Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Anchoring RuS₂ on multi-shelled hollow cube CaTiO₃ for ultrahigh

hydrogen evolution with the assistance of a photocatalytic biorefinery

Xinze Li^a, Jiliang Ma^{a,b*}, Rui Cui^a, Junqiang Zhang^a, Zhendong Liu^a and

Runcang Suna*

^a Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning

Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light

Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034,

China

^b Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control.

College of Light Industrial and Food Engineering, Guangxi University, Nanning

530004, China

*Corresponding authors' E-mail address: jlma@dlpu.edu.cn (Jiliang Ma) and rcsun3@dlpu.edu.cn (Runcang Sun), Tel.: +86-0411-86323652, Fax: +86-0411-86323652

Chemicals

Ca(NO₃)₂·4H₂O (99.0%), tetrabutyl titanate (99.0%), NaOH (99.0%), Ruthenium trichloride (RuCl₃, 45.0 ~ 55.0%), thiourea (99.0%), potassium hydroxide (KOH, 99.0%), Hydrochloric acid (99.0%), Tryptophan (Trp, 99.0%), potassium iodide (KI, 99.0%), benzoquinone (BQ, 99.0%), isopropyl (IPA, 99.0%), rhamnose (98.0%), xylose (98.0%), xylan (85.0%), arabinose (98.0%), mannose (98.0%), fructose (98.0%) and glucose (98.0%) were acquired from Aladdin Chemistry Co., Ltd (Shanghai, China). Lactic acid (99.0%), formic acid (99.0%) and other chemicals were purchased from Dalian Chemical Reagent Factory, China. All the reagents were used as received without further purification.

Characterization

Transmission electron microscopy (TEM) were recorded on JEM-2100 CXII and scanning electron microscopy (SEM) were explored on Hitachis-4800. The powder X-ray diffraction (XRD) patterns were measured with a Bruker D8 Focus diffractometer (CuK α radiation, $\lambda = 0.15418$ nm) in the θ -2 θ mode. Brunauer-Emmett-Teller (BET) specific surface areas were measured on a Micromeritics ASAP 2020 apparatus. The X-ray photoelectron spectroscopy (XPS) analysis was performed with a Kratos Axis Ultra DLD spectrometer employing an amonochromated AlKR X-ray source (1486.6 eV). The ultraviolet-visible diffuse reflectance spectrum (UV-vis DRS) was achieved on a Cary 5000 spectrophotometer by using BaSO₄ as the reference. The photoluminescence (PL) spectrum was measured by an Edinburgh FLS-920 spectrometer. Electron spin-resonance spectroscopy was used to study

molecules and materials with unpaired electrons, and the 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO) was chosen as a spin trap for the detection of hydroxyl radical (·OH) and superoxide (·O₂-), the 2,2,6,6-tetramethylpiperidine-*N*-oxyl (TEMPO) was applied to characterize electrons and holes, while the amino-2,2,6,6-tetramethylpiperidine (TEMPONE) was used to detect singlet oxygen. Ultraviolet photoelectron spectroscopy (UPS) was measured by using a He I (21.20 eV) as monochromatic discharge light source and a VG Scienta R4000 analyzer. A sample bias of -5 V was applied to observe the secondary electron cutoff (SEC).

Photoelectrochemical Measurements

Electrochemical measurements were carried out on a CHI760E electrochemical workstation with a stand three-electrodes system. Among them, a Pt wire was used as the counter electrode, and the reference electrode was the saturated Ag/AgCl. The cleaned F-doped tin oxide (FTO) glass was used as the working electrode. 5 mg of corresponding photocatalyst and 20 μL of Nafion (5%) were added into 980 μL of ethanol to form a homogeneous slurry. The homogeneous slurry was ultrasonicated for 30 min and then coated on the FTO glass. The obtained system was dried at 150 °C for 60 min. The supporting electrolyte was Na₂SO₄ solution (0.5 M) with the pH value of 6.8. The incident visible light source was Xe lamp (300 W). The photocurrent-time was investigated in the irradiation of Xe lamp at a bias potential of 0.5 V vs. Ag/AgCl. The electrochemical impedance spectroscopy (EIS) was detected by an AC voltage amplitude of 10 mV at -0.3 V versus Ag/AgCl over the frequency range from 10 kHz to 0.01 Hz. The Mott-Schottky was studied in the electrolyte of

 Na_2SO_4 (0.5 M), and the frequency of the AC potential was set as 500, 800, and 1000 Hz as well as the amplitude was 10 mV.

Products Analysis

The photocatalytic performance was measured with the Perfectlight PCX 50C multi-channel photochemical reaction system under the illumination of 10 W LED lamps.

Hydrogen:

The yield of hydrogen was analyzed by gas chromatography (GC-7900, Ar carrier gas, molecular sieve 5 Å column) equipped with a thermal conductivity detector (TCD).

Products of Oxidation Half-reaction:

After the reaction, the samples were filtrated with a Millipore filter (0.22 μm) and analyzed by high-performance liquid chromatography (HPLC) with a Bio-Rad Aminex HPX-87H column (300 mm × 7.8 mm × 9 μm). Concentrations of lactic acid was measured by Waters 2414 RI detector. The mobile phase was 5 mmol H₂SO₄ at a flow rate of 0.5 mL/min. The temperature of column was set at 55 °C and the total time to finish the product analysis was set at 30 min. The conversion and yields of oxidation half-reaction products were calculated as follows:

$$Conversion~(\%) = \frac{\textit{Moles of carbon in feedstock consumed}}{\textit{Moles of carbon in feedstock input}} \times 100\%$$

$$Product\ yield\ (\%) = \frac{\textit{Moles of carbon in organic acid}}{\textit{Moles of carbon in feedstock input}} \times 100\%$$

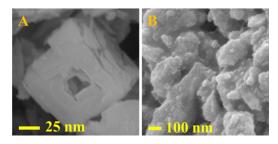


Fig. S1 SEM images of $CaTiO_3$ (A) and RuS_2 (B).

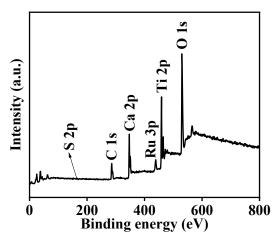


Fig. S2 XPS survey spectra of RuS₂@CaTiO₃-10.

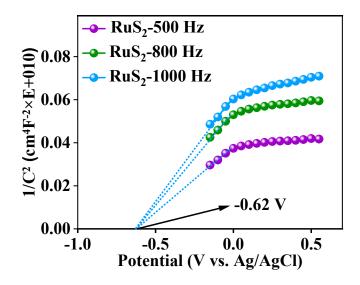
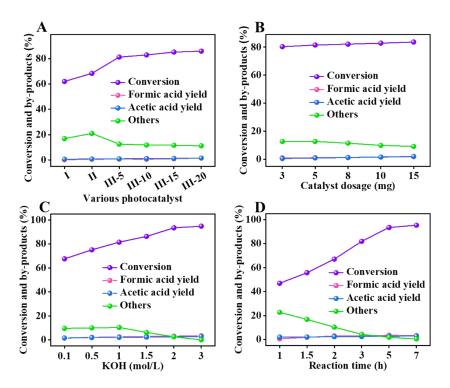



Fig. S3 Mott-Schottky plots of RuS_2 .

Fig. S4 The effect of different different photocatalysts (I: CaTiO₃, II: RuS₂, III: RuS₂@CaTiO₃) (A), catalyst dosage (B), KOH concentrations (C) and irradiation time (D) on the xylose conversion and the yields of by-products (formic acid and acetic acid).

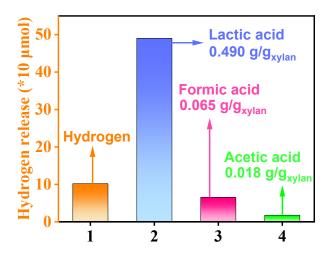


Fig. S5 When xylan as substance for photocatalytic synthesis of value-added chemicals and hydrogen via $RuS_2@CaTiO_3-10$.

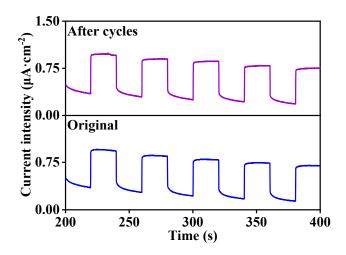


Fig. S6 transient photocurrent response of before and after cycles.

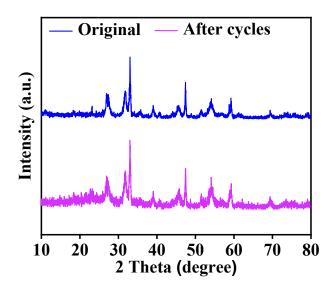


Fig. S7 XRD of before and after cycles.

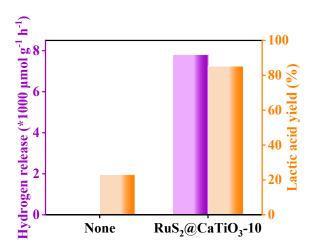


Fig. S8 The effects of $RuS_2@CaTiO_3-10$ on co-production of hydrogen and lactic acid.

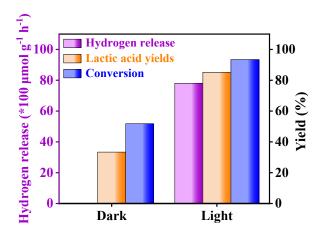


Fig. S9 The effects of illumination on co-produced of hydrogen and lactic acid.

Table S1. The effects of different CaTiO₃ based photocatalysts on the hydrogen evolution.

Entry	Photocatalysts	Catalyst Dosage (mg)	Sacrificial Agents	Light Source	Hydrogen Release (mmol g ⁻¹ h ⁻¹)	Ref.
1	CdSe/CaTiO ₃	25	NaS ₂ , Na ₂ SO ₃	300 W Xe lamp	3.014	[1]
2	g-C ₃ N ₄ /CaTiO ₃	50	methanol	300 W Xe lamp	0.189	[2]
3	MoS ₂ /CaTiO ₃	50	vitamin C (VC)	300 W LED lamp	0.622	[3]
4	Bi ₁₂ O ₁₇ Cl ₂ /CaTiO ₃	50	vitamin C (VC)	300 W Xe lamp	0.784	[4]
5	$Ca_{0.94}Ag_{0.03}La_{0.03}TiO_3$	50	TEOA	300 W Xe lamp	1.064	[5]
6	CaTiO ₃ /Cu	20	methanol	500 W Xe lamp	0.251	[6]
7	AgCl/Ag/CaTiO ₃	50	methanol	300 W Xe lamp	0.227	[7]
8	RuS ₂ @CaTiO ₃ -10	5	xylose	10 W visible light	7.939	This work

^[1] J. S. Han, Y. Liu, F. X. Dai, R. Y. Zhao and L. Wang, Appl. Surf. Sci., 2018, 459, 520-526.

^[2] Z. Z. Liang, R. C. Shen, Y. H. Ng, P. Zhang, Q. J. Xiang and X. Li, J. *Mater. Sci. Technol.*, 2020, **56**, 89-121.

^[3] D. S. Zhu, N. Thakur, D. Singh and P. Sonia, *Mater. Today*, 2022, **62**, 2755-2761.

^[4] E. H. Jiang, L. L. Yang, N. Song, X. X. Zhang, C. B. Liu and H. J. Dong, *J. Colloid Interf. Sci.*, 2020, **576**, 21-33.

- [5] Y. L. Zhu, H. A. Tahini, Y. Wang, Q. Lin, Y. Liang, C. Doherty, Y. Liu, X. Y. Li, J. Lu, S. Smith, C. Selomulya, X. W. Zhang, Z. P. Shao and H. T. Wang, J. Mater. Chem. A, 2019, 7, 14222-14232.
- [6] J. J. Lin, J. S. Hu, C. W. Qiu, H. J. Huang, L. Chen, Y. Y. Xie, Z. Z. Zhang,H. X. Lin and X. X. Wang, *Catal. Sci. Technol.*, 2019, 9, 336-346.
- [7] J. Yu, Y. N. Guo, S. S. Miao, M. Ni, W. Zhou and Z. P. Shao, *ACS Appl. Mater. Inter.*, 2018, **10**, 34098-34107.