Supporting Information

for

Metal-free visible-light-induced phosphorylation of unactivated alkyl iodides with white phosphorus as the P-

atom source

Fushan Chen, Jialiang Peng, Yue Ying, Yinwei Cao, Pengxiang Xu,* Guo Tang* and Yufen Zhao

Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China E-mail: <u>xpengxiang@xmu.edu.cn</u>, <u>t12g21@xmu.edu.cn</u>

Table of Contents

1	General information	S2
2	Tables for optimization of the reaction conditions	S 3
3	General experimental procedures	S7
4	Photograph of photoreactor	S10
5	Luminescence quenching experiments	S11
6	Control experiments and proposed reaction mechanism	S13
7	Characterization for products	S14
8	Supplementary reference	S22
9	NMR spectrum of isolated products	S23

1. General information.

All reactions were carried out under dry argon (unless otherwise noted). All glassware was ovendried (120 °C, 6 h) prior to use. Toluene was freshly distilled over sodium with the use of diphenyl ketone as an indicator then stored over molecular sieve (3 Å). N,N-dimethylformamide, dimethyl sulfoxide, N,N-dimethylacetamide, tetrahydrofuran, acetone and acetonitrile were purchased from Energy Chemical (99.5%, with molecular sieves, water ≤ 50 ppm) and used as the solvent. Methanol, dichloromethane, petroleum ether and ethyl acetate are all ACS grade were obtained commercially and used as eluent without further purification. ¹H, ¹³C, ³¹P and ¹⁹F NMR spectra were measured on Bruker AV 500M spectrometers with CDCl₃ as solvent. Data were reported relative to solvent peaks CDCl₃ (7.26 ppm) for ¹H and CDCl₃ (77.26 ppm) for ¹³C. 85% H₃PO₄ as external standard for ${}^{31}P{}^{1}H$ NMR spectra, ${}^{19}F{}^{1}H$ chemical shifts were un-calibrated. Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, br = broad), coupling constants in Hertz (Hz). The products were purified by column chromatography on silica gel 300-400 mesh. The CAS number of the known compound was listed. All products were further characterized by HRMS (FT-ICR-MS) and an electrospray ionization source in positive-ion mode. The Uv-vis absorption were recorded by Shimadzu UV-2550. Alkyl iodides, Hantzsch ester (HE), Cesium fluoride, and other commercial reagents were purchased from TCI, Energy Chemical and Aldrich and used without further purification.

Safety note for P₄: White phosphorus is spontaneously flammable; it should be stored in water or glove box. White phosphorus-toluene solution should be sealed in argon and stored away from light. **Preparation of P**₄-toluene solution: A piece of P₄ was taken out of water and then put in ethanol under argon. Two minutes later, P₄ was taken out and the ethanol on the surface of P₄ was blown away by the argon. Then, the dry P₄ was put in a conical flask containing toluene. The mixture was stirred intensely with a magnetic stirrer until P₄ was completely dissolved in the toluene. (the concentration of P₄ was determined by ³¹P NMR analysis using triphenyl phosphate (C₆H₅O)₃P(O) as an internal standard, D1 = 20 s, zg30, LB = 1).

2. Tables for optimization of the reaction conditions

Yield of product determined by ${}^{31}P{}^{1}H$ NMR analysis of the crude reaction mixture using $(C_6H_5O)_3P(O)$ as an internal standard. After confirming the yield of **4a** and **5a**, (*di-tert*-butyl peroxide DTBP, 0.1 mL) was added and stirred at room temperature for 5 h in air, and the yield of **3a** was determined by ${}^{31}P{}^{1}H$ NMR analysis. A control experiment was performed to confirm the content of the internal standard did not decrease during the oxidation process (DTBP and $(C_6H_5O)_3P(O)$ in a mixture of DMF and toluene were stirred at rt. for 5 h in air). Yield of **3a** was analyzed by ${}^{31}P{}^{1}H$ spectra (D1 = 20 s, zgig30, LB = 1). Yield of **4a** were analyzed by ${}^{31}P$ spectra (D1 = 20 s, zgig30, LB = 1).

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4CzIPN (5 HE (5.0 Base (3.4 toluene/ blue LE	mol%) eq.) R− 5 eq.) DMF EDs	O C P-OH + R-F H F 3a 4	$R = n-C_{10}H_{21} + R - P - R$
Entry	Different Page		Yield $(\%)^b$		Full conversion
Entry	Different Base –	3 a	4 a	5 a	of P ₄ ?
1	NaOH	0	35	0	\checkmark
2	Na ₂ CO ₃	12	43	0	\checkmark
3	NaHCO ₃	13	52	0	\checkmark
4	K ₂ CO ₃	0	57	0	\checkmark
5	Cs_2CO_3	0	45	0	\checkmark
6	DBU	0	33	0	\checkmark
7	CsF	<5	86	0	\checkmark

Supplementary Table 1 Photochemical functionalization of P₄: screening of bases.^a

^aReaction conditions: P_4 (9.30 mg, 0.30 mmol of P atom, 0.67 M solution of P_4 in toluene, 0.45 mL), **2a** (1.50 mmol), HE (1.50 mmol), **base** (1.05 mmol), 4CzIPN (5 mol%) in DMF (3.00 mL) and toluene (2.55 mL) irradiated by blue LEDs (2 x 3 W, 450–470 nm) at room temperature for 12 h under argon, and subsequently stirred at room temperature for 1 h in air (oxidation of R₂PH by air afforded DAPOs). ^{*b*}The yield of products was determined by ³¹P NMR analysis using (PhO)₃P(O) (δ : -16 ppm) as an internal standard. After confirming the yield of **4a**, (*di-tert*-butylperoxide DTBP, 0.1 mL) was added and stirred at room temperature for 5 h in air, and the yield of **3a** was determined by ³¹P {¹H</sup>} NMR analysis. Yield based on the P atom unless otherwise specified.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4CzIPN Reducta CsF (toluen blue	l (5 mol%) nt (5.0 eq.) 3.5 eq.) ne/DMF e LEDs	O H-OH + H 3a	$ \begin{array}{ccccccc} O & O \\ R - P - H & + & R - P - R \\ R & R \\ 4a & 5a \\ R & = n - C_{10}H_{21} \end{array} $
Entry	Different		Yield (%) ^b	Full conversion	
Entry	reductants	3 a	4 a	5a	of P ₄ ?
1	NEt ₃	0	26	12	\checkmark
2	DIPEA	0	14	0	\checkmark
3	HE	<5	86	0	\checkmark

Supplementary Table 2 Photochemical functionalization of P4: screening of reductants.^a

^{*a*}Reaction conditions: P₄ (9.30 mg, 0.30 mmol of P atom, 0.67 M solution of P₄ in toluene, 0.45 mL), **2a** (1.50 mmol), **reductant** (1.50 mmol), CsF (1.05 mmol), 4CzIPN (5 mol%) in DMF (3.00 mL) and toluene (2.55 mL) irradiated by blue LEDs (2 x 3 W, 450–470 nm) at room temperature for 12 h under argon, and subsequently stirred at room temperature for 1 h in air (oxidation of R₂PH by air afforded DAPOs). ^{*b*}The yield of products was determined by ³¹P NMR analysis using (PhO)₃P(O) (δ : -16 ppm) as an internal standard. After confirming the yield of **4a**, (*di-tert*butylperoxide DTBP, 0.1 mL) was added and stirred at room temperature for 5 h in air, and the yield of **3a** was determined by ³¹P{¹H} NMR analysis. Yield based on the P atom unless otherwise specified.

Sup	plementary	7 Table 3	Photochemical	functionalization	of P ₄ : scre	ening of solvents.a
-----	------------	-----------	---------------	-------------------	--------------------------	---------------------

Entire	D'es autoriter	Y	ield (%	$)^b$	Full conversion
Entry	Different solvents	3a	4a	5a	of P ₄ ?
1	DMSO : toluene (3 mL : 3 mL)	<5	61	0	\checkmark
2	DMAc : toluene (3 mL : 3 mL)	0	19	0	\checkmark
3	THF : toluene (3 mL : 3 mL)	0	<5	0	×
4	acetone : toluene (3 mL : 3 mL)	8	9	0	\checkmark
5	MeCN : toluene (3 mL : 3 mL)	15	29	0	\checkmark
6	DMF : toluene (3 mL : 3 mL)	<5	86	0	\checkmark

^{*a*}Reaction conditions: P_4 (9.30 mg, 0.30 mmol of P atom, 0.67 M solution of P_4 in toluene, 0.45 mL), **2a** (1.50 mmol), HE (1.50 mmol), CsF (1.05 mmol), 4CzIPN (5 mol%) in **solvents** (3.00 mL) and toluene (2.55 mL) irradiated by blue LEDs (2 x 3 W, 450–470 nm) at room temperature for 12 h under argon, and subsequently stirred at room temperature for 1 h in air (oxidation of R_2 PH by air afforded DAPOs). ^{*b*}The yield of products was determined by ³¹P

NMR analysis using (PhO)₃P(O) (δ : -16 ppm) as an internal standard. After confirming the yield of **4a**, (*di-tert*butylperoxide DTBP, 0.1 mL) was added and stirred at room temperature for 5 h in air, and the yield of **3a** was determined by ³¹P{¹H} NMR analysis. Yield based on the P atom unless otherwise specified.

	$\begin{array}{c} 1/4 \\ P \\ P \\ 1a \end{array} + \begin{array}{c} n - C_{10}H_{21}I \\ - C_{10}H_{21$	PC (5 mo HE (5.0 e CsF (3.5 DMF/tolu blue LEI	l%) eq.) R ⁻ ene → Os	0 	$ \begin{array}{cccc} 0 & 0 \\ R - P - H & + & R - P - R \\ R & R \\ 4a & 5a \\ R = n - C_{10}H_{21} \end{array} $
Enter	Dhotoostolyst		Yield (%) ^b	Full conversion of	
Entry	Photocatalyst —	3 a	4a	5 a	P ₄ ?
1	-	<5	48	0	\checkmark
2	Eosin Y	<5	42	0	\checkmark
3	Eosin B	0	0	0	×
4	Rhodamine B	<5	48	0	\checkmark
6	Fluorescein	<5	52	0	\checkmark
7	3DPAFIN	<5	49	0	\checkmark
8	4CzIPN	<5	86	0	\checkmark

Supplementary Table 4 Photochemical functionalization of P4: screening of photocatalyst.^a

^aReaction conditions: P_4 (9.30 mg, 0.30 mmol of P atom, 0.67 M solution of P_4 in toluene, 0.45 mL), **2a** (1.50 mmol), HE (1.50 mmol), CsF (1.05 mmol), photocatalyst (5 mol%) in DMF (3.00 mL) and toluene (2.55 mL) irradiated by blue LEDs (2 x 3 W, 450–470 nm) at room temperature for 12 h under argon, and subsequently stirred at room temperature for 1 h in air (oxidation of R₂PH by air afforded DAPOs). ^bThe yield of products was determined by ³¹P NMR analysis using (PhO)₃P(O) (δ : -16 ppm) as an internal standard. After confirming the yield of **4a**, (*di-tert*-butylperoxide DTBP, 0.1 mL) was added and stirred at room temperature for 5 h in air, and the yield of **3a** was determined by ³¹P {¹H</sup>} NMR analysis. Yield based on the P atom unless otherwise specified.

Supplementary Table 5 Photochemical functionalization of P₄: screening of **loading amount of** alkyl iodides and HE.^{*a*}

1/	$ \begin{array}{c} $	4CzIPN (5 t HE (x er CsF (3.5 DMF/tolu blue LE	nol%) q.) R- eq.) ► ene ► Ds	O -P-OH + R- H 3a	$ \begin{array}{ccccc} O & O \\ -P-H + R-P-R \\ R & R \\ 4a & 5a \\ R = n-C_{10}H_{21} \end{array} $
Enter	1 and UE (y as)		Yield (%) ^b		Full conversion
Entry	2a and $HE(x eq.)$	3 a	4a	5a	of P ₄ ?
1	3	<5	37	0	\checkmark
2	4	<5	56	0	\checkmark
3	5	<5	86	0	\checkmark
4	6	0	84	6	\checkmark
5	8	0	76	9	\checkmark

^{*a*}Reaction conditions: P₄ (9.30 mg, 0.30 mmol of P atom, 0.67 M solution of P₄ in toluene, 0.45 mL), **2a** (x mmol), HE (x mmol), CsF (1.05 mmol), 4CzIPN (5 mol%) in DMF (3.00 mL) and toluene (2.55 mL) irradiated by blue LEDs (2 x 3 W, 450–470 nm) at room temperature for 12 h under argon, and subsequently stirred at room temperature for 1 h in air (oxidation of R₂PH by air afforded DAPOs). ^{*b*}The yield of products was determined by ³¹P NMR analysis using (PhO)₃P(O) (δ : -16 ppm) as an internal standard. After confirming the yield of **4a**, (*di-tert*butylperoxide DTBP, 0.1 mL) was added and stirred at room temperature for 5 h in air, and the yield of **3a** was determined by ³¹P {¹H} NMR analysis. Yield based on the P atom unless otherwise specified.

3. General experimental procedures

alkyl-OH
$$\frac{I_2 (1.2 \text{ equiv})}{\text{PPh}_3 (1.2 \text{ equiv})}$$
 alkyl-I

Supplementary Scheme 1 Procedure for preparation of alkyl iodides (method A).

To a round bottom flask containing triphenylphosphine (12.0 mmol, 1.2 eq.), iodine (12.0 mmol, 1.2 eq.) was evacuated and purged with argon three times. Then DCM (50.0 mL) was added and stirred at room temperature. The reaction mixture was stirred at room temperature for 10 minutes, subsequently, the solution of imidazole (12.0 mmol, 1.2 eq.) in DCM (15 mL) was added dropwise into the flask at the same temperature and the result mixture was stirred at room temperature for 10 minutes. Solution of alkyl alcohol in DCM (15 mL) was added and stirred at room temperature until the alcohol was consumed (reaction time 15~20 h, monitored by TLC). The reaction was quenched with solution of Na₂SO₃ (sat. aq.) and extracted with DCM. The combined organic layers were washed with brine and dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel using petroleum ether/ethyl acetate as the eluent to afford the desired products (**2d**, **2i** and **2j**).²

Supplementary Scheme 2 Procedure for preparation of alkyl iodides (method B).

To a solution of furan (20.0 mmol, 1.0 eq.) in THF (20.0 mL) at -25 °C was added *n*-BuLi (1.02 equiv, 20.4 mmol, 2.5 M in THF) dropwise, with vigorous stirring. After 4 h, ethylene oxide (24 mmol, 3.0 M in THF) was added to the reaction mixture, After the addition was complete the reaction was stirred vigorously for 12 h, and the reaction system allowed to warm to room temperature. After 12 h, The reaction was quenched with solution of NH₄Cl (sat. aq.) and extracted with ethyl acetate. The combined organic layers were washed with brine and dried over Na₂SO₄, filtered, and concentrated in vacuo. And the 2-(furan-2-yl)ethan-1-ol was purified by flash chromatography.

To a stirred solution of 2-(furan-2-yl)ethan-1-ol in DCM (50.0 mL) were added Et₃N (3. 0 eq.) and TsCl (1.0 eq. in DCM) and the mixture was stirred at room temperature. After 12 h, The reaction was quenched with water and extracted with ethyl acetate. The combined organic layers were washed with brine and dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography to afford 2-(furan-2-yl)ethyl-4-methylbenzenesulfonate. The resulting product and NaI (3.0 eq.) were refluxed in acetone (30.0 mL) for 12 h. Then the solvent was removed under vacuum and the residue was diluted with H₂O (50.0 mL) and extracted with

DCM. The combined organic layer was dried over Na_2SO_4 and evaporated under reduced pressure. The crude residue was purified by columnchromatography over silica gel using petroleum ether/ethyl acetate (50:1, v/v) as the eluent to afford the desired product **21**.³

Supplementary Scheme 3 Procedure for preparation of alkyl iodides (method C).

A schlenk tube containing alkyl chlorines (10.0 mmol, 1.0 eq.) and NaI (30.0 mmol, 3.0 eq.) was evacuated and purged with argon three times. Acetone (50.0 mL) was added to the system and the mixture was refluxed for 12 h. Then the solvent was removed under vacuum and the residue was diluted with H₂O (50.0 mL) and extracted with DCM. The combined organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The crude residue was purified by columnchromatography over silica gel using petroleum ether/ethyl acetate (50:1, v/v) as the eluent to afford the desired products **2e** and **2g**.²

Supplementary Scheme 4 Procedure for preparation of alkyl iodides (method D).

To a stirred suspension of phenol or iodole (10 mmol, 1.0 equiv) in DMSO, KOH (50 mmol, 5.0 equiv) was added at room temperature. The reaction was stirred for additional 0.5 hours at room temperature, 1,6-diiodohexane or 1,3-diiodopropane were added. The mixture was stirred at room temperature for 12 h, extracted with EA, washed with saturated sodium chloride solution, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting mixture was isolated by flash chromatography using petroleum ether/ethyl acetate (50:1, v/v) as the eluent to afford **2k**, **2m–2p** and **2q–2w**.²

Supplementary Scheme 5 General preparation of dialkylphosphine oxides.

A schlenk tube containing alkyl iodides (2, 1.50 mmol, 5.0 eq.), HE (1.50 mmol, 5.0 eq.), CsF (1.05 mmol, 3.5 eq.) and 4CzIPN (5 mol%) were evacuated and purged with argon three times. DMF (3.0 mL), toluene (2.55 mL) and P₄ (9.30 mg, 0.30 mmol of P atom, 0.67 M solution of P₄ in toluene, 0.45 mL) were sequentially added to the system at room temperature. And the reaction mixture was stirred at room temperature under the irradiation of 2 x 3 W blue LEDs (450–470) for 12 h. Afterwards, reaction mixture was stirred at room temperature for 1 h under air. Quenched with addition of saturated brine (3*10.0 mL), extracted with ethyl acetate (3*10 mL). The combined organic layer was dried over anhydrous MgSO₄ and then removed in vacuum. And the residue was purified by flash chromatography using DCM/MeOH (from 200:1 to 40:1, v/v) as the eluent to afford the desired dialkyl phosphine Oxides.

Supplementary Scheme 6 Gram-scale synthesis of 4a.

A round flask containing 1-decyl iodide **2a** (15.0 mmol, 4.02 g), HE (15.0 mmol, 3.80 g), CsF (10.5 mmol, 1.60 g) and 4CzIPN (0.1 mmol, 78.9 mg) were evacuated and purged with argon three times, DMF (30.0 mL) and P_4 (93 mg dissolved in toluene 30 mL) were added to the system at room temperature. Then the reaction mixture was stirred at room temperature under the irradiation of 2 x 30 W blue LEDs for 36 hours. Then the system was quenched with addition of saturated brine (3*100.0 mL), extracted with ethyl acetate (3*100 mL). The combined organic layer was dried over anhydrous MgSO₄ and then removed in vacuum. The residue was purified by flash chromatography using DCM/MeOH (from 200:1 to 40:1, v/v) as the eluent to afford the desired phosphorylation products.

4. Photograph of photoreactor

LED bulb purchased from GeAo Chem (24 W, broad spectral range of 450–470 nm, 1 W for every bulb, every schlenk tube was irradiated by 6 light bulbs from the side) was used in our research. In each case, the light source was placed around 3 cm from the reaction vessel. The reaction was maintained at room temperature (around 25–30 °C) without using additional cooling. Gram-scale reaction was performed under the irradiation of blue LEDs (30W, 450 nm), which is bought from Xinxingyuan.

Supplementary figure 1 Photoreactor used in this research (2 x 3 W, 450-470 nm).

Supplementary figure 2 Photoreactor used in gram-scale synthesis (2 x 30W, 450 nm).

5. Luminescence quenching experiments

Emission intensities were recorded on a Hitachi F-7000 Fluorescent Spectrophoto-meter in a 4.5 cm quartz cuvette. Series 4CzIPN solutions were excited at 532 nm and the emissions intensities were collected at 400-700 nm.

Supplementary figure 3 the emission spectra of a 3.75×10^{-4} M solution of 4CzIPN in degassed DMF: touluene = 1:1 excited at 532 nm

Supplementary figure 4 the emission spectra of a 3.75×10^{-4} M solution of 4CzIPN with various concentrations of HE in degassed DMF: touluene = 1:1 (left); corresponding Stern-Volmer plot (right).

Supplementary figure 5 the emission spectra of a 3.75×10^{-4} M solution of 4CzIPN with various concentrations of CsF in degassed DMF: touluene = 1:1(left); corresponding Stern-Volmer plot (right).

Supplementary figure 6 the emission spectra of a 3.75×10^{-4} M solution of 4CzIPN with various concentrations of *n*-C₁₀H₂₁I in degassed DMF: touluene = 1:1(left); corresponding Stern-Volmer plot (right).

Supplementary figure 7 the emission spectra of a 3.75×10^{-4} M solution of 4CzIPN with various concentrations of P₄ in degassed DMF: touluene = 1:1(left); corresponding Stern-Volmer plot (right).

Supplementary figure 8 Stern-Volmer plot

6. Control experiments.

Supplementary Table 6 Radical inhibition experiments^a

	$1/4 \xrightarrow{P}_{p} + n-C_{10}H_{21}I \xrightarrow{\text{AC2IPN (5 mol%)}}{\text{Identify}} + n-C_{10}H_{21}I \xrightarrow{\text{AC2IPN (5 mol%)}}{\text{Identify}} + \frac{1}{2a, 5.0 \text{ eq.}}$	$ \begin{array}{c} $
Entry	Additive	³¹ P NMR yield of 4a (%) ^{b}
1	-	86
2	TEMPO (10.0 eq.)	0
3	1,1-Diphenylethene (10.0 eq.)	18
4	BHT (10.0 eq.)	55
5	BHT (15.0 eq.)	48

TEMPO = 2,2,6,6-tetramethyl-1-piperidinyloxy, BHT = 2,6-*di-tert*-butyl-4-methylpheno.

Experimental Procedures: ^{*a*}A schlenk tube containing alkyl iodides (2, 1.50 mmol, 5.0 eq.), HE (1.50 mmol, 5.0 eq.), CsF (1.05 mmol, 3.5 eq.) and 4CzIPN (5 mol%) were evacuated and purged with argon three times. DMF (3.0 mL), toluene (2.55 mL) and P₄ (9.30 mg, 0.30 mmol of P atom, 0.67 M solution of P₄ in toluene, 0.45 mL) were sequentially added to the system at room temperature. And the reaction mixture was stirred at room temperature under the irradiation of 2 x 3 W blue LEDs (450–470) for 12 h. Afterwards, reaction mixture was stirred at room temperature for 1 h under air. Then triphenyl phosphate 97.8 mg was added as internal standard. Resulting mixture was transferred to a NMR tube by a syringe and the resulting solution was monitored by ³¹P NMR. ^{*b*}Yield of **4a** determined by ³¹P NMR using (PhO)₃P(O) as internal standard (D1 = 20 s, zg30, LB = 1).

7. Characterization for products.

Didecylphosphine oxide (4a, CAS NO. 74038-18-9)

White solid; 75.6 mg, 76% yield; ¹H NMR (CDCl₃, 500 MHz): δ 6.84 (d, *J* = 446.0 Hz, 1H), 1.85-1.68 (m, 4H), 1.67-1.53 (m, 4H), 1.44-1.35 (m, 4H), 1.29-1.20 (m, 24H), 0.86 (t, *J* = 7.0 Hz, 6H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 32.1, 30.9 (d, *J* = 13.6 Hz), 29.7, 29.6, 29.5, 29.3, 28.5 (d, *J* = 65.1 Hz), 22.9, 22.0 (d, *J* = 4.4 Hz), 14.3; ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 35.04 (d, *J* = 446.0 Hz); HRMS: [M+Na]⁺ m/z calcd for C₂₂H₄₃OPNa⁺ 353.2943, found 353.2942.

Dihexylphosphine oxide (4b, CAS NO. 17529-42-9)

Colorless oil; 46.5 mg, 71% yield; ¹H NMR (CDCl₃, 500 MHz): δ 6.85 (d, J = 446.0 Hz, 1H), 1.85-1.71 (m, 4H), 1.70-1.54 (m, 4H), 1.45-1.38 (m, 4H), 1.33-1.29 (m, 8H), 0.87 (t, J = 6.9 Hz, 6H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 31.5, 30.6 (d, J = 14.3 Hz), 28.5 (d, J = 65.2 Hz), 22.6, 22.0 (d, J = 3.8 Hz), 14.2; ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 35.00 (d, J = 446.0 Hz); HRMS: [M+Na]⁺ m/z calcd for C₁₂H₂₇OPNa⁺ 241.1691, found 241.1691.

Bis(5-chloropentyl)phosphine oxide (4c, CAS NO. 2891619-81-9)

Colorless oil; 51.9 mg, 67% yield; ¹H NMR (CDCl₃, 500 MHz): δ 6.87 (d, J = 451.6 Hz, 1H), 3.49 (t, J = 6.4 Hz, 4H), 1.85-1.49 (m, 16H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 44.7, 32.1, 28.3 (d, J = 65.2 Hz), 28.0 (d, J = 13.8 Hz), 21.3 (d, J = 3.4 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 34.10 (d, J = 450.7 Hz); HRMS: [M+Na]⁺ m/z calcd for C₁₀H₂₁C1₂OPNa⁺ 281.0599, found 281.0603.

Bis(7-bromoheptyl)phosphine oxide (4d, new compound)

Colorless oil; 43.4 mg, 36% yield; ¹H NMR (CDCl₃, 500 MHz): δ 6.86 (d, J = 446.7 Hz, 1H), 3.96 (t, J = 6.7 Hz, 4H), 1.87-1.61 (m, 12H), 1.46-1.41 (m, 8H), 1.38-1.33 (m, 4H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 34.0, 32.8, 30.7 (d, J = 13.7 Hz), 28.7, 28.5 (d, J = 65.2 Hz), 28.1, 29.1 (d, J = 3.6 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 34.64 (d, J = 450.0 Hz); HRMS: [M+Na]⁺ m/z calcd for C₁₄H₂₉Br₂OPNa⁺ 425.0215, found 425.0222.

Dimethyl 5,5'-(oxo-l5-phosphanediyl)dipentanoate (4e, new compound)

Colorless oil; 35.0 mg, 42% yield; ¹H NMR (CDCl₃, 500 MHz): δ 6.88 (d, J = 446.0 Hz, 1H), 3.67 (s, 6H), 2.35 (t, J = 7.2 Hz, 4H), 1.89-1.60 (m, 12H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 173.7, 51.9, 33.7, 28.3 (d, J = 65.3 Hz), 26.1 (d, J = 15.5 Hz), 21.6 (d, J = 3.2 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 33.37 (d, J = 451.41 Hz); HRMS: [M+Na]⁺ m/z calcd for C₁₂H₂₃O₅PNa⁺ 301.1175, found 301.1170.

Bis(4,4,4-trifluorobutyl)phosphine oxide (4f, new compound)

$$F_3C$$
 P CF_3

Colorless oil; 60.0 mg, 74% yield; ¹H NMR (CDCl₃, 500 MHz): δ 6.97 (d, J = 454.0 Hz, 1H), 2.32-2.22 (m, 4H), 2.04-1.76 (m, 8H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 126.7 (q, J = 276.6 Hz), 34.4 (dq, J_1 = 29.0 Hz, J_2 = 13.3 Hz), 27.5 (d, J = 65.7 z), 15.4 (dq, J_1 = 4.3 Hz, J_2 = 3.0 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 34.54 (d, J = 454.0 Hz); ¹⁹F{¹H} NMR (CDCl₃, 471 MHz): δ -66.00; HRMS: [M+Na]⁺ m/z calcd for C₈H₁₃F₆OPNa⁺ 293.0500, found 293.0500. Di((E)-octadec-9-en-1-yl)phosphine oxide (4g, new compound)

Colorless oil; 118.9 mg, 72% yield; ¹H NMR (CDCl₃, 500 MHz): δ 6.83 (d, J = 446.2 Hz, 1H), 5.37-5.30 (m, 4H), 2.00-1.93 (m, 8H), 1.84-1.69 (m, 8H), 1.67-1.52 (m, 8H), 1.43-1.37 (m, 4H), 1.32-1.24 (m, 40H), 0.86 (t, J = 7.3 Hz, 6H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 130.2, 129.9, 32.1, 30.9 (d, J = 13.5 Hz), 30.0, 29.9, 29.7, 29.52 (overlap, 2C), 29.46, 29.4, 29.3, 28.4 (d, J = 65.1 Hz), 27.42, 27.37, 22.9, 22.0 (d, J = 3.5 Hz), 14.3; ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 34.53 (d, J = 446.9 Hz); HRMS: [M+K]⁺ m/z calcd for C₃₆H₇₁OPK⁺ 573.5132, found 573.5132.

Diphenethylphosphine oxide (4h, CAS NO. 27440-52-4)

Colorless oil; 60.4 mg, 78% yield; ¹H NMR (CDCl₃, 500 MHz): δ 7.32-7.30 (m, 4H), 7.27-7.20 (m, 6H), 6.89 (d, J = 458.4 Hz, 1H), 3.05-2.98 (m, 2H), 2.96-2.89 (m, 2H), 2.20-2.12 (m, 2H), 2.07-2.00 (m, 2H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 140.3 (d, J = 12.3 Hz), 129.0, 128.4, 126.9, 30.4 (d, J = 64.1 Hz), 28.1 (d, J = 3.0 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 34.67 (d, J = 457.9 Hz); HRMS: [M+Na]⁺ m/z calcd for C₁₆H₁₉OPNa⁺ 281.1065, found 281.1063.

Bis(2-(naphthalen-2-yl)ethyl)phosphine oxide (4i, CAS NO. 473721-94-7)

Pale yellow oil; 79.5 mg, 74% yield; ¹H NMR (CDCl₃, 500 MHz): δ 7.95 (d, *J* = 8.2 Hz, 2H), 7.86 (d, *J* = 7.8 Hz, 2H), 7.74 (d, *J* = 8.1 Hz, 2H), 7.55-7.47 (m, 4H), 7.39 (t, *J*= 7.8 Hz, 2H), 7.33 (d, *J* = 6.9 Hz, 2H), 6.93 (d, *J* = 448.6 Hz, 1H), 3.53-3.43 (m, 2H), 3.39-3.29 (m, 2H), 2.31-2.20 (m, 2H), 2.16-2.06 (m, 2H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 136.2 (d, *J* = 12.7 Hz), 134.1, 131.3, 129.2, 127.7, 126.5, 126.3, 126.0, 125.7, 123.3, 29.5 (d, *J* = 63.8 Hz), 25.2 (d, *J* = 3.6 Hz); ³¹P{¹H} NMR

(CDCl₃, 202 MHz): δ 31.16 (d, J = 448.7 Hz); HRMS: [M+Na]⁺ m/z calcd for C₂₄H₂₃OPNa⁺ 381.1379, found 381.1378.

Bis(2-(thiophen-2-yl)ethyl)phosphine oxide (4j, new compound)

Colorless oil; 51.8 mg, 64% yield; ¹H NMR (CDCl₃, 500 MHz): δ 7.15 (d, J = 5.2 Hz, 2H), 6.92 (t, J = 4.5 Hz, 4H), 6.90 (d, J = 460.2 Hz, 1H), 6.86 (d, J = 3.8 Hz, 2H), 3.28-3.13 (m, 4H), 2.26-2.16 (m, 2H), 2.13-2.03 (m, 2H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 142.7 (d, J = 12.9 Hz), 127.3, 125.4, 124.3, 30.7 (d, J = 66.1 Hz), 22.5 (d, J = 2.7 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 29.58 (d, J = 455.8 Hz); HRMS: [M+Na]⁺ m/z calcd for C₁₂H₁₅OPS₂Na⁺ 293.0194, found 293.0198.

Bis(6-(9H-carbazol-9-yl)hexyl)phosphine oxide (4k, new compound)

White solid; 88.8 mg, 54% yield; ¹H NMR (CDCl₃, 500 MHz): δ 8.06 (d, J = 7.6 Hz, 4H), 7.42 (dt, J_1 = 8.5 Hz, J_2 = 1.2, 4H), 7.33 (d, J = 8.2 Hz, 4H), 7.19 (dt, J_1 = 6.7 Hz, J_2 = 1.0, 4H), 6.65 (d, J = 454.8 Hz, 1H), 4.23 (t, J = 7.0 Hz, 4H), 1.86-1.79 (m, 4H), 1.62-1.41 (m, 8H), 1.36-1.27 (m, 8H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 140.5, 125.8, 122.9, 120.5, 118.9, 108.8, 43.0, 30.5 (d, J = 13.5 Hz), 28.8, 28.1 (d, J = 65.3 Hz), 26.9, 21.7 (d, J = 3.6 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 34.27 (d, J = 452.7 Hz); HRMS: [M+Na]⁺ m/z calcd for C₃₆H₄₁N₂OPNa⁺ 571.2849, found 571.2840.

Bis(2-(furan-2-yl)ethyl)phosphine oxide (4l, CAS NO. 1919036-23-9)

Colorless oil; 40.0 mg, 56% yield; ¹H NMR (CDCl₃, 500 MHz): δ 7.31 (d, J = 2.0 Hz, 2H), 6.83 (d, J = 453.7 Hz, 1H), 6.28 (dd, $J_I = 2.0$ Hz, $J_2 = 1.9$ Hz, 2H), 6.07 (dd, $J_I = 2.5$ Hz, $J_2 = 1.9$ Hz, 2H), 3.06-2.92 (m, 4H), 2.19-1.99 (m, 4H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 153.3 (d, J = 12.3 Hz), 141.8, 110.6, 106.4, 26.9 (d, J = 65.2 Hz), 20.7 (d, J = 2.7 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 31.21 (d, J = 457.9 Hz); HRMS: [M+Na]⁺ m/z calcd for C₁₂H₁₆O₃PNa⁺ 261.0651, found 261.0647.

Bis(3-(1H-indol-1-yl)propyl)phosphine oxide (4m, new compound)

Colorless oil; 71.0 mg, 65% yield; ¹H NMR (CDCl₃, 500 MHz): δ 7.64 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 7.0 Hz, 2H), 7.13 (d, J = 7.7 Hz, 2H), 7.03 (d, J = 3.3 Hz, 2H), 6.63 (d, J = 456.7 Hz, 1H), 6.51 (d, J = 2.9 Hz, 2H), 4.15 (dt, J_I = 6.6 Hz, J_2 = 4.1 Hz, 4H), 2.21-1.98 (m, 4H), 1.62-1.55 (m, 2H), 1.51-1.42 (m, 2H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 135.9, 128.8, 127.8, 121.9, 121.3, 119.7, 109.4, 101.9, 46.3 (d, J = 14.1 Hz), 25.4 (d, J = 65.6 Hz), 22.8 (d, J = 3.4 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 33.43 (d, J = 457.5 Hz); HRMS: [M+H]⁺ m/z calcd for C₂₂H₂₅N₂OPNa⁺ 387.1597, found 387.1590.

bis(6-(5-methoxy-1H-indol-1-yl)hexyl)phosphine oxide (4n, new compound)

Colorless oil; 94.5 mg, 62% yield; ¹H NMR (CDCl₃, 500 MHz): δ 7.21 (d, J = 9.6 Hz, 2H), 7.09 (d, J = 3.1 Hz, 2H), 7.05 (d, J = 2.9 Hz, 2H), 6.88 (t, J = 2.0 Hz, 1H), 6.86 (t, J = 2.2 Hz, 1H), 6.77 (d, J = 448.9 Hz, 1H), 6.40 (t, J = 2.6 Hz, 2H), 4.07 (t, J = 6.8 Hz, 4H), 3.85 (s, 6H), 1.85-1.79 (m, 4H), 1.76-1.49 (m, 8H), 1.44-1.38 (m, 4H), 1.33-1.26 (m, 4H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 154.1, 131.4, 129.1, 128.5, 111.9, 110.2, 102.7, 100.7, 56.0, 46.6, 30.4 (d, J = 13.6 Hz), 30.1, 28.3 (d, J = 65.2 Hz), 26.7, 21.8 (d, J = 3.6 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 34.31 (d, J = 448.9 Hz); HRMS: [M+Na]⁺ m/z calcd for C₃₀H₄₁N₂O₃PNa⁺ 531.2747, found 531.2735.

1,1'-((oxo-l5-phosphanediyl)bis(hexane-6,1-diyl))bis(1H-indole-5-carbonitrile) (40, new compound)

Colorless oil; 101.7 mg, 68% yield; ¹H NMR (CDCl₃, 500 MHz): δ 7.96 (d, J = 0.8 Hz, 2H), 7.41 (d, J = 9.3 Hz, 2H), 7.36 (d, J = 8.7 Hz, 2H), 7.20 (d, J = 3.2 Hz, 2H), 6.79 (d, J = 446.7 Hz, 1H), 6.56 (d, J = 4.1 Hz, 2H), 4.14 (t, J = 6.7 Hz, 4H), 1.87-1.82 (m, 4H), 1.77-1.52 (m, 8H), 1.46-1.40 (m, 4H), 1.34-1.27 (m, 4H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 137.5, 130.2, 128.3, 126.6, 124.3, 120.9, 110.3, 102.3, 102.2, 46.5, 30.2 (d, J = 13.4 Hz), 29.9, 28.2 (d, J = 65.1 Hz), 26.5, 21.8 (d, J = 3.6 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 33.99 (d, J = 448.5 Hz); HRMS: [M+Na]⁺ m/z calcd for C₃₀H₃₅N₄OPNa⁺ 521.2441, found 521.2438.

Bis(6-(6-chloro-1H-indol-1-yl)hexyl)phosphine oxide (4p, new compound)

White solid; 99.1 mg, 64% yield; ¹H NMR (CDCl₃, 500 MHz): δ 7.53 (d, J = 8.4 Hz, 2H), 7.33 (s, 2H), 7.08-7.05 (m, 4H), 6.47 (d, J = 3.2 Hz, 2H), 6.78 (d, J = 447.6 Hz, 1H), 4.04 (t, J = 7.0 Hz, 4H), 1.84-1.79 (m, 4H), 1.77-1.68 (m, 2H), 1.67 – 1.48 (m, 6H), 1.46-1.38 (m, 4H), 1.34-1.26 (m, 4H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 136.40, 128.64, 127.40, 127.17, 121.89, 119.95, 109.42, 101.36, 46.36, 30.23 (d, J = 13.8 Hz), 29.90, 28.14 (d, J = 65.2 Hz), 26.49, 21.74 (d, J = 3.8 Hz).; ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 34.27 (d, J = 447.6 Hz) HRMS: [M+Na]⁺ m/z calcd for C₂₈H₃₅Cl₂OPNa⁺ 539.1756, found 539.1748.

Bis(6-([1,1'-biphenyl]-4-yloxy)hexyl)phosphine oxide (4q, new compound)

White solid; 73.2 mg, 44% yield; ¹H NMR (CDCl₃, 500 MHz): δ 7.56-7.51 (m, 8H), 7.41 (t, J = S19

7.8 Hz, 4H), 7.30 (t, J = 7.3 Hz, 2H), 6.96 (d, J = 7.8 Hz, 4H), 6.89 (d, J = 448.2 Hz, 1H), 4.00 (t, J = 6.1 Hz, 4H), 1.90-1.65 (m, 12H), 1.59-1.47 (m, 8H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 158.8, 141.0, 133.9, 128.9, 128.4, 126.93, 126.86, 115.0, 68.0, 30.6 (d, J = 13.7 Hz), 29.2, 28.5 (d, J = 65.1 Hz), 25.9, 22.0 (d, J = 3.6 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 34.55 (d, J = 446.1 Hz); HRMS: [M+H]⁺ m/z calcd for C₃₆H₄₄O₃P⁺ 577.2842, found 577.2832.

Bis(6-(4-methoxyphenoxy)hexyl)phosphine oxide (4r, new compound)

White solid; 73.5 mg, 53% yield; ¹H NMR (CDCl₃, 500 MHz): δ 6.87 (d, J = 445.7 Hz, 1H), 6.82 (s, 8H), 3.90 (t, J = 6.3 Hz, 4H), 3.76 (s, 6H), 1.89-1.64 (m, 12H), 1.59-1.49 (m, 8H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 154.0, 153.4, 115.6, 114.9, 68.5, 56.0, 30.7 (d, J = 13.8 Hz), 29.3, 28.5 (d, J = 64.8 Hz), 25.9, 22.0 (d, J = 3.4 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 34.27 (d, J = 446.5 Hz); HRMS: [M+Na]⁺ m/z calcd for C₂₆H₃₉O₅PNa⁺ 485.2427, found 485.2427.

Bis(6-(4-(methylthio)phenoxy)hexyl)phosphine oxide (4s, new compound)

Colorless oil; 69.7 mg, 47% yield; ¹H NMR (CDCl₃, 500 MHz): δ 7.24 (d, J = 8.8 Hz, 4H), 6.85 (d, J = 447.6 Hz, 1H), 6.81 (d, J = 8.5 Hz, 4H), 3.91 (t, J = 8.5 Hz, 4H), 2.42 (s, 6H), 1.89-1.58 (m, 12H), 1.57-1.45 (m, 8H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 157.8, 130.3, 128.8, 115.3, 68.0, 30.6 (d, J = 13.6 Hz), 29.1, 28.4 (d, J = 65.1 Hz), 25.8, 21.9 (d, J = 3.7 Hz), 18.2; ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 33.86 (d, J = 446.6 Hz); HRMS: [M+Na]⁺ m/z calcd for C₂₆H₃₉O₃PS₂Na⁺ 517.1970, found 517.1965.

Bis(6-(4-fluorophenoxy)hexyl)phosphine oxide (4t, new compound)

Colorless oil; 81.5 mg, 62% yield; ¹H NMR (CDCl₃, 500 MHz): δ 6.96-6.92 (m, 4H), 6.85 (d, J = 446.4 Hz, 1H), 6.81-6.78 (m, 4H), 3.89 (t, J = 6.5 Hz, 4H), 1.87-1.72 (m, 8H), 1.70-1.59 (m, 4H), 1.52-1.45 (m, 8H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 157.3 (d, J = 237.7 Hz), 155.3 (d, J = 2.2 Hz), 115.9 (d, J = 23.1 Hz), 115.5 (d, J = 7.6 Hz), 68.5, 30.6 (d, J = 14.3 Hz), 29.2, 28.4 (d, J = 65.2 Hz), 25.8, 22.0 (d, J = 4.4 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 34.42 (d, J = 446.5 Hz); ¹⁹F{¹H} NMR (CDCl₃, 471 MHz): δ -124.28; HRMS: [M+Na]⁺ m/z calcd for C₂₄H₃₃F₂O₃PNa⁺ 461.2028, found 461.2020.

4,4'-(((oxo-l5-phosphanediyl)bis(hexane-6,1-diyl))bis(oxy))dibenzonitrile (4u, new compound)

Colorless oil; 92.2 mg, 68% yield; ¹H NMR (CDCl₃, 500 MHz): δ 7.53 (d, J = 7.8 Hz, 4H), 6.89 (d, J = 8.2 Hz, 4H), 6.86 (d, J = 445.1 Hz, 1H), 3.96 (t, J = 6.2 Hz, 4H), 1.89-1.59 (m, 12H), 1.52-1.43 (m, 8H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 162.3, 133.9, 119.3, 115.2, 103.6, 68.1, 30.3 (d, J = 13.6 Hz), 28.7, 28.1 (d, J = 65.3 Hz), 25.5, 21.7 (d, J = 3.6 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 34.57 (d, J = 448.0 Hz); HRMS: [M+H]⁺ m/z calcd for C₂₆H₃₄N₂O₃P⁺ 475.2021, found 475.2021

Dimethyl 4,4'-(((oxo-l5-phosphanediyl)bis(hexane-6,1-diyl))bis(oxy))dibenzoate (4v, new compound)

Colorless oil; 79.3 mg, 51% yield; ¹H NMR (CDCl₃, 500 MHz): δ 7.97 (d, J = 8.5 Hz, 4H), 6.89 (d, J = 9.2 Hz, 4H), 6.88 (d, J = 445.7 Hz, 1H), 4.00 (t, J = 6.3 Hz, 4H), 3.87 (s, 6H), 1.88-1.62 (m, 12H), 1.54-1.48 (m, 8H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 167.1, 163.0, 131.8, 122.7, 114.3, 68.1, 30.6 (d, J = 13.4 Hz), 29.1, 28.5 (d, J = 65.3 Hz), 25.9, 22.0 (d, J = 3.6 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 34.26 (d, J = 447.6 Hz); HRMS: [M+Na]⁺ m/z calcd for C₂₈H₃₉O₇PNa⁺ 541.2326, found 541.2322.

Bis(6-(naphthalen-2-yloxy)hexyl)phosphine oxide (4w, new compound)

White solid; 107.0 mg, 71% yield; ¹H NMR (CDCl₃, 500 MHz): δ 7.76-7.71 (m, 6H), 7.44 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.1 Hz, 2H), 7.15-7.12 (m, 4H), 6.86 (d, J = 447.1 Hz, 1H), 4.07 (t, J = 6.6 Hz, 4H), 1.88-1.81 (m, 6H), 1.78-1.69 (m, 4H), 1.67-1.61 (m, 2H), 1.58-1.49 (m, 8H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 157.2, 134.8, 129.5, 129.1, 127.8, 126.9, 126.5, 123.7, 119.1, 106.7, 67.8, 30.6 (d, J = 14.0 Hz), 29.1, 28.4 (d, J = 65.0 Hz), 25.9, 22.0 (d, J = 4.4 Hz); ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ 34.55 (d, J = 447.1 Hz); HRMS: [M+Na]⁺ m/z calcd for C₃₂H₃₉O₃PNa⁺ 525.2529, found 525.2529.

8. Supplementary Reference

- F. Chen, M. Bai, Y. Zhang, W. Liu, X. Huangfu, Y. Liu, G. Tang and Y. Zhao, *Angew. Chem. Int. Ed.* 2022, 61, doi.org/10.1002/anie.202210334.
- 2. H.-Q. Geng and X.-F. Wu, Org. Lett. 2021, 23, 8062–8066.
- 3. M. Harmata, C. B. Gamlath, C. L. Barnes and D. E. Jones, J. Org. Chem. 1995, 60, 5077–6092.

9. NMR spectrum of isolated products.

S25

 $^{13}C\{^{1}\text{H}\}$ NMR (125 MHz, CDCl_3) spectrum of compound 4c

S29

 $^{13}C\{^{1}\text{H}\}$ NMR (125 MHz, CDCl_3) spectrum of compound 4e

 $^{31}P\{^{1}H\}$ NMR (202 MHz, CDCl₃) spectrum of compound 4e

S35

 $^{13}C\{^{1}H\}$ NMR (125 MHz, CDCl_3) spectrum of compound 4g

 $^{31}P\{^{1}H\}$ NMR (202 MHz, CDCl_3) spectrum of compound 4h

S42

 $^{31}P\{^{1}H\}$ NMR (202 MHz, CDCl_3) spectrum of compound 4k

 $^{31}P\{^{1}H\}$ NMR (202 MHz, CDCl_3) spectrum of compound 41

¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 4m

S51

 $^{31}P\{^{1}H\}$ NMR (202 MHz, CDCl_3) spectrum of compound 4o

S55

S61

S69

