Harmonization of an incompatible aqueous Aldol condensation/oxa-Michael addition/reduction cascade process over a core-shell-structured thermoresponsive catalyst

Yu Su, Chengyi Wang, Qipeng Chen, Yuanli Zhu, Shaomin Deng, Shoujin Yang, Ronghua Jin, and Guohua Liu*
Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China. E-mail: ghliu@shnu.edu.cn

CONTENTS

Experimental. S2
Figure S1. DLS traces of 1-2 and catalyst 3 S13
Figure S2. Temperature-dependent transmittance using a turbidity measurement. S14
Figure S3. The SEM images and dispersive situations of catalyst 3 S15
Figure S4. The NMR spectra S16
Figure S5. Average hydrodynamic diameters distribution measurement of $\mathbf{3}$ S19
Table S1. Optimizing reaction conditions for the Aldol/addition reaction. S25
Table S2. Optimizing reaction conditions for the DKR-ATH reaction. S25
Figure S6. HPLC analyses of chiral products S26
Figure S7. Characterizations of chiral products S62
Table S3. The single-crystal structure data of (S, S)-7ah. S98
Table S4. Reusability of catalyst 3 S99
Figure S8. Reusability of catalyst 3. S100
Figure S9. Contrastive ${ }^{1} \mathrm{H}$-NMR spectra for deuterium labeling experiments. S103

Experimental

1. General: All reactions involving air- or moisture-sensitive reagents or intermediates were carried out in oven-dried glassware using standard Schlenk techniques. All commercially available reagents were purchased from Sigma-Aldrich, Alfa Aesar, TCI Chemicals, Acros Organics, or ABCR in the highest purity grade and used without further purification.
2. Characterization: Ru loading amounts in the catalysts were analyzed using an inductively coupled plasma optical emission spectrometer (ICP-OES, Varian VISTA-MPX). Molecular weights and molecular weight distributions were determined by gel permeation chromatography (GPC) equipped with Waters 1515 pump and Waters 2414 differential refractive index detector (set at $30^{\circ} \mathrm{C}$), employing a series of three linear Styragel columns (HR1, HR2, and HR4) at an oven temperature of $45^{\circ} \mathrm{C}$. The eluent was DMF at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$. A series of low polydispersity polystyrene standards were employed for calibration. Solid-state NMR experiments were explored on a Bruker AVANCE spectrometer at a magnetic field strength of 9.4 T with ${ }^{1} \mathrm{H}$ frequency of 400.1 MHz , and ${ }^{13} \mathrm{C}$ frequency of 100.5 MHz with 4 mm rotor at two spinning frequencies of 5.5 kHz and 8.0 kHz , TPPM decoupling is applied in the during the acquisition period. ${ }^{1} \mathrm{H}$ cross-polarization in the solid-state NMR experiments was employed using a contact time of 2 ms and pulse lengths of $4 \mu \mathrm{~s}$. Liquid-state NMR (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) spectra were performed on a Bruker AVANCE spectrometer at a magnetic field strength of 9.4 T with a ${ }^{1} \mathrm{H}$ frequency of 400 MHz and a ${ }^{13} \mathrm{C}$ frequency of 100 MHz . Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ single, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, brs = broad single, $\mathrm{m}=$ multiplet), coupling constants (Hz), and integration. Mass spectra were recorded on a Finnigan MAT 4200S, a Bruker Daltonics Micro Tof, and a Waters-Micromass Quatro LCZ (ESI); peaks are given in m / z (\% of basis peak).
3. General procedure for the Aldol condensation/oxa-Michael addition process. A typical procedure was as follows: The base (0.12 mmol of DBU salt-loadings based on ICP analysis), 4aa (0.10 mmol), 5aa (0.12 mmol), $\mathrm{HCO}_{2} \mathrm{Na}(1.0 \mathrm{mmol})$, and/or 2.50 $\mathrm{mol} \%$ of additive in 4.0 mL of $\mathrm{H}_{2} \mathrm{O} / 2 \mathrm{PrOH}(\mathrm{v} / \mathrm{v}=1: 3)$ were added sequentially to a 10.0 mL round-bottom flask purged with nitrogen in turn. The mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, the aqueous solution was extracted by $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 3.0 \mathrm{~mL})$. The combined $\mathrm{Et}_{2} \mathrm{O}$ was washed with brine twice and dehydrated with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the evaporation of $\mathrm{Et}_{2} \mathrm{O}$, the residue was purified by silica gel flash column chromatography to afford 6aa as a white solid.
4. General procedure for the DKR-ATH process. A typical procedure was as follows: The catalyst ($2.50 \mathrm{~mol} \%$ of Ru-loading), 6aa $(0.10 \mathrm{mmol}), \mathrm{HCO}_{2} \mathrm{Na}(1.0 \mathrm{mmol})$, and/or additive $(0.12 \mathrm{mmol})$ in 4.0 mL of $\mathrm{H}_{2} \mathrm{O} / \mathrm{PrOH}(\mathrm{v} / \mathrm{v}=1: 3)$ were added sequentially to a
10.0 mL round-bottom flask purged with nitrogen in turn at room temperature. The resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 18 h . After completion of the reaction, The aqueous solution was extracted by $\mathrm{Et}_{2} \mathrm{O}(3 \times 3.0 \mathrm{~mL})$. The combined $\mathrm{Et}_{2} \mathrm{O}$ was washed with brine twice and dehydrated with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the evaporation of $\mathrm{Et}_{2} \mathrm{O}$, the residue was purified by silica gel flash column chromatography to afford (S, S)-7aa as a white solid.
5. Reusability of catalyst 3 in the Aldol/addition/DKR-ATH cascade process of 4aa and 5aa. A typical procedure was as follows: The catalyst $\mathbf{3}(0.12 \mathrm{mmol}$ of DBU saltloadings and $2.50 \mathrm{~mol} \%$ of Ru-loadings based on ICP analyses), 1.0 equivalent of 4aa, 1.20 equivalent of $\mathbf{5 a a}$, and 10.0 equivalent of HCOONa in 4.0 mL of $\mathrm{H}_{2} \mathrm{O} / \mathrm{PrOH}(\mathrm{v} / \mathrm{v}$ $=1: 3$), and the mixture stirred at $70^{\circ} \mathrm{C}$ for the first 12 h followed at $40^{\circ} \mathrm{C}$ for 10 h . After completion of the reaction, the heterogeneous catalyst was separated for the recycling experiment. The aqueous solution was extracted by $\mathrm{Et}_{2} \mathrm{O}(3 \times 3.0 \mathrm{~mL})$. The combined $\mathrm{Et}_{2} \mathrm{O}$ was washed with brine twice and dehydrated with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the evaporation of $\mathrm{Et}_{2} \mathrm{O}$, the residue was purified by silica gel flash column chromatography to afford ((S, S)-7aa.

6. Deuterium experiments

6.1 A typical procedure for the aldol/addition reaction of 4aa and 5aa- d_{l} in deuterated $\mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{OD}$ is as follows: The catalyst $\mathbf{3}(0.12 \mathrm{mmol}$ of DBU salt-loadings based on ICP analysis), 4aa (0.10 mmol), 5aa (0.12 mmol), and $\mathrm{HCO}_{2} \mathrm{Na}(1.0 \mathrm{mmol})$ in 4.0 mL of $\mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{OD}(\mathrm{v} / \mathrm{v}=1: 3)$ were added sequentially to a 10.0 mL round-bottom flask purged with nitrogen in turn. The mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, the aqueous solution was extracted by $\mathrm{Et}_{2} \mathrm{O}(3 \times 3.0 \mathrm{~mL})$. The combined $\mathrm{Et}_{2} \mathrm{O}$ was washed with brine twice and dehydrated with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the evaporation of $\mathrm{Et}_{2} \mathrm{O}$, the residue was purified by silica gel flash column chromatography to afford the desired product 6aa in a 95% isolated yield.
6.2 A typical procedure for the DKR-ATH reaction of 6aa in deuterated $\mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{OD}$ is as follows: The catalyst $\mathbf{3}(0.12 \mathrm{mmol}$ of DBU salt-loadings and $2.50 \mathrm{~mol} \%$ of Ru based on ICP analyses), $\mathbf{6 a a}(0.10 \mathrm{mmol})$, and $\mathrm{HCO}_{2} \mathrm{Na}(1.0 \mathrm{mmol})$ in 4.0 mL of $\mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{OD}(\mathrm{v} / \mathrm{v}=1: 3)$ were added sequentially to a 10.0 mL round-bottom flask purged with nitrogen in turn. The resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 18 h . After completion of the reaction, The aqueous solution was extracted by $\mathrm{Et}_{2} \mathrm{O}(3 \times 3.0 \mathrm{~mL})$. The combined $\mathrm{Et}_{2} \mathrm{O}$ was washed with brine twice and dehydrated with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the evaporation of $\mathrm{Et}_{2} \mathrm{O}$, the residue was purified by silica gel flash column chromatography to afford $(S, S)-7 \mathbf{a a}-d_{3}$ in a 93% isolated yield.

9. Data of chiral products.

7aa: (2S,4S)-2-(4-bromophenyl)chroman-4-ol. White solid, 91% yield, 99% ee, 37/1
 $d r .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right) \delta 7.56-6.80(\mathrm{~m}, 8 \mathrm{H})$, 5.17 (dd, $J=12.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.09-5.04$ (m, 1H), $2.44-$ $1.94(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) δ 155.77, $141.95,132.66,129.69,128.22,127.62,122.65,121.87$, 117.34, 77.61, 66.12, 41.05. HRMS (APCI): m/z [M-OH $\left.{ }^{+}\right]$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OBr}^{+}$287.00660; found 287.00698. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7ab: (2S,4S)-2-(4-fluorophenyl)chroman-4-ol. White solid, 86% yield, 99% ee, $39 / 1$
 $d r .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right) \delta 7.51-6.79(\mathrm{~m}, 8 \mathrm{H})$, $5.16(\mathrm{dd}, J=12.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-5.04(\mathrm{~m}, 1 \mathrm{H}), 2.39-$ $2.00(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) δ 165.08, $162.64,155.86,138.63$ (d, $J=3.2 \mathrm{~Hz}$), 129.67, 129.18, 129.10, $128.21,127.60,121.80,117.33,116.30,116.08,77.65,66.19$, 41.10. HRMS (APCI): m/z [M- OH^{+}] calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OF}^{+}$227.08667; found 227.08615. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7ac: (2S,4S)-2-(4-chlorophenyl)chroman-4-ol. White solid, 92% yield, $99 \% e e, 17 / 1$
 $d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.66-6.84(\mathrm{~m}, 8 \mathrm{H})$, $5.20(\mathrm{dd}, J=12.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=10.8,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.47 - $1.93(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) δ 154.36, 140.02, 133.26, 128.28, 128.23, 127.36, 126.81, $126.20,120.45,115.92,76.16,64.71,39.65$. HRMS (APCI): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OCl}^{+}$243.05712; found 243.05752. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: $\left.1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

7ad: (2S,4S)-2-(3-chlorophenyl)chroman-4-ol. White solid, 87% yield, $99 \% e e$,
 $14 / 1 d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.53-6.84$ (m, 8 H), 5.20 (dd, $J=12.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.09 (ddt, $J=10.8,6.2$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-1.95(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol $-d_{4}$) $\delta 154.27,143.58,134.02,129.72,128.31$, $127.60,126.81,126.20,125.71,124.04,120.50,115.94$,
76.08, 64.66, 39.70. HRMS (APCI): m/z [M-OH $\left.{ }^{+}\right]$calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OCl}^{+}$243.05712; found 243.05627. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7ae: (2S,4S)-2-(2-chlorophenyl)chroman-4-ol. White solid, 82% yield, $99 \% e e$, $37 / 1 d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.52-7.40(\mathrm{~m}, 5 \mathrm{H})$,
 $7.17-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=$ $12.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.08 (ddt, $J=10.8,6.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-1.92$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) δ 154.10, 142.05, $132.02,131.20,130.30,128.35,127.77,126.85,126.16,125.51$, 120.62, 115.94, 75.45, 64.55, 39.50. HRMS (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OCl}^{+} 243.05712$; found 243.05739. HPLC (Chiralpak AD-H, elute: Hexanes/i$\mathrm{PrOH}=97 / 3$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7af: (2S,4S)-2-phenylchroman-4-ol. White solid, 86% yield, $99 \% e e, 23 / 1 d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.53-6.82(\mathrm{~m}, 9 \mathrm{H}), 5.18$ (dd,
 $J=12.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.06(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.01(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 154.58,141.18,128.24$, $128.13,127.64,126.78,126.25,125.73,120.31,115.93,76.96$, 64.87, 39.80. HRMS (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}^{+}$ 209.09609; found 209.09560. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7ag: (2S,4S)-2-(p-tolyl)chroman-4-ol. White solid, 90% yield, $99 \% e e, 21 / 1 d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.52-6.80(\mathrm{~m}, 8 \mathrm{H}), 5.14$ (dd, $J=12.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ (dd, $J=10.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.42-2.37$ (m, 4H), 2.05 (ddd, $J=13.0,12.0,10.9 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 154.65,138.16,137.48$, $128.69,128.20,126.77,126.24,125.74,120.23,115.90$, 76.88, 64.91, 39.71, 19.81. HRMS (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}^{+}$ 223.11174; found 223.11207. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7ah: (2S,4S)-2-(m-tolyl)chroman-4-ol. White solid, 83% yield, 99% ee, $20 / 1 d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.51-6.79$ (m, 8H), 5.03
 (ddd, $J=12.7,10.1,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 4 \mathrm{H}), 2.02$ (ddd, $J=13.0,12.1,10.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- $\left.d_{4}\right) \delta 158.56,144.99,141.83,132.27(\mathrm{~d}, J=8.0 \mathrm{~Hz})$, 132.04, 130.79, 130.37, 130.20, 126.83, 124.28, 119.95, 80.95, 68.86, 43.70, 24.20. HRMS(APCI) calcd. for [$\mathrm{M}-\mathrm{OH}^{+}$]: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}^{+} 223.11174$ found 223.11210. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).
 NMR (400 MHz, Methanol- d_{4}) $\delta 7.54-6.16(\mathrm{~m}, 6 \mathrm{H}), 6.98-6.81$ (m, 2H), 5.38 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=10.9,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41-2.37(\mathrm{~m}, 4 \mathrm{H}), 2.05$ (ddd, $J=13.0,11.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 154.73,138.79,134.75,130.13$, 128.24, 127.50, 126.86, 126.33, 125.87, 125.32, 120.31, 115.95, 74.01, 65.00, 38.14, 17.68. HRMS (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}^{+}$ 223.11174; found 223.11112. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=97 / 3$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7aj: (2S,4S)-2-(4-methoxyphenyl)chroman-4-ol. White solid, 85% yield, $\mathbf{9 9 \%} e e$,
 $35 / 1 d r .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right) \delta 7.28-6.78(\mathrm{~m}$, $8 \mathrm{H}), 5.14-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.03(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) δ 159.61, 154.68, 133.14, 128.19, 127.17, 126.78, 126.22, 120.22, 115.89, 113.45, 76.71, 64.95, 54.32, 39.56. HRMS(APCI) calcd. for $\left[\mathrm{M}-\mathrm{OH}^{+}\right]: \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2}{ }^{+} 239.10666$ found 239.10698. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=97 / 3$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7ak: (2S,4S)-2-(3-methoxyphenyl)chroman-4-ol. White solid, 83% yield, $99 \% e e$, $21 / 1 d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta \delta 7.47-6.76$
 $(\mathrm{m}, 8 \mathrm{H}), 5.12-5.03(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.40$ $-2.00(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Methanol- d_{4}) δ $160.58,155.65,134.11,129.16,128.13,127.74,127.19$, 121.18, 116.86, 114.41, 77.67, 65.92, 55.29, 40.53. HRMS (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2}{ }^{+}$239.10666; found 239.10522. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7al: (2S,4S)-2-(2-methoxyphenyl)chroman-4-ol. White solid, 79\% yield, $99 \% \mathrm{ee}$,
 $>50 / 1 d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.54-7.47(\mathrm{~m}$, $2 \mathrm{H}), 7.22$ (dtd, $J=62.1,7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-7.00(\mathrm{~m}, 4 \mathrm{H})$, 5.49 (dd, $J=11.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (dd, $J=11.0,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{ddd}, J=12.8,6.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dt}, J=$ $12.8,11.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right) \delta 155.93$, 154.77, 129.23, 128.49, 128.17, 126.79, 126.36, 125.80, 120.33, 120.19, 115.95, $110.21,71.56,64.93,54.55,38.34$. HRMS (APCI): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2}{ }^{+}$ 239.10666; found 239.10588. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7am: (2S,4S)-2-(furan-2-yl)chroman-4-ol. White solid, 86\% yield, 99% ee, $>50 / 1 d r$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, Methanol- d_{4}) $\delta 7.52-6.42(\mathrm{~m}, 7 \mathrm{H}), 5.19(\mathrm{dd}, J=12.1,1.9 \mathrm{~Hz}$,
 $1 \mathrm{H}), 5.01(\mathrm{dd}, J=10.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 155.79,154.98,144.28,130.07$, 128.62, 127.84, 122.22, 117.66, 111.75, 109.09, 71.82, 66.18, 37.24. HRMS (APCI): m/z [M-OH ${ }^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{2}{ }^{+}$ 199.07536; found 199.07475. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=97 / 3$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7an: (2S,4S)-2-(thiophen-2-yl)chroman-4-ol. White solid, 85% yield, $99 \% ~ e e,>50 / 1$

$d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.52-6.80(\mathrm{~m}, 8 \mathrm{H}), 5.16$ $-5.05(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.37(\mathrm{~m}, 4 \mathrm{H}), 2.05$ (ddd, $J=13.0,12.0,10.9$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 154.15$, 143.94, $128.26,126.82,126.15,126.10,124.82,124.43,120.50,115.89$, 72.78, 64.51, 39.79. HRMS (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{OS}^{+} 215.05251$; found 215.05165. HPLC (Chiralpak AD-H, elute: Hexanes/i$\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7ao: (2S,4S)-6-fluoro-2-phenylchroman-4-ol. White solid, 88% yield, $99 \% e e,>50 / 1$
 $d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) ${ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.46-6.78(\mathrm{~m}, 8 \mathrm{H}), 5.17-5.01(\mathrm{~m}, 2 \mathrm{H}), 2.39$ $-1.96(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 162.33$, $159.98,154.60(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 144.90,132.09,131.67(\mathrm{~d}, J=$ $4.7 \mathrm{~Hz}), 129.65,121.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 118.75(\mathrm{~d}, J=23.6$ $\mathrm{Hz}), 116.57$ ($\mathrm{d}, J=23.7 \mathrm{~Hz}$), 81.07, 68.68, 43.30. HRMS (APCI): m/z [M-OH $\left.{ }^{+}\right]$calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OF}^{+}$227.08667; found 227.08701. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7ap: (2S,4S)-6-chloro-2-phenylchroman-4-ol. White solid, 85% yield, 99% ee, $37 / 1$
 $d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.47-6.78(\mathrm{~m}, 8 \mathrm{H})$, 5.18 (dd, $J=12.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.03 (ddt, $J=11.0,6.2,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.42-1.96(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol$\left.d_{4}\right) \delta 157.22,144.71,132.18,132.11,132.05,131.71,130.45$, 129.66, 129.07, 121.51, 81.18, 68.49, 43.18. HRMS (APCI):
$\mathrm{m} / \mathrm{z}\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OCl}^{+}$243.05712; found 243.05721. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\operatorname{PrOH}=95 / 5$, detector: 210 nm , flow rate: $\left.1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

7aq: (2S,4S)-6-bromo-2-phenylchroman-4-ol. White solid, 83% yield, 99% ee, 28/1
 $d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42-6.72(\mathrm{~m}, 8 \mathrm{H}), 5.15$ (dd, $J=12.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (dd, $J=11.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=12.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Methanol- d_{4}) δ 153.76, 140.70, 131.08, $129.55,128.74,128.20,127.80,125.75,118.04,112.31,77.24$, 64.51, 39.17. HRMS (APCI): m/z [M-OH ${ }^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OBr}^{+}$287.00660; found 287.00711. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7ar: (2S,4S)-6-methyl-2-phenylchroman-4-ol. White solid, 73\% yield, $99 \% e e, ~ 46 / 1$ $d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.48-6.71$ (m, 8H),
 5.12 - 5.02 (m, 2H), 2.39 (ddd, $J=12.9,6.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.29(\mathrm{~s}, 3 \mathrm{H}), 2.03$ (ddd, $J=13.0,12.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) δ 152.40, 141.28, 129.51, $128.84,128.12,127.60,127.02,125.80,125.74,115.75$, 76.87, 64.93, 39.91, 19.40. HRMS (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}^{+}$ 223.11174; found 223.11115. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=97 / 3$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7as: (2S,4S)-6-fluoro-2-(4-fluorophenyl)chroman-4-ol. White solid, 89\% yield, 99\% $e e, 23 / 1 d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.49-6.78$
 $(\mathrm{m}, 7 \mathrm{H}), 5.16-5.02(\mathrm{~m}, 2 \mathrm{H}), 2.42-1.96(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 165.08,162.64,159.81,157.45$, $151.91(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 138.35(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 129.08$, 118.53 (d, $J=7.9 \mathrm{~Hz}), 116.23(\mathrm{dd}, J=22.7,4.2 \mathrm{~Hz}), 114.07$ (d, $J=23.8 \mathrm{~Hz}$), 77.80, 66.04, 40.62. HRMS (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right.$] calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{OF}_{2}{ }^{+} 245.07725$; found 245.07672. HPLC (Chiralpak ADH, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7at: (2S,4S)-6-fluoro-2-(p-tolyl)chroman-4-ol. White solid, 95% yield, $99 \% e e$, $>50 / 1 d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.35-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.92-6.76(\mathrm{~m}, 2 \mathrm{H})$,
 5.12 (dd, $J=12.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.99(\mathrm{~m}, 1 \mathrm{H}), 2.41$ - 2.36 (m, 4H), 2.02 (ddd, $J=13.0,12.0,10.9 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 158.36,156.00$, 150.73 (d, $J=2.0 \mathrm{~Hz}), 137.75(\mathrm{~d}, J=38.5 \mathrm{~Hz}), 128.72$, $127.74,125.73,117.06,114.78(\mathrm{~d}, J=23.7 \mathrm{~Hz}), 112.62(\mathrm{~d}$, $J=23.9 \mathrm{~Hz}$), 77.05, 64.78, 39.26, 19.82. HRMS (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{OF}^{+}$241.10232; found 241.10170. HPLC (Chiralpak AD-H, elute: Hexanes/i$\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7au: (2S,4S)-2-(3,4-difluorophenyl)-6-methylchroman-4-ol. White solid, 76% yield,
 $99 \% e e, 36 / 1 d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) δ $7.41-6.70(\mathrm{~m}, 6 \mathrm{H}), 5.14-5.00(\mathrm{~m}, 2 \mathrm{H}), 2.40$ (ddd, $J=$ $13.0,6.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (s, 3H), $1.99-1.90(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 155.95,155.30(\mathrm{~d}$, $J=12.8 \mathrm{~Hz}), 154.81(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 152.85(\mathrm{~d}, J=12.7$ $\mathrm{Hz}), 152.36(\mathrm{~d}, ~ J=12.7 \mathrm{~Hz}), 142.87(\mathrm{dd}, J=5.6,3.8 \mathrm{~Hz}), 133.72,132.83,130.97$, $129.66,126.08(\mathrm{dd}, J=6.5,3.6 \mathrm{~Hz}), 120.91,79.45(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 68.59,43.67,23.29$. HRMS (APCI): m/z [M-OH ${ }^{+}$] calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{OF}_{2}{ }^{+}$259.09290; found 259.09218 . HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=97 / 3$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7ba: (2R,4S)-2-methylchroman-4-ol. White solid, 82% yield, $99 \% e e,>50 / 1 d r .{ }^{1} \mathrm{H}$
 NMR (400 MHz , Methanol- d_{4}) $\delta 7.46-6.71(\mathrm{~m}, 4 \mathrm{H}), 4.88(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.25$ (dqd, $J=12.6,6.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26$ (ddd, $J=12.9,6.4$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dt}, J=12.9,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 154.57,128.05,126.84,126.04$, 119.89, 115.71, 71.15, 64.48, 39.06, 20.44. HRMS (APCI): m/z [M-OH $\left.{ }^{+}\right]$calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}^{+} 147.08044$; found 147.08010. HPLC (Chiralpak AD-H, elute: Hexanes/i$\mathrm{PrOH}=97 / 3$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7bb: (2R,4S)-2-ethylchroman-4-ol. White solid, 81% yield, $99 \% e e,>50 / 1 d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.45-6.72(\mathrm{~m}, 4 \mathrm{H}), 4.88(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{ddd}, J=12.8,6.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{ddd}, J=$ $12.8,6.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 154.62,128.06,126.80,126.30$, $119.83,115.73,76.04,64.64,36.84,28.24,8.39$. HRMS (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}^{+} 161.09609$; found 161.09570. HPLC (Chiralpak AD-H, elute: Hexanes/i$\mathrm{PrOH}=99 / 1$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7bc: (2R,4S)-2-propylchroman-4-ol. White solid, 85% yield, $99 \% e e,>50 / 1 d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.45-6.71$ (m, 4H), 4.88 (d, J $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (dddd, $J=11.6,7.6,4.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (ddd, $J=12.9,6.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.45(\mathrm{~m}, 5 \mathrm{H}), 1.01(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 154.60,128.05$, $126.82,126.29,119.83,115.74,74.57,64.61,37.57,37.34,17.99,12.99$. HRMS (APCI): m/z [M-OH ${ }^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}^{+}$175.11174; Found 175.11104. HPLC (Chiralpak AD-H, elute: Hexanes/i-PrOH = 99/1, detector: 210 nm , flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7bd: (2S,4S)-2-isopropylchroman-4-ol. White solid, 83% yield, $99 \% e e, 19 / 1 d r .{ }^{1} \mathrm{H}$
 NMR (400 MHz , Methanol- d_{4}) $\delta 7.45-6.72$ (m, 4H), 3.89 (ddd, J $=11.7,5.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{ddd}, J=12.8,6.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (pd, $J=6.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{dt}, J=12.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 154.77$, 128.04, $126.65,126.40,119.75,115.70,79.45,65.01,34.03,32.31,17.07,16.66$. HRMS (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}^{+}$175.1117; found 175.1119. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7be: (2R,4S)-2-isobutylchroman-4-ol. White solid, 88% yield, $99 \% e e,>50 / 1 d r .{ }^{1} \mathrm{H}$
 NMR (400 MHz , Methanol- d_{4}) $\delta 7.45-6.71$ (m, 4H), 4.91 (d, J $=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.19 (dddd, $J=11.3,8.7,4.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (ddd, $J=12.9,6.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.66$ (m, 2H), $1.46-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{dd}, J=6.7,3.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) δ 154.56, 128.05, 126.87, 126.30, 119.87, 115.77, 73.04, 64.54, 44.59, 37.88, 24.05, 22.26, 21.19. HRMS (APCI): m/z [M-OH $\left.{ }^{+}\right]$calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}^{+}$189.12739; found 189.12656. HPLC (Chiralpak AD-H, elute: Hexanes/i$\mathrm{PrOH}=97 / 3$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7bf: (2S,4S)-2-(tert-butyl)-chroman-4-ol. White solid, 95% yield, $99 \% e e,>50 / 1$
 $d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.45-6.72(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~s}$, $4 \mathrm{H}), 3.75$ (dd, $J=12.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27 (ddd, $J=12.6,6.2,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.68(\mathrm{td}, J=12.3,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 154.95,128.05,126.47,126.44,119.71$, $115.67,82.31,65.43,33.49,32.23,24.70$. HRMS (APCI): m/z [M$\mathrm{OH}^{+}$] calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}^{+}$189.12739; found 189.12626. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=99 / 1$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7bg: (2R,4S)-6-chloro-2-methylchroman-4-ol. White solid, 91% yield, 99% ee, 35/1 $d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.42-6.70(\mathrm{~m}, 3 \mathrm{H}), 4.85$
 (dd, $J=11.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.26 (dd, $J=5.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.28-$ $1.63(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 153.30,128.03,127.93,126.55,124.68,117.33$, 71.54, 64.17, 38.54, 20.32. HRMS (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{OCl}^{+}$ 181.0415; found 181.0418. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7bh: (2S,4S)-6-chloro-2-isopropylchroman-4-ol. White solid, 87% yield, $99 \% e e$,
 $45 / 1 d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.41-6.71$ (m, 3 H), 4.84 (ddt, $J=11.0,6.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 (ddd, $J=11.8$, $5.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.22 (ddd, $J=12.8,6.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.93 (heptd, $J=6.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.69 (ddd, $J=12.8,11.8,10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.05(\mathrm{dd}, J=6.9,5.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 153.47$, 128.38, 127.92, 126.38, 124.55, 117.30, 79.78, 64.67, 33.57, 32.25, 17.05, 16.57. HRMS (APCI): m/z [M-OH ${ }^{+}$] calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{OCl}^{+}$209.07277; found 209.07227. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=97 / 3$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7bi: (2R,4S)-6-chloro-2-isobutylchroman-4-ol. White solid, 86\% yield, 99% ee, 21/1
 $d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.42-6.70(\mathrm{~m}, 3 \mathrm{H})$, $4.87-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.21$ (dddd, $J=11.3,8.6,4.4,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.25-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.43(\mathrm{~m}, 3 \mathrm{H}), 0.99(\mathrm{dd}, J=6.7,3.4$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) δ 153.26, 128.29, 127.92, 126.56, 124.65, 117.37, 73.44, 64.22, 44.45, 37.37, 24.03, 22.22, 21.14. HRMS (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{OCl}^{+}$223.0884; found 223.0885. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7bj: (2S,4S)-2-(tert-butyl)-6-chlorochroman-4-ol. White solid, 93\% yield, 99\% ee, $42 / 1 d r .{ }^{1}{ }^{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.41-6.71(\mathrm{~m}, 3 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.79$
 (dd, $J=12.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 153.61,128.42,127.91,126.22$, 124.52, 117.24, 82.67, 65.04, 33.48, 31.76, 24.59. HRMS (APCI): m/z [M-OH ${ }^{+}$] calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{OCl}^{+} 223.0884$; found 223.0885. HPLC (Chiralpak AD-H, elute: Hexanes $i-\operatorname{PrOH}=97 / 3$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7bk: (2S,4S)-6-bromo-2-isopropylchroman-4-ol White solid, 85\% yield, 99\%
 $e e, 16 / 1 d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.55-6.66(\mathrm{~m}$, $3 \mathrm{H}), 4.85(\mathrm{ddt}, J=11.0,6.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 1 \mathrm{H})$, $2.25(\mathrm{~s}, 1 \mathrm{H}), 1.93(\mathrm{pd}, J=6.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69$ (ddd, $J=12.8$, $11.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.07-1.03(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 153.96,130.87,129.41,128.93,117.77,111.68$,
79.79, 64.61, 33.54, 32.25, 17.05, 16.57. HRMS (APCI): m/z [M-OH ${ }^{+}$] calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{OBr}^{+} 253.02225$; found 253.02227. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-$ $\mathrm{PrOH}=97 / 3$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7bl: (2S,4S)-2-cyclobutylchroman-4-ol. White solid, 76\% yield, $99 \% e e,>50 / 1 d r .{ }^{1} \mathrm{H}$
 NMR (400 MHz, Methanol- d_{4}) $\delta 7.43-6.71$ (m, 4H), $4.86-4.84$ (m, 1H), 4.01 (ddd, $J=11.5,7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.18(\mathrm{~m}, 1 \mathrm{H})$, $2.18(\mathrm{~s}, 7 \mathrm{H}), 1.56(\mathrm{dt}, J=12.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 154.62,128.07,126.75,126.31,119.79,115.74$, $77.90,64.56,39.69,34.47,23.77,23.06,17.66 . \operatorname{HRMS}$ (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}^{+}$187.11174; found 187.11112. HPLC (Chiralpak AD-H, elute: Hexanes/i$\mathrm{PrOH}=99 / 1$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7bm: (2S,4S)-2-cyclopentylchroman-4-ol. White solid, 81% yield, $99 \% e e, 42 / 1 d r$.
 ${ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.45-6.71(\mathrm{~m}, 4 \mathrm{H}), 4.90(\mathrm{~s}$, $1 \mathrm{H}), 3.92$ (ddd, $J=11.5,7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.09(\mathrm{~m}, 2 \mathrm{H})$, $1.94-1.40(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 154.71$, $128.05,126.74,126.35,119.75,115.75,78.59,64.69,44.56$, 36.31, 28.21, 25.19 (d, $J=3.2 \mathrm{~Hz}$). HRMS (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right]$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}^{+}$201.12739; found 201.12656. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=97 / 3$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

7bn: (2S,4S)-2-cyclohexylchroman-4-ol. White solid, 88% yield, $99 \% e e, 16 / 1 d r .{ }^{1} \mathrm{H}$
 NMR (400 MHz , Methanol- d_{4}) $\delta 7.44-6.71$ (m, 4H), $4.88-4.85$ (m, 1H), 3.89 (ddd, $J=11.7,5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (ddd, $J=12.7$, $6.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{dtt}, J=13.4,4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.62$ $(\mathrm{m}, 6 \mathrm{H}), 1.37-1.12(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol $-d_{4}$) $\delta 154.77,128.03,126.67,126.43,119.73,115.71,78.94,65.05$, 42.32, 34.22, 28.23, 27.91, 26.29, 25.96, 25.89. HRMS (APCI): m/z $\left[\mathrm{M}-\mathrm{OH}^{+}\right]$calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}^{+}$215.14304; found 215.14213. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-$ $\mathrm{PrOH}=97 / 3$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

[^0]Figure 1. DLS traces of $\mathbf{1}$ (green) and $\mathbf{2}$ (red) and catalyst $\mathbf{3}$ (blue) indicated at 25, 45, and 70°.

Figure S2. Temperature-dependent transmittance of $\mathbf{3}$ using a turbidity measurement (a) This turbidity measurement was performed on a custom-modified Tepper turbidity photometer TP1-D at a wavelength of 670 nm , a cell path length of 10 mm , and magnetic stirring. The heating program started at a high temperature, and it was cooled to $10{ }^{\circ} \mathrm{C}$ at a constant cooling rate of $1.0^{\circ} \mathrm{C} / \mathrm{min}$. (b) Temperature-dependent transmittance for the determination of the the volume phase transition temperature (VPTT) as the temperature corresponding to the transmittance decrease at the wavelength of 680 nm).

Figure S3. The SEM images and dispersive situations of catalyst 3. (a) The scanning electron microscopy (SEM) images of catalyst 3. (b) The dispersive situations of catalyst $\mathbf{3}$ at indicated 25,40 , and $80^{\circ} \mathrm{C}$ in $\mathrm{H}_{2} \mathrm{O} / i \mathrm{PrOH}(\mathrm{v} / \mathrm{v}=1: 3$) system.

Figure S4. The NMR spectra. (a) The liquid-state ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 1-2, catalysts $\mathbf{3}$ and $\mathbf{3}^{\prime}$. (b) The solid-state ${ }^{13} \mathrm{C}$ MAS NMR spectra of $\mathbf{1 - 2}$, and catalysts $\mathbf{3}$ and $\mathbf{3}^{\prime}$.
(a) The liquid-state ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the core (1), catalyst $\mathbf{3}^{\prime}$, core-shell (2), and catalyst $\mathbf{3}$.

CH_{2} or CH_{3}
in skeleton

50

| 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0
 $\mathrm{fl}(\mathrm{ppm})$ | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0 |
| :--- |

(b) Solid-state ${ }^{13} \mathrm{C}$ MAS NMR spectra of $\mathbf{1 , 2}$, and catalysts $\mathbf{3}$ and $\mathbf{3}^{\prime}$.

Figure S5. Average hydrodynamic diameters distribution measurement of $\mathbf{3}$.
Run 1.
Results ($25{ }^{\circ} \mathrm{C}$ for the first run)

			Size (d.nm):	\% Intensity:
Z-Average (d.nm):	181.4	Peak 1:	216.0	100.0
Pd: Dev (d.nm):	0.159	Peak 2:	0.000	0.0
Intercept:	0.921	Peak 3:	0.000	0.0
Result quality : Good				0.000
R				0.000

Size Distribution by Intensity

Results ($45{ }^{\circ} \mathrm{C}$ for the first run)

		Size (d.nm):	\% Intensity:	St Dev (d.nm):	
Z-Average (d.nm):	116.7	Peak 1:	127.8	100.0	40.16
Pdl:	0.074	Peak 2:	0.000	0.0	0.000
Intercept:	0.920	Peak 3:	0.000	0.0	0.000

Size Distribution by Intensity

Results ($70{ }^{\circ} \mathrm{C}$ for the first run)

		Size (d.nm):	\% Intensity:	St Dev (d.nm):	
Z-Average (d.nm):	86.24	Peak 1:	90.51	100.0	21.14
PdI:	0.025	Peak 2:	0.000	0.0	0.000
Intercept:	0.944	Peak 3:	0.000	0.0	0.000

Size Distribution by Intensity

Run 2.

Results ($25{ }^{\circ} \mathrm{C}$ for the second run)

		Size (d.nm):	\% Intensity:	St Dev (d.nm):	
Z-Average (d.nm):	182.6	Peak 1:	217.4	100.0	83.98
Pdl:	0.168	Peak 2:	0.000	0.0	0.000
Intercept:	0.919	Peak 3:	0.000	0.0	0.000

Size Distribution by Intensity

Results ($45{ }^{\circ} \mathrm{C}$ for the second run)

Results (70 ${ }^{\circ} \mathrm{C}$ for the second run)

		Size (d.nm):	\% Intensity:	St Dev (d.nm):	
Z-Average (d.nm):	84.65	Peak 1:	91.45	100.0	25.47
Pdl:	0.076	Peak 2:	0.000	0.0	0.000
Intercept:	0.939	Peak 3:	0.000	0.0	0.000

Size Distribution by Intensity

Run 3.

Results ($25{ }^{\circ} \mathrm{C}$ for the third run)

		Size (d.nm):	\% Intensity:	St Dev (d.nm):	
Z-Average (d.nm):	183.7	Peak 1:	218.7	100.0	88.33
PdI:	0.163	Peak 2:	0.000	0.0	0.000
Intercept:	0.919	Peak 3:	0.000	0.0	0.000

Size Distribution by Intensity

Results ($45{ }^{\circ} \mathrm{C}$ for the third run)

Z-Average (d.nm):	114.6
PdI:	0.104
Intercept:	0.880
Result quality :	Good

Peak 1: 128.9
Peak 2: 0.000
Peak 3: 0.000

Size Distribution by Intensity

Results (70 ${ }^{\circ} \mathrm{C}$ for the third run)

		Size (d.nm):	\% Intensity:	St Dev (d.nm):
Z-Average (d.nm): 85.90	Peak 1:	91.11	100.0	23.19
Pdl: 0.040	Peak 2:	0.000	0.0	0.000
Intercept: 0.943	Peak 3:	0.000	0.0	0.000

Size Distribution by Intensity

Run 4.

Results ($25{ }^{\circ} \mathrm{C}$ for the fourth run)

		Size (d.nm):	\% Intensity:	St Dev (d.nm):	
Z-Average (d.nm):	183.1	Peak 1:	225.7	100.0	103.1
Pd:: 0.197	Peak 2:	0.000	0.0	0.000	
Intercept: 0.922	Peak 3:	0.000	0.0	0.000	
Result quality: Good					

Results ($45{ }^{\circ} \mathrm{C}$ for the fourth run)

		Size (d.nm):	\% Intensity:	St Dev (d.nm):	
Z-Average (d.nm):	114.7	Peak 1:	126.6	100.0	40.85
Pdi:	0.087	Peak 2:	0.000	0.0	0.000
Intercept:	0.913	Peak 3:	0.000	0.0	0.000

Result quality : Good
Peak 3: 0.000

Size Distribution by Intensity

Results ($70{ }^{\circ} \mathrm{C}$ for the fourth run)

		Size (d.nm):	\% Intensity:	St Dev (d.nm):
Z-Average (d.nm): 85.69	Peak 1:	91.76	100.0	24.29
PdI: 0.064	Peak 2:	0.000	0.0	0.000
Intercept: 0.941	Peak 3:	0.000	0.0	0.000

Size Distribution by Intensity

Run 5.

Results ($25{ }^{\circ} \mathbf{C}$ for the fifth run)

		Size (d.nm):	\% Intensity:	St Dev (d.nm):	
Z-Average (d.nm):	185.0	Peak 1:	228.5	100.0	102.6
Pdl:	0.185	Peak 2:	0.000	0.0	0.000
Intercept:	0.922	Peak 3:	0.000	0.0	0.000

Size Distribution by Intensity

Results ($45{ }^{\circ} \mathrm{C}$ for the fifth run)

			Size (d.nm):	\% Intensity:	St Dev (d.nm):
Z-Average (d.nm):	116.0	Peak 1:	134.1	100.0	52.52
Pdi:	0.128	Peak 2:	0.000	0.0	0.000
Intercept:	0.915	Peak 3:	0.000	0.0	0.000
Result quality : Good					
Size Distribution by Intensity					
0.1	1	10			
Size (d.nm)					

Results ($\mathbf{7 0}^{\circ} \mathbf{C}$ for the fifth run)

		Size (d.nm):	\% Intensity:	St Dev (d.nm):	
Z-Average (d.nm): 87.13	Peak 1:	91.63	100.0	21.58	
Pdl:	0.028	Peak 2:	0.000	0.0	0.000
Intercept:	0.946	Peak 3:	0.000	0.0	0.000

Size Distribution by Intensity

Run 6.

Results ($25{ }^{\circ} \mathrm{C}$ for the sixth run)

		Size (d.nm):	\% Intensity:	St Dev (d.nm):	
Z-Average (d.nm):	185.1	Peak 1:	225.7	100.0	89.90
PdI:	0.182	Peak 2:	0.000	0.0	0.000
Intercept:	0.921	Peak 3:	0.000	0.0	0.000

Size Distribution by Intensity

Results ($45{ }^{\circ} \mathbf{C}$ for the sixth run)

		Size (d.nm):	\% Intensity:	St Dev (d.nm):	
Z-Average (d.nm):	120.0	Peak 1:	134.3	100.0	46.48
Pdl:	0.099	Peak 2:	0.000	0.0	0.000
Intercept:	0.906	Peak 3:	0.000	0.0	0.000
Result quality :	Good				

Results (70 ${ }^{\circ} \mathrm{C}$ for the sixth run)

		Size (d.nm):	\% Intensity:	St Dev (d.nm):	
Z-Average (d.nm):	86.91	Peak 1:	93.14	100.0	25.35
Pdl:	0.053	Peak 2:	0.000	0.0	0.000
Intercept:	0.941	Peak 3:	0.000	0.0	0.000

Size Distribution by Intensity

Table S1. Optimizing reaction conditions for the Aldol/addition reaction. ${ }^{a}$

Entry	Base	Solvent(s)	${ }^{\circ} \mathrm{C}$	h	Yield (\%) of 6aa
1	allylDBU	${ }^{i} \operatorname{PrOH}$	70	12	98
2	allylDBU	${ }^{i} \mathrm{PrOH}-\mathrm{H}_{2} \mathrm{O}(4: 1)$	70	12	98
3	allylDBU	${ }^{i} \mathrm{PrOH}-\mathrm{H}_{2} \mathrm{O}(2: 1)$	70	12	91
4	allylDBU	${ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(3: 1)$	70	12	98
5	allylDBU	${ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(3: 1)$	65	12	92
6	allylDBU	${ }^{i} \operatorname{PrOH} / \mathrm{H}_{2} \mathrm{O}(3: 1)$	75	12	98
7	DBU	${ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(3: 1)$	70	12	76
8	DABCO^{9}	NEt_{3}	${ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(3: 1)$	70	12

${ }^{\text {a }}$ Reaction conditions: base (0.12 mmol of base), 4aa $(0.10 \mathrm{mmol})$, $\mathbf{5 a a}(0.12 \mathrm{mmol}), \mathrm{HCO}_{2} \mathrm{Na}(1.0$ mmol), and 4.0 mL of solvent. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ yield.

Table S2. Optimizing reaction conditions for the DKR-ATH reaction. ${ }^{a}$

Entry	Catalyst	H-resource, Solvent, base	${ }^{\circ} \mathbf{C}$	h	\%Yield	\%ee/dr
1	MesRuTsDPEN	$\mathrm{HCO}_{2} \mathrm{Na},{ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(3: 1), \mathrm{NEt}_{3}$	40	18	98	$99 / 1: 1$
2	MesRuTsDPEN	$\mathrm{HCO}_{2} \mathrm{Na},{ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(3: 1), \mathrm{DBU}$	40	18	98	$99 / 16: 1$
3	MesRuTsDPEN	$\mathrm{HCO}_{2} \mathrm{Na},{ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(3: 1), \mathrm{DABCO}$	40	18	98	$99 / 4: 1$
4	MesRuTsDPEN	$\mathrm{HCO}_{2} \mathrm{Na},{ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(3: 1)$, allylDBU	40	18	96	$99 / 16: 1$
$\mathbf{5}$	$\mathbf{3}$	$\mathrm{HCO}_{2} \mathrm{Na},{ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(3: 1)$, allylDBU	40	18	95	$99 / 37: 1$
6	$\mathbf{3}$	$\mathrm{HCO}_{2} \mathrm{Na},{ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(3: 1)$, allylDBU	35	18	90	$99 / 37: 1$
7	$\mathbf{3}$	$\mathrm{HCO}_{2} \mathrm{Na},{ }^{i} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(3: 1)$, allylDBU	45	18	99	$99 / 20: 1$

${ }^{\text {a }}$ Reaction conditions: catalyst ($2.50 \mathrm{~mol} \%$ of Ru-loading), 6aa (0.10 mmol), base (0.12 mmol), $\mathrm{HCO}_{2} \mathrm{Na}(1.0 \mathrm{mmol})$, and 4.0 mL of the mixed $\mathrm{H}_{2} \mathrm{O} / i \mathrm{PrOH}$ co-solvents. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ yield, the $\% e e / d r$ values were determined by chiral HPLC analysis.

Figure S6. HPLC analyses of chiral products
(S,S)-7aa: (2S,4S)-2-(4-bromophenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=95 / 5$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7ab: (2S,4S)-2-(4-fluorophenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7ac: (2S,4S)-2-(4-chlorophenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=95 / 5$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7ad: (2S,4S)-2-(3-chlorophenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=95 / 5$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7ae: (2S,4S)-2-(2-chlorophenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7af: (2S,4S)-2-phenylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: nhexane $/ 2$-propanol $=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7ag: (2S,4S)-2-(p-tolyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: nhexane $/ 2$-propanol $=95 / 5$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7ah: (2S,4S)-2-(m-tolyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: nhexane $/ 2$-propanol $=95 / 5$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7ai: (2S,4S)-2-(o-tolyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: nhexane $/ 2$-propanol $=97 / 3$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7aj: (2S,4S)-2-(4-methoxyphenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7ak: (2S,4S)-2-(3-methoxyphenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7al: (2S,4S)-2-(2-methoxyphenyl)chroman-4-ol: (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7am: (2S,4S)-2-(furan-2-yl)chroman-4-ol: (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7an: (2S,4S)-2-(thiophen-2-yl)chroman-4-ol: (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7ao: (2S,4S)-6-fluoro-2-phenylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n -hexane $/ 2$-propanol $=95 / 5$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7ap: (2S,4S)-6-chloro-2-phenylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7aq: (2S,4S)-6-bromo-2-phenylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7ar: (2S,4S)-6-methyl-2-phenylchroman-4-ol: (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7as: (2S,4S)-6-fluoro-2-(4-fluorophenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n -hexane $/ 2$-propanol $=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7at: (2S,4S)-6-fluoro-2-(p-tolyl)chroman-4-ol: (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n -hexane $/ 2$-propanol $=95 / 5$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7au: (2S,4S)-2-(3,4-difluorophenyl)-6-methylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(R,S)-7ba: (2R,4S)-2-methylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: nhexane $/ 2$-propanol $=97 / 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(R,S)-7bb: (2R,4S)-2-ethylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: nhexane $/ 2$-propanol $=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

($\boldsymbol{R}, \mathbf{S}$)-7bc: (2R,4S)-2-propylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: nhexane $/ 2$-propanol $=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7bd: (2S,4S)-2-isopropylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: nhexane $/ 2$-propanol $=98 / 2$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

（R，S）－7be：（2R，4S）－2－isobutylchroman－4－ol（HPLC：Chiracel AD－H，detected at 210 nm ，eluent：n－ hexane $/ 2$－propanol $=97 / 3$ ，flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$ ．

ID\＃	名称	保留时间	峰\＃	面积	高度	面积\％
1	RT27．473	27.473	1	1768821	46114	1.7929
2	RT28．783	28.783	2	735798	25579	0.7458
3	RT29．995	29.995	3	46338900	922460	46.9708
4	RT33．291	33.291	4	49811086	893342	50.4904

Translation of all characters（Chinese）in the above two frameworks to English is as follows：

(S,S)-7bf: (2S,4S)-2-(tert-butyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=99 / 1$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

($\boldsymbol{R}, \boldsymbol{S}$)-7bg: ($2 R, 4 \mathrm{~S}$)-6-chloro-2-methylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n -hexane $/ 2$-propanol $=95 / 5$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

（S，S）－7bh：（2S，4S）－6－chloro－2－isopropylchroman－4－ol：（HPLC：Chiracel AD－H，detected at 210 nm ，eluent： n －hexane $/ 2$－propanol $=97 / 3$ ，flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$ ．

－－化合物表视图						
ID\＃	名称	保留时间	峰\＃	面积	高度	面积\％
1	RT19．891	19.891	1	391103	11226	1.3778
2	RT21．941	21.941	2	412379	10733	1.4527
3	RT28．454	28.454	3	13736704	270359	48.3912
4	RT30．678	30.678	4	13846598	260429	48.7783

므化合物表视图						
ID\＃	名称	保留时间	峰\＃	面积	高度	面积\％
1	RT19．632	19.632	1	1352507	38116	2.0563
2	RT22．337	22.337	2	52596	1750	0.0800
3	RT28．630	28.630	3	64365632	1047963	97.8583
4	RT30．875	30.875	4	3598	8	0.0055

Translation of all characters（Chinese）in the above two frameworks to English is as follows：

(R,S)-7bi: (2R,4S)-6-chloro-2-isobutylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n -hexane $/ 2$-propanol $=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7bj: $(2 S, 4 S)$-2-(tert-butyl)-6-chlorochroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7bk: (2S,4S)-6-bromo-2-isopropylchroman-4-ol: (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n -hexane $/ 2$-propanol $=97 / 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7bl: (2S,4S)-2-cyclobutylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7bm: (2S,4S)-2-cyclopentylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7bn: (2S,4S)-2-cyclohexylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7bo: tert-butyl 4-((2S,4S)-7-bromo-4-hydroxychroman-2-yl)piperidine-1-carboxylate (HPLC: Chiracel AD-H, detected at 210 nm , eluent: n -hexane/2-propanol $=97 / 3$, flow rate $=$ $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

Figure S7. Characterizations of chiral products (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and LC/MS spectra). (S,S)-7aa: (2S,4S)-2-(4-bromophenyl)chroman-4-ol.

(S,S)-7ab: (2S,4S)-2-(4-fluorophenyl)chroman-4-ol.

(S,S)-7ac: (2S,4S)-2-(4-chlorophenyl)chroman-4-ol.

(S,S)-7ad: (2S,4S)-2-(3-chlorophenyl)chroman-4-ol.

(S,S)-7ae:(2S,4S)-2-(3,4-dichlorophenyl)chroman-4-ol.

(S,S)-7af: (2S,4S)-2-phenylchroman-4-ol.

[^1](S,S)-7ag: (2S,4S)-2-(p-tolyl)chroman-4-ol.

$\begin{aligned} & \text { そ } \\ & \stackrel{y}{d} \end{aligned}$	

(S,S)-7ah: (2S,4S)-2-(m-tolyl)chroman-4-ol.

$\begin{array}{cc}\sim & \infty \\ \underset{\sim}{\infty} & \infty \\ 1 & 0 \\ 0 & 1\end{array}$

(S,S)-7ai: (2S,4S)-2-(0-tolyl)chroman-4-ol.

(S,S)-7aj: (2S,4S)-2-(4-methoxyphenyl)chroman-4-ol.

(S,S)-7ak: (2S,4S)-2-(3-methoxyphenyl)chroman-4-ol.

$\mathrm{H}_{2} \mathrm{O}$

(S,S)-7al: (2S,4S)-2-(2-methoxyphenyl)chroman-4-ol.

dound
uld li .لll 1 \qquad U

 Cls)

[^2]
(S,S)-7am: (2S,4S)-2-(furan-2-yl)chroman-4-ol.

崗		
$\stackrel{\sim}{\sim}$	\pm	

$\stackrel{\underset{\sim}{\infty}}{\stackrel{\infty}{\infty}} \stackrel{\infty}{\leftrightarrows}$

(S,S)-7an: (2S,4S)-2-(thiophen-2-yl)chroman-4-ol.

(S,S)-7ao: (2S,4S)-6-fluoro-2-phenylchroman-4-ol.

(S,S)-7ap: (2S,4S)-6-chloro-2-phenylchroman-4-ol.

(S,S)-7aq: (2S,4S)-6-bromo-2-phenylchroman-4-ol

(S,S)-7ar: (2S,4S)-6-methyl-2-phenylchroman-4-ol.

(S,S)-7as: (2S,4S)-6-fluoro-2-(4-fluorophenyl)chroman-4-ol.

(S,S)-7at: (2S,4S)-6-fluoro-2-(p-tolyl)chroman-4-ol.

(S,S)-4au: (2S,4S)-2-(3,4-difluorophenyl)-6-methylchroman-4-ol.

(R, S)-7ba: ($2 R, 4 S$)-2-methylchroman-4-ol.

n	$\cdots \not \pm 0$ -
-	
\|	1-

(R,S)-7bb: (2R,4S)-2-ethylchroman-4-ol.

$\mathrm{H}_{2} \mathrm{O}$

-154.62
128.06
126.80
126.30
119.83
115.73

(R, S)-7bc: (2R,4S)-2-propylchroman-4-ol.

(S,S)-7bd: (2S,4S)-2-isopropylchroman-4-ol

```
\underbrace\underbrace\underbrace\underbrace\underbrace
```


$\mathrm{H}_{2} \mathrm{O}$

(R,S)-7be: (2R,4S)-2-isobutylchroman-4-ol

（S，S）－7bf：（2S，4S）－2－（3，4－difluorophenyl）－6－methylchroman－4－ol．

 $\xrightarrow{\circ}$

\approx	ぞ尔下
－	$\stackrel{\sim}{0}$ ¢
1	\ \backslash

$$
\begin{array}{cc}
\vec{j} & \stackrel{m}{*} \\
\underset{\infty}{\infty} & \dot{\sim} \\
1 & 1
\end{array}
$$

1		${ }_{2}{ }^{1}$	${ }_{1} 190$	${ }_{180}^{180}$	${ }_{170}^{170}{ }_{160}^{16}{ }_{150}^{1}$				${ }_{50}{ }^{140}{ }^{1 / 30}$			${ }^{130}{ }^{12}$				90		${ }^{10}$	${ }_{70}$	60	－ 50	$1{ }^{10}$	$10 \quad 30$	$30 \quad \frac{1}{20}$	$20 \quad 10$	$0^{1}{ }^{-10}$	

(R,S)-7bg: (2R,4S)-6-chloro-2-methylchroman-4-ol

 $1 \int \sqrt{ }$

[^3](S,S)-4bh: (2S,4S)-6-chloro-2-isopropylchroman-4-ol.

(R, S)-7bi: (2R,4S)-6-chloro-2-isobutylchroman-4-ol

(S,S)-7bj: (2S,4S)-2-(tert-butyl)-6-chlorochroman-4-ol

(S,S)-7bk: (2S,4S)-6-bromo-2-isopropylchroman-4-ol.

[^4](S,S)-7bl: (2S,4S)-2-cyclobutylchroman-4-ol.

(S,S)-7bm: (2S,4S)-2-cyclopentylchroman-4-ol.

(S,S)-7bn: (2S,4S)-2-cyclohexylchroman-4-ol.

[^5](S,S)-7bo: tert-butyl 4-((2S,4S)-7-bromo-4-hydroxychroman-2-yl)piperidine-1-carboxylate.

Table S3. The single-crystal structure data of ((S, S)-7ah.
Datablock: (2S,4S)-2-(m-tolyl)chroman-4-ol ((S,S)-7ah).

Bond precision:	: $\quad \mathrm{C}-\mathrm{C}=0.0126 \mathrm{~A}$	Wavelength=0. 71073
Ce11: a	$\mathrm{a}=11.9068$ (17) $\mathrm{b}=4.8812$ (7)	$\mathrm{c}=22.718$ (4)
	alpha=90 beta=94.231 (4)	gamma=90
Temperature: 293 K		
	Calculated	Reported
Volume	1316.8(4)	1316. 8 (3)
Space group	P 21	P 21
Hall group	P 2yb	P 2yb
Moiety formula	C16 H16 02	?
Sum formula	C16 H16 02	C16 H16 02
Mr	240.29	240. 29
Dx, g cm-3	1. 212	1. 212
Z	4	4
Mu (mm-1)	0. 079	0.079
F000	512.0	512.0
F000'	512.24	
h, k, 1max	14, 5, 27	14, 5, 27
Nref	4639[2619]	4440
Tmin, Tmax	0.993, 0.996	0.550, 0.746
Tmin'	0. 985	
Correction method= \# Reported T Limits: Tmin=0. 550 Tmax=0. 746 AbsCorr = MULTI-SCAN		
Data completeness $=1.70 / 0.96$ Theta (max)		24.998
$R($ reflections $)=0.0702(2296)$		$\begin{aligned} & \text { wR2 }(\text { reflections })= \\ & 0.2035(4440) \end{aligned}$
$S=1.041$	Npar= 340	

Table S4. Reusability of catalyst (for the Aldol condensation /oxa-addition/reduction cascade of 4aa and 5aa).

Reaction conditions: Catalyst $\mathbf{3}$ (0.12 mmol of DBU salt-loadings and $2.50 \mathrm{~mol} \%$ of Ru-loadings based on ICP analyses), 1.0 equivalent of $\mathbf{4 a a}, 1.20$ equivalent of $\mathbf{5 a a}$, and 10.0 equivalent of HCOONa in 4.0 mL of $\mathrm{H}_{2} \mathrm{O} /{ }^{\mathrm{i}} \mathrm{PrOH}(\mathrm{v} / \mathrm{v}=1: 3)$, and the mixture stirred at $70^{\circ} \mathrm{C}$ for the first 12 h followed at $40^{\circ} \mathrm{C}$ for 10 h . Yields were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis, and $e e$ and $d r$ values were determined by chiral HPLC analysis.

Figure S8. Reusability of catalyst $\mathbf{3}$ in the Aldol condensation /oxa-addition/reduction cascade process of 4aa and 5aa (The error bars represent the standard deviation).

Recycle 1.

Recycle 2.

Recycle 3.

Recycle 4.

Translation of all characters (Chinese) in the above all frameworks to English is as follows:

Recycle 5.

Recycle 6.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

Figure S9. Contrastive ${ }^{1} \mathrm{H}$-NMR spectra for deuterium labeling experiments.
(a) The standard ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{6 a a}$ in the normal reaction of 4aa and 5aa.

(b) The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{6 a a}-\boldsymbol{d}_{\boldsymbol{1}}$ in the deuterium labeling reaction of $\mathbf{4 a a}$ and $\mathbf{5 a a}-d_{1}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}$.

(c) The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{6 a a}-\boldsymbol{d}_{\mathbf{3}}$ in the deuterium labeling reaction of $\mathbf{4 a a}$ and $\mathbf{5 a a}-d_{1}$ reaction in deuterated $\mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{OD}$.

Explanation: Through the comparison of the above three ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra, it easily arrivals at a conclusion below. The Aldol condensation of 4aa and 5aa generates deuterated chalcone. The intramolecular conjugate addition (oxa-Michael cyclization) affords $\mathbf{6 a a}-d_{3}$ with equal attacks from both syn-face and anti-face of the double bond, leading to the same deuterium ratio that is possibly abstracted by D^{+}from $\mathrm{D}_{2} \mathrm{O}$.

(d) The standard ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of (S, S)-7aa.

(e) The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{7 a a -} \boldsymbol{d}_{3}$ in the reaction of $\mathbf{6} \mathbf{a a}$ in deuterated $\mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{OD}$.

(f) The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{7 a a -} \boldsymbol{d}_{4}$ in the deuterium labeling reaction (control reaction) of $\mathbf{6 a a}-d_{3}$ with homogeneous MesRuTsDPEN as a catalyst in the deuterated $\mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{OD}$.

(g) The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{7 a a -} \boldsymbol{d}_{4}$ in the deuterium labeling reaction (control reaction) of $\mathbf{6 a a -} d_{3}$ with $\mathbf{3}$ as a catalyst in the deuterated $\mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{OD}$.

[^0]: 7bo: tert-butyl 4-((2S,4S)-7-bromo-4-hydroxychroman-2-yl)piperidine-1carboxylate. White solid, 78% yield, $99 \% ~ e e,>50 / 1 d r .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.34$ (dt, $J=8.3,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05-6.92(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{dd}, J=10.7,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.17 (d, $J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.99$ (dd, $J=11.6,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.79 (s, 2H), 2.26 (ddd, $J=13.0,6.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.95 (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 9 \mathrm{H}), 1.44-1.26(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz , Methanol- d_{4}) $\delta 155.33,155.13,128.44,125.92,123.01,120.83$, $118.65,79.65,78.61,64.33,40.37,33.79,27.35,27.00$. HRMS (APCI): m/z [M-OH $\left.{ }^{+}\right]$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{NBr}^{+}$394.10123; found 394.10060. HPLC (Chiralpak AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 210 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$).

[^1]:

[^2]:

[^3]:

[^4]:

[^5]:

