Efficient algal lipid extraction via green bioelectro-Fenton process and its conversion into biofuel and bioelectricity with concurrent wastewater treatment in photosynthetic microbial fuel cell

Swati Das¹, Rishabh Raj², Makarand M. Ghangrekar^{1, 2, 3}*

¹ PK Sinha Centre for Bioenergy & Renewables, Indian Institute of Technology Kharagpur,

Kharagpur – 721302, India

² School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur,

Kharagpur – 721302, India

Supplementary file:

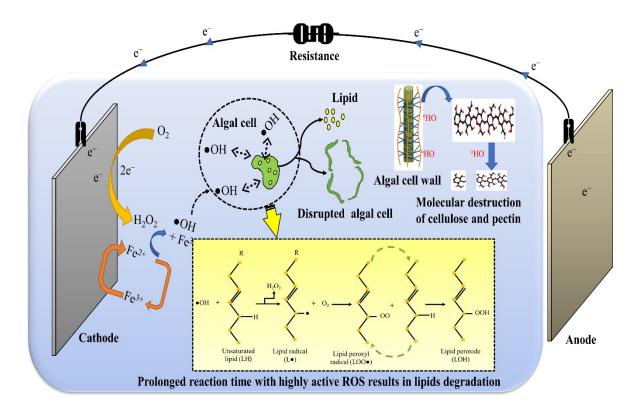
Table S1: Configuration of all BEF-PMFCs fabricated during experimentation

PMFC designation	Catalyst coating		
BEF-PMFC-T1	Cathode surface coated with Ni-Pd/C catalyst		
BEF-PMFC-T2	Cathode surface coated with CoFe-AC catalyst		
BEF-PMFC-T3	Cathode surface coated with AC-Fe catalyst		
PMFC-C	Bare carbon felt; Without having any catalyst		

³ Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur – 721302, India

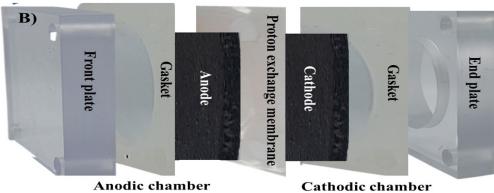
^{*} Corresponding author Tel.: +91 3222 283440; E-mail: ghangrekar@civil.iitkgp.ac.in

Table S2: A comparative results of different advanced oxidation process-assisted algal cell disruption with yield


Advanced oxidation	Optimal condition	Microalgal strain	Algal lipid recovery	Reference
Fenton	FeSO ₄ conc.: 0.025 mol/L; RT: 4 min; H ₂ O ₂ conc.: 0.29 mol/L	Chlorella vulgaris	Highest lipid yield of 17.4% w/w; 95 % of lipid extraction efficiency	1
Fenton	0.79% of H_2O_2 ; pH 3.4; Molar ratio of H_2O_2 to $FeCl_3 = 170:1$; RT: 20 min	C. vulgaris	Maximum extraction efficiency for lipids was 77.4%	2
Fenton and Lewis acid reaction	FeCl ₃ concentration: 2 mM; RT: 90 min; Reaction temperature: 87 °C	Nannochloropsis salina	Maximum lipid extraction yield of 213 mg/g biomass; highest extraction yield of 19.3%	3
Electro-Fenton	H ₂ O ₂ concentration: 0.03 mol/L; RT: 40 min; Current density: 0.32 mA/cm ²	Chlorella homosphaera	Maximum lipid yield of 18.29%; highest lipid extraction efficiency of 90.66%	4
Electro Fenton	OH• generation: 1.27 mM; FeSO ₄ conc.: 9.1 mM; Current density:16.4 mA/cm ² ; RT: 37 min	Nannochloropsis oceanica IMET1	Maximum lipid extraction yield of 155 mg; lipid extraction efficiency increased from 40% to 87.5%	5
Photocatalytic reaction	Photoanode: N-doped TiO ₂ ; Cathode: palladium; Reaction time: 4 h; H ₂ O ₂ conc.: 3% v/v	C. vulgaris	96% of lipid-extraction efficiency; FAME yield of 55%	6
Pulsed electric field	Electric field strength: 2.7 kV/cm; Electrode: stainless steel; Electrode distance: 15 mm	C. vulgaris	Highest lipid extraction yield of 22% w/w of biomass	7
Anodic oxidation	H_2O_2 conc.: $8 \pm 2 \mu M$; Applied current: 500 mA Reaction time: 2 h	Scenedesmus dimorphus	Highest extraction yield 23.4 g-lipid/g-of biomass	8
Bio-electro Fenton	H ₂ O ₂ conc.: 125 mg/L, pH 3; RT: 6 h; BEF-Catalyst: Ni-Pd/C	Mixed algal consortium	Highest 39.2 % w/w of lipid yield, 95% of lipid extraction efficiency; maximum power density of 74.5 mW/m ²	Present investigation

Note: FAME: fatty acid methyl ester; Conc.: concentration, RT: retention time; BEF: bioelectro-Fenton

Table S3: Performance efficiency of all three bioelectro-Fenton assisted PMFC setups


Parameter	BEF-PMFC-T1	BEF-PMFC-T2	BEF-PMFC-T3	PMFC-C
OCV (mV)	658.5 ± 52.3	620± 44.2	595± 41.5	550.8 ± 35.6
OV (mV)	162.8 ± 10.6	132 ± 10.1	122 ± 10.2	81.6 ± 9.6
COD removal (%)	89.2 ± 6.5	85.5 ± 6.8	81.2 ± 6.2	72.3 ± 6.1
CE (%)	24.7 ± 1.3	22.3 ± 1.2	20.5 ± 1.2	14.0 ± 1.0
Power density (mW/m²)	74.5	56.8	48.6	25.8
Current density (mA/m²)	625.2	468.7	360.5	292.4
Internal resistance (Ω)	66.5	78.3	90.4	140.0

Note: OCV: open circuit voltage; OV: operating voltage; COD: chemical oxygen demand; CE: coulombic efficiency; BEF: Bio-electro Fenton; PMFC: photosynthetic microbial fuel cell; BEF-PMFC-T1: cathode coated with Ni-Pd/C; BEF-PMFC-T2: cathode coated with CoFe-AC; BEF-PMFC-T3: cathode coated with AC-Fe; PMFC-C: control reactor

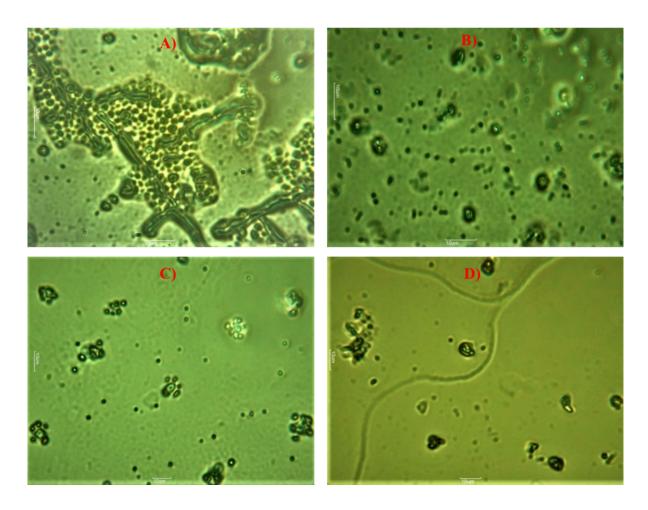


Fig. S1: Reaction in the cathodic chamber of BEF-PMFC along with algal cell disruption mechanism in the presence of highly reactive oxygen species

Fig. S2: (A) Three double chamber Fenton-assisted PMFC named as BEF-PMFC-T1 (cathode coated with Ni-Pd/C catalyst, BEF-PMFC-T2 (cathode coated with CoFe-AC catalyst) and BEF-PMFC-T3 (cathode coated with AC-Fe catalyst); (B) Schematic diagram of bioelectro-Fenton-assisted PMFC fabricated with acryl sheet

Fig. S3: Microscopic image of algal cell disruption under a magnification of 100X resolution: (A) Intact algal cell; (B) AC-Fe; (C) CoFe-AC; (D) Ni-Pd/C catalyst-assisted disrupted algal cell

Reference

- 1. A. Steriti, R. Rossi, A. Concas and G. Cao, *Bioresour. Technol.*, 2014, **164**, 70-77.
- 2. I. Lee and J.-I. Han, *Renew. Energy*, 2021, **175**, 415-421.
- 3. D.-Y. Kim, J.-Y. Park, S.-A. Choi, Y.-K. Oh, I.-G. Lee, Y.-W. Seo and J.-I. Han, *Algal Res.*, 2014, **6**, 86-90.
- 4. W. P. Sandani, M. Premaratne, T. U. Ariyadasa and J. K. Premachandra, *Bioresour. Technol.*, 2022, **343**, 126110.
- 5. S. Zhang, Y. Hou, Z. Liu, X. Ji, D. Wu, W. Wang, D. Zhang, W. Wang, S. Chen and F. Chen, *Energies*, 2020, **13**, 3813.
- 6. Y. Wu, W. Xiang, L. Li, H. Liu, N. Zhong, H. Chang and B. E. Rittmann, *Chem. Eng. J.*, 2021, **420**, 130517.
- 7. C. Joannes, C. S. Sipaut, J. Dayou, S. M. Yasir and R. F. Mansa, *International Journal of Renewable Energy Research*, 2015, **5**, 598-621.
- 8. L. Hua, L. Guo, M. Thakkar, D. Wei, M. Agbakpe, L. Kuang, M. Magpile, B. P. Chaplin, Y. Tao and D. Shuai, *Bioresour. Technol.*, 2016, **203**, 112-117.