditional wet finishing process						
Process	Materials	Dosage/	Temperature	Time/	pН	
		%	/ºC	min		
Degreasing	Water	200	45			
	Degreasing agent	1		60		
Washing	Water	300	37	10		
Neutralizing	Water	100	37			
	Neutralizing agent	2				
	Sodium formate	1		40		
	Sodium bicarbonate	0.2		40	5.0	
Retanning [®]	Water	100	40			
	Acrylic retanning agent	6		60		
Fatliquoring	Water	150	50			
	Anionic fatliquoring agent	20		50		
Dyeing	Yellow dyes	2		50		
	Formic acid [®]	1.2			3.5	
Washing	Water	300	25	5		
	Hang	g drying				

1. Tables of wet finishing processes

Process	Materials	Dosage/	Temperature/	Time/	
		%	°C	min	pН
Degreasing	Water	200	45		
	Degreasing agent	1		60	
Washing	Water	300	37	10	
Neutralizing	Water	100	37		
	Neutralizing agent	2			
	Sodium formate	1		40	
	Sodium bicarbonate	0.2		40	5.5
	Water	150	50		
Wet	pADD/	10		<i></i>	
finishing	pADD-DMENA [®]	18		60	
	Yellow dyes	2			
Washing	Water	300	25	5	

Note: 1) The dosage of chemicals was calculated based on the weight of the TWS tanned leather.

(2) In the pADD-DMENA trial, the yellow dye was not added.

2¹H-NMR of pADD, DMNA and DMENA

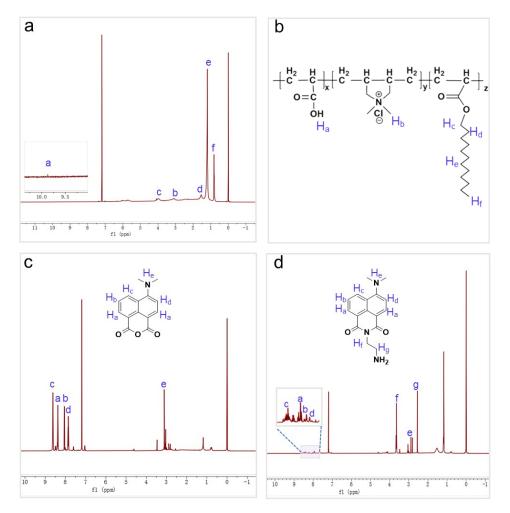


Fig. S1 ¹H-NMR spectrum of pADD (a), DMNA (c) and DMENA (d). (b) Structure of pADD.

The spectra of pADD are shown in Fig. S1a, and the signal at 10.05 ppm is attributed to the carboxyl group of AC, and the signal at 3.06 ppm is from the -CH₃ of DMDAAC ¹. Furthermore, the signals at 3.98 ppm, 1.17 ppm and 0.80 ppm are attributed to DA alkyl groups. Also, no signal appeared at almost 5.5 ppm, indicating that each monomer's unsaturated double bond was involved in the reaction ², demonstrating the synthesis of pADD. The signal peak of the methyl group in dimethylamine appears at 3.11 ppm³, as shown in Fig. S1c, indicating that dimethylamine has been successfully grafted onto naphthalimide. The ¹H-NMR spectra of DMENA show the signal peak characteristics of monomeric DMNA, but also, the

methylene signal peaks in ethylenediamine were close to 3.64 and 2.53 ppm, indicating that DMENA was prepared successfully (Fig. S1d).

3 ¹H-NMR of pADD-DMENA

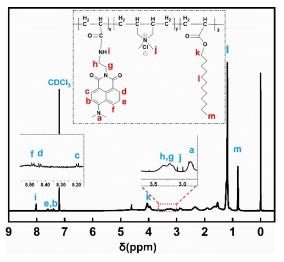


Fig. S2 ¹H-NMR spectrum of pADD-DMENA.

4 GPC of pADD

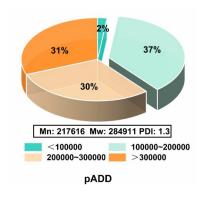
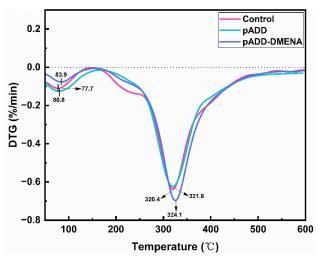
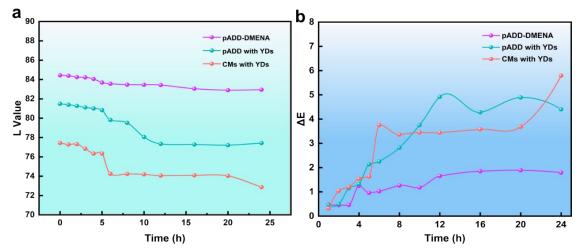
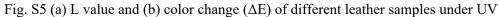
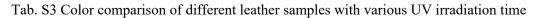
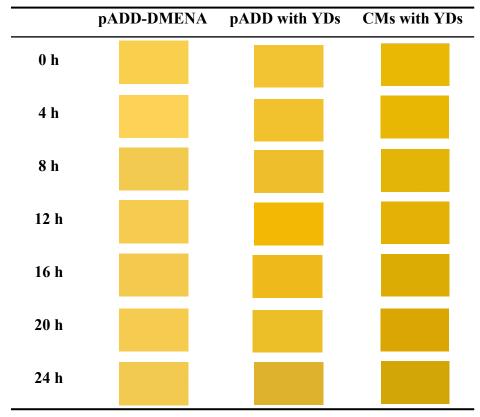


Fig. S3 The molecular weight of pADD.

5 DTG curves of crust leathers


Fig. S4 DTG curves of different treated crust leathers.



6 Lightfastness comparison of different leather samples

irradiation for 24 h.

7 Environmental impact assessment

Commission	TOC (Λ has a matrix μ matrix $(0/1)$					
Samples	Initial	Residual	- Absorption rate (%)				
pADD-DMENA	67445.5 ± 1.27	9432.2 ± 3.82	86.01%				
pADD	85997.8 ± 2.56	10701.7 ± 2.35	87.55%				
CMs	108077.7 ± 3.41	36445.9 ± 2.64	66.58%				
Tab. S5 The value of BOD_5 and COD_{Cr} of different wet finishing wastewater							
Samples	BOD ₅ (mg/L)	COD _{Cr} (mg/L)	BOD ₅ /COD				
pADD-DMENA	3325.3 ± 0.54	9379.1 ± 0.48	0.35 ± 0.0045				
pADD	3545.9 ± 0.27	11068.1 ± 0.33	0.32 ± 0.0003				
CMs	6137.9 ± 0.59	22895.2 ± 0.62	0.27 ± 0.0007				

Tab. S4 The TOC value of different wet finishing wastewater

References

1X. Xia, Y. Feng, J. Guo, S. Liu, J. Jin and Y. Yu, Polym. Eng. Sci., 2017, 57, 78-88.

2D. Hao, X. Wang, X. Liu, X. Zhu, S. Sun, J. Li and O. Yue, *J. Hazard. Mater.*, 2020, **399**, 123048.

3L. De Smet, G. Vancoillie, P. Minshall, K. Lava, I. Steyaert, E. Schoolaert, E. Van De Walle, P. Dubruel, K. De Clerck and R. Hoogenboom, *Nat Commun*, 2018, 9, 1123.