Supporting Information

Harmonization of an incompatible aqueous Aldol condensation/oxa-Michael addition/reduction cascade process over a core-shell-structured thermoresponsive catalyst

Yu Su, Chengyi Wang, Qipeng Chen, Yuanli Zhu, Shaomin Deng, Shoujin Yang, Ronghua Jin, and Guohua Liu*

Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China. E-mail: ghliu@shnu.edu.cn

CONTENTS

Experimental.	.S2
Figure S1. DLS traces of 1-2 and catalyst 3	S13
Figure S2. Temperature-dependent transmittance using a turbidity measurementS	\$14
Figure S3. The SEM images and dispersive situations of catalyst 3	\$15
Figure S4. The NMR spectra	S 16
Figure S5. Average hydrodynamic diameters distribution measurement of 3	S 19
Table S1. Optimizing reaction conditions for the Aldol/addition reaction.	\$25
Table S2. Optimizing reaction conditions for the DKR-ATH reaction.	\$25
Figure S6. HPLC analyses of chiral products	526
Figure S7. Characterizations of chiral products	562
Table S3. The single-crystal structure data of (S,S)-7ah	598
Table S4. Reusability of catalyst 3	599
Figure S8. Reusability of catalyst 3	100
Figure S9. Contrastive ¹ H-NMR spectra for deuterium labeling experimentsS	103

Experimental

1. General: All reactions involving air- or moisture-sensitive reagents or intermediates were carried out in oven-dried glassware using standard Schlenk techniques. All commercially available reagents were purchased from Sigma-Aldrich, Alfa Aesar, TCI Chemicals, Acros Organics, or ABCR in the highest purity grade and used without further purification.

2. Characterization: Ru loading amounts in the catalysts were analyzed using an inductively coupled plasma optical emission spectrometer (ICP-OES, Varian VISTA-MPX). Molecular weights and molecular weight distributions were determined by gel permeation chromatography (GPC) equipped with Waters 1515 pump and Waters 2414 differential refractive index detector (set at 30 °C), employing a series of three linear Styragel columns (HR1, HR2, and HR4) at an oven temperature of 45 °C. The eluent was DMF at a flow rate of 1.0 mL/min. A series of low polydispersity polystyrene standards were employed for calibration. Solid-state NMR experiments were explored on a Bruker AVANCE spectrometer at a magnetic field strength of 9.4 T with ¹H frequency of 400.1 MHz, and ¹³C frequency of 100.5 MHz with 4 mm rotor at two spinning frequencies of 5.5 kHz and 8.0 kHz, TPPM decoupling is applied in the during the acquisition period. ¹H cross-polarization in the solid-state NMR experiments was employed using a contact time of 2 ms and pulse lengths of 4µs. Liquid-state NMR (¹H NMR and ¹³C NMR) spectra were performed on a Bruker AVANCE spectrometer at a magnetic field strength of 9.4 T with a ¹H frequency of 400 MHz and a ¹³C frequency of 100 MHz. Data are reported as follows: chemical shift, multiplicity (s = single, d = doublet, t = triplet, q = quartet, brs = broad single, m = multiplet), coupling constants (Hz), and integration. Mass spectra were recorded on a Finnigan MAT 4200S, a Bruker Daltonics Micro Tof, and a Waters-Micromass Quatro LCZ (ESI); peaks are given in m/z (% of basis peak).

3. General procedure for the Aldol condensation/oxa-Michael addition process. A typical procedure was as follows: The base (0.12 mmol of DBU salt-loadings based on ICP analysis), **4aa** (0.10 mmol), **5aa** (0.12 mmol), HCO₂Na (1.0 mmol), and/or 2.50 mol% of additive in 4.0 mL of H₂O/ⁱPrOH (v/v = 1:3) were added sequentially to a 10.0 mL round–bottom flask purged with nitrogen in turn. The mixture was stirred at 70 °C for 12 h. After completion of the reaction, the aqueous solution was extracted by Et₂O (3 × 3.0 mL). The combined Et₂O was washed with brine twice and dehydrated with Na₂SO₄. After the evaporation of Et₂O, the residue was purified by silica gel flash column chromatography to afford **6aa** as a white solid.

4. General procedure for the DKR-ATH process. A typical procedure was as follows: The catalyst (2.50 mol% of Ru-loading), **6aa** (0.10 mmol), HCO₂Na (1.0 mmol), and/or additive (0.12 mmol) in 4.0 mL of $H_2O/^i$ PrOH (v/v = 1:3) were added sequentially to a 10.0 mL round-bottom flask purged with nitrogen in turn at room temperature. The resulting mixture was stirred at 40 °C for 18 h. After completion of the reaction, The aqueous solution was extracted by Et_2O (3 × 3.0 mL). The combined Et_2O was washed with brine twice and dehydrated with Na₂SO₄. After the evaporation of Et_2O , the residue was purified by silica gel flash column chromatography to afford (*S*,*S*)-**7aa** as a white solid.

5. Reusability of catalyst 3 in the Aldol/addition/DKR-ATH cascade process of 4aa and 5aa. A typical procedure was as follows: The catalyst 3 (0.12 mmol of DBU saltloadings and 2.50 mol% of Ru-loadings based on ICP analyses), 1.0 equivalent of 4aa, 1.20 equivalent of 5aa, and 10.0 equivalent of HCOONa in 4.0 mL of H₂O/^{*i*}PrOH (v/v = 1:3), and the mixture stirred at 70 °C for the first 12 h followed at 40 °C for 10 h. After completion of the reaction, the heterogeneous catalyst was separated for the recycling experiment. The aqueous solution was extracted by Et₂O (3 × 3.0 mL). The combined Et₂O was washed with brine twice and dehydrated with Na₂SO₄. After the evaporation of Et₂O, the residue was purified by silica gel flash column chromatography to afford (*S*,*S*)-7aa.

6. Deuterium experiments

6.1 A typical procedure for the aldol/addition reaction of **4aa** and **5aa**- d_1 in deuterated D₂O/CD₃OD is as follows: The catalyst **3** (0.12 mmol of DBU salt-loadings based on ICP analysis), **4aa** (0.10 mmol), **5aa** (0.12 mmol), and HCO₂Na (1.0 mmol) in 4.0 mL of D₂O/CD₃OD (v/v = 1:3) were added sequentially to a 10.0 mL round-bottom flask purged with nitrogen in turn. The mixture was stirred at 70 °C for 12 h. After completion of the reaction, the aqueous solution was extracted by Et₂O (3 × 3.0 mL). The combined Et₂O was washed with brine twice and dehydrated with Na₂SO₄. After the evaporation of Et₂O, the residue was purified by silica gel flash column chromatography to afford the desired product **6aa** in a 95% isolated yield.

6.2 A typical procedure for the DKR-ATH reaction of **6aa** in deuterated D₂O/CD₃OD is as follows: The catalyst **3** (0.12 mmol of DBU salt-loadings and 2.50 mol% of Ru based on ICP analyses), **6aa** (0.10 mmol), and HCO₂Na (1.0 mmol) in 4.0 mL of D₂O/CD₃OD (v/v = 1:3) were added sequentially to a 10.0 mL round-bottom flask purged with nitrogen in turn. The resulting mixture was stirred at 40 °C for 18 h. After completion of the reaction, The aqueous solution was extracted by Et₂O (3 × 3.0 mL). The combined Et₂O was washed with brine twice and dehydrated with Na₂SO₄. After the evaporation of Et₂O, the residue was purified by silica gel flash column chromatography to afford (*S*,*S*)-**7aa**-*d*₃ in a 93% isolated yield.

9. Data of chiral products.

Br

7aa: (2S,4S)-2-(4-bromophenyl)chroman-4-ol. White solid, 91% yield, 99% ee, 37/1

dr. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.56 – 6.80 (m, 8H), 5.17 (dd, *J* = 12.0, 1.8 Hz, 1H), 5.09 – 5.04 (m, 1H), 2.44 – 1.94 (m, 2H).¹³C NMR (100 MHz, Methanol-*d*₄) δ 155.77, 141.95, 132.66, 129.69, 128.22, 127.62, 122.65, 121.87, 117.34, 77.61, 66.12, 41.05. HRMS (APCI): m/z [M-OH⁺]

calcd. for $C_{15}H_{12}OBr^+$ 287.00660; found 287.00698. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7ab: (2S,4S)-2-(4-fluorophenyl)chroman-4-ol. White solid, 86% yield, 99% ee, 39/1

dr. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.51 – 6.79 (m, 8H), 5.16 (dd, J = 12.1, 1.8 Hz, 1H), 5.06 – 5.04 (m, 1H), 2.39 – 2.00 (m, 2H). ¹³C NMR (100 MHz, Methanol-*d*₄) δ 165.08, 162.64, 155.86, 138.63 (d, J = 3.2 Hz), 129.67, 129.18, 129.10, 128.21, 127.60, 121.80, 117.33, 116.30, 116.08, 77.65, 66.19,

41.10. HRMS (APCI): m/z [M-OH⁺] calcd. for $C_{15}H_{12}OF^+$ 227.08667; found 227.08615. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7ac: (2S,4S)-2-(4-chlorophenyl)chroman-4-ol. White solid, 92% yield, 99% ee, 17/1

CI

dr. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.66 – 6.84 (m, 8H), 5.20 (dd, *J* = 12.0, 1.9 Hz, 1H), 5.08 (dd, *J* = 10.8, 6.2 Hz, 1H), 2.47 – 1.93 (m, 2H) .¹³C NMR (100 MHz, Methanol-*d*₄) δ 154.36, 140.02, 133.26, 128.28, 128.23, 127.36, 126.81, 126.20, 120.45, 115.92, 76.16, 64.71, 39.65. HRMS (APCI):

m/z [M-OH⁺] calcd. for $C_{15}H_{12}OCl^+$ 243.05712; found 243.05752. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7ad: (2S,4S)-2-(3-chlorophenyl)chroman-4-ol. White solid, 87% yield, 99% ee,OH14/1dr. ¹H NMR (400 MHz, Methanol- d_4) δ 7.53 – 6.84 (m,8H), 5.20 (dd, J = 12.0, 1.8 Hz, 1H), 5.09 (ddt, J = 10.8, 6.2,

0.9 Hz, 1H), 2.47 – 1.95 (m, 2H).¹³C NMR (100 MHz, Methanol- d_4) δ 154.27, 143.58, 134.02, 129.72, 128.31, 127.60, 126.81, 126.20, 125.71, 124.04, 120.50, 115.94,

76.08, 64.66, 39.70. HRMS (APCI): m/z [M-OH⁺] calcd. for $C_{15}H_{12}OCl^+$ 243.05712; found 243.05627. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7ae: (2*S*,4*S*)-2-(2-chlorophenyl)chroman-4-ol. White solid, 82% yield, 99% *ee*, 37/1dr. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.52 – 7.40 (m, 5H), 7.17 – 7.16 (m, 1H), 6.83 (dd, *J* = 8.2, 1.2 Hz, 1H), 5.19 (dd, *J* = 12.0, 1.9 Hz, 1H), 5.08 (ddt, *J* = 10.8, 6.2, 0.9 Hz, 1H), 2.45 – 1.92 (m, 2H). ¹³C NMR (100 MHz, Methanol-*d*₄) δ 154.10, 142.05, 132.02, 131.20, 130.30, 128.35, 127.77, 126.85, 126.16, 125.51,

120.62, 115.94, 75.45, 64.55, 39.50. HRMS (APCI): m/z [M-OH⁺] calcd. for $C_{15}H_{12}OCl^+$ 243.05712; found 243.05739. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 97/3, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7af: (2*S*,4*S*)-2-phenylchroman-4-ol. White solid, 86% yield, 99% *ee*, 23/1 *dr*. ¹H NMR (400 MHz, Methanol-*d*4) δ 7.53 – 6.82 (m, 9H), 5.18 (dd, *J* = 12.0, 1.8 Hz, 1H), 5.20 – 5.06 (m, 1H), 2.45 – 2.01 (m, 2H).¹³C NMR (100 MHz, Methanol-*d*4) δ 154.58, 141.18, 128.24, 128.13, 127.64, 126.78, 126.25, 125.73, 120.31, 115.93, 76.96, 64.87, 39.80. HRMS (APCI): m/z [M-OH⁺] calcd. for C₁₅H₁₃O⁺

209.09609; found 209.09560. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 $^{\circ}$ C).

7ag: (2S,4S)-2-(p-tolyl)chroman-4-ol. White solid, 90% yield, 99% ee, 21/1 dr. ¹H

NMR (400 MHz, Methanol- d_4) δ 7.52 – 6.80 (m, 8H), 5.14 (dd, J = 12.0, 1.8 Hz, 1H), 5.08 (dd, J = 10.9, 6.2 Hz, 1H), 2.42 – 2.37 (m, 4H), 2.05 (ddd, J = 13.0, 12.0, 10.9 Hz, 1H). ¹³C NMR (100 MHz, Methanol- d_4) δ 154.65, 138.16, 137.48, 128.69, 128.20, 126.77, 126.24, 125.74, 120.23, 115.90,

76.88, 64.91, 39.71, 19.81. HRMS (APCI): m/z [M-OH⁺] calcd. for C₁₆H₁₅O⁺ 223.11174; found 223.11207. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7ah: (2*S*,4*S*)-2-(m-tolyl)chroman-4-ol. White solid, 83% yield, 99% *ee*, 20/1 *dr*. ¹H NMR (400 MHz, Methanol- d_4) δ 7.51 – 6.79 (m, 8H), 5.03 (ddd, *J* = 12.7, 10.1, 4.0 Hz, 2H), 2.38 – 2.33 (m, 4H), 2.02 (ddd, *J* = 13.0, 12.1, 10.9 Hz, 1H). ¹³C NMR (100 MHz, Methanol- d_4) δ 158.56, 144.99, 141.83, 132.27 (d, *J* = 8.0 Hz), 132.04, 130.79, 130.37, 130.20, 126.83, 124.28, 119.95,

80.95, 68.86, 43.70, 24.20. HRMS(APCI) calcd. for [M-OH⁺]: $C_{16}H_{15}O^+$ 223.11174 found 223.11210. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

74.01, 65.00, 38.14, 17.68. HRMS (APCI): m/z [M-OH⁺] calcd. for $C_{16}H_{15}O^+$ 223.11174; found 223.11112. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 97/3, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7aj: (2S,4S)-2-(4-methoxyphenyl)chroman-4-ol. White solid, 85% yield, 99% ee,

35/1 *dr*. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.28 – 6.78 (m, 8H), 5.14 – 5.05 (m, 2H), 3.82 (s, 3H), 2.41 – 2.03 (m, 2H).¹³C NMR (100 MHz, Methanol-*d*₄) δ 159.61, 154.68, 133.14, 128.19, 127.17, 126.78, 126.22, 120.22, 115.89, 113.45, 76.71, 64.95, 54.32, 39.56. HRMS(APCI) calcd. for

[M-OH⁺]: $C_{16}H_{15}O_2^+$ 239.10666 found 239.10698. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 97/3, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7ak: (2S,4S)-2-(3-methoxyphenyl)chroman-4-ol. White solid, 83% yield, 99% ee,

21/1 *dr*. ¹H NMR (400 MHz, Methanol-*d*₄) $\delta\delta$ 7.47 – 6.76 (m, 8H), 5.12– 5.03 (m, 2H), 3.80 (d, *J* = 1.4 Hz, 3H), 2.40 – 2.00(m, 2H). ¹³C NMR (101 MHz, Methanol-*d*₄) δ 160.58, 155.65, 134.11, 129.16, 128.13, 127.74, 127.19, 121.18, 116.86, 114.41, 77.67, 65.92, 55.29, 40.53. HRMS

(APCI): m/z [M-OH⁺] calcd. for $C_{16}H_{15}O_2^+$ 239.10666; found 239.10522. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7al: (2S,4S)-2-(2-methoxyphenyl)chroman-4-ol. White solid, 79% yield, 99% ee,

>50/1 dr. ¹H NMR (400 MHz, Methanol- d_4) δ 7.54 – 7.47 (m, 2H), 7.22 (dtd, J = 62.1, 7.8, 1.7 Hz, 2H), 7.00 – 7.00 (m, 4H), 5.49 (dd, J = 11.7, 1.7 Hz, 1H), 5.03 (dd, J = 11.0, 6.2 Hz, 1H), 3.86 (s, 3H), 2.46 (ddd, J = 12.8, 6.2, 1.8 Hz, 1H), 1.88 (dt, J = 12.8, 11.3 Hz, 1H). ¹³C NMR (100 MHz, Methanol- d_4) δ 155.93,

154.77, 129.23, 128.49, 128.17, 126.79, 126.36, 125.80, 120.33, 120.19, 115.95, 110.21, 71.56, 64.93, 54.55, 38.34. HRMS (APCI): m/z [M-OH⁺] calcd. for $C_{16}H_{15}O_2^+$ 239.10666; found 239.10588. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7am: (2*S*,4*S*)-2-(furan-2-yl)chroman-4-ol. White solid, 86% yield, 99% *ee*, >50/1 *dr*. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.52 – 6.42 (m, 7H), 5.19 (dd, *J* = 12.1, 1.9 Hz,

1H), 5.01 (dd, J = 10.9, 6.3 Hz, 1H), 2.30 – 2.21 (m, 2H). ¹³C NMR (100 MHz, Methanol- d_4) δ 155.79, 154.98, 144.28, 130.07, 128.62, 127.84, 122.22, 117.66, 111.75, 109.09, 71.82, 66.18, 37.24. HRMS (APCI): m/z [M-OH⁺] calcd. for C₁₃H₁₁O₂⁺

199.07536; found 199.07475. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 97/3, detector: 210 nm, flow rate: 1.0 mL/min, 25 $^{\circ}$ C).

7an: (2S,4S)-2-(thiophen-2-yl)chroman-4-ol. White solid, 85% yield, 99% ee, >50/1

dr. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.52 – 6.80 (m, 8H), 5.16 – 5.05 (m, 2H), 2.42 – 2.37 (m, 4H), 2.05 (ddd, *J* = 13.0, 12.0, 10.9 Hz, 1H). ¹³C NMR (100 MHz, Methanol-*d*₄) δ 154.15, 143.94, 128.26, 126.82, 126.15, 126.10, 124.82, 124.43, 120.50, 115.89, 72.78, 64.51, 39.79. HRMS (APCI): m/z [M-OH⁺] calcd. for

 $C_{13}H_{11}OS^+$ 215.05251; found 215.05165. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7ao: (2S,4S)-6-fluoro-2-phenylchroman-4-ol. White solid, 88% yield, 99% ee, >50/1

dr. ¹H NMR (400 MHz, Methanol-*d*4) ¹H NMR (400 MHz, Methanol-*d*4) δ 7.46 – 6.78 (m, 8H), 5.17 – 5.01 (m, 2H), 2.39 – 1.96 (m, 2H). ¹³C NMR (100 MHz, Methanol-*d*4) δ 162.33, 159.98, 154.60 (d, *J* = 2.1 Hz), 144.90, 132.09, 131.67 (d, *J* = 4.7 Hz), 129.65, 121.07 (d, *J* = 7.9 Hz), 118.75 (d, *J* = 23.6

Hz), 116.57 (d, J = 23.7 Hz), 81.07, 68.68, 43.30. HRMS (APCI): m/z [M-OH⁺] calcd. for C₁₅H₁₂OF⁺ 227.08667; found 227.08701. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7ap: (2S,4S)-6-chloro-2-phenylchroman-4-ol. White solid, 85% yield, 99% ee, 37/1

dr. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.47 – 6.78 (m, 8H), 5.18 (dd, *J* = 12.0, 1.8 Hz, 1H), 5.03 (ddt, *J* = 11.0, 6.2, 1.0 Hz, 1H), 2.42 – 1.96(m, 2H). ¹³C NMR (100 MHz, Methanol*d*₄) δ 157.22, 144.71, 132.18, 132.11, 132.05, 131.71, 130.45, 129.66, 129.07, 121.51, 81.18, 68.49, 43.18. HRMS (APCI):

m/z [M-OH⁺] calcd. for $C_{15}H_{12}OCl^+$ 243.05712; found 243.05721. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

dr. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.61 (d, *J* = 2.4 Hz, 1H), 7.42 – 6.72 (m, 8H), 5.15 (dd, *J* = 12.1, 1.8 Hz, 1H), 5.01 (dd, *J* = 11.0, 6.2 Hz, 1H), 2.00 (dd, *J* = 12.2, 1.5 Hz, 2H).¹³C NMR (101 MHz, Methanol-*d*₄) δ 153.76, 140.70, 131.08, 129.55, 128.74, 128.20, 127.80, 125.75, 118.04, 112.31, 77.24,

64.51, 39.17. HRMS (APCI): m/z [M-OH⁺] calcd. for $C_{15}H_{12}OBr^+$ 287.00660; found 287.00711. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7ar: (2S,4S)-6-methyl-2-phenylchroman-4-ol. White solid, 73% yield, 99% ee, 46/1

dr. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.48 – 6.71 (m, 8H), 5.12 – 5.02 (m, 2H), 2.39 (ddd, *J* = 12.9, 6.3, 1.8 Hz, 1H), 2.29 (s, 3H), 2.03 (ddd, *J* = 13.0, 12.0, 10.8 Hz, 1H). ¹³C NMR (100 MHz, Methanol-*d*₄) δ 152.40, 141.28, 129.51, 128.84, 128.12, 127.60, 127.02, 125.80, 125.74, 115.75,

76.87, 64.93, 39.91, 19.40. HRMS (APCI): m/z [M-OH⁺] calcd. for $C_{16}H_{15}O^+$ 223.11174; found 223.11115. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 97/3, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7as: (2S,4S)-6-fluoro-2-(4-fluorophenyl)chroman-4-ol. White solid, 89% yield, 99%

ee, 23/1 *dr*. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.49 – 6.78 (m, 7H), 5.16 – 5.02 (m, 2H), 2.42 – 1.96 (m, 2H). ¹³C NMR (100 MHz, Methanol-*d*₄) δ 165.08, 162.64, 159.81, 157.45, 151.91 (d, *J* = 2.1 Hz), 138.35 (d, *J* = 3.2 Hz), 129.08, 118.53 (d, *J* = 7.9 Hz), 116.23 (dd, *J* = 22.7, 4.2 Hz), 114.07 (d, *J* = 23.8 Hz), 77.80, 66.04, 40.62. HRMS (APCI): m/z

[M-OH⁺] calcd. for $C_{15}H_{11}OF_2^+$ 245.07725; found 245.07672. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7at: (2*S*,4*S*)-6-fluoro-2-(p-tolyl)chroman-4-ol. White solid, 95% yield, 99% *ee*, $>50/1 \ dr$. ¹H NMR (400 MHz, Methanol- d_4) δ 7.35 – 7.19 (m, 5H), 6.92 – 6.76 (m, 2H),

5.12 (dd, J = 12.0, 1.8 Hz, 1H), 5.08 – 4.99 (m, 1H), 2.41 – 2.36 (m, 4H), 2.02 (ddd, J = 13.0, 12.0, 10.9 Hz, 1H). ¹³C NMR (100 MHz, Methanol- d_4) δ 158.36, 156.00, 150.73 (d, J = 2.0 Hz), 137.75 (d, J = 38.5 Hz), 128.72, 127.74, 125.73, 117.06, 114.78 (d, J = 23.7 Hz), 112.62 (d,

J = 23.9 Hz), 77.05, 64.78, 39.26, 19.82. HRMS (APCI): m/z [M-OH⁺] calcd. for C₁₆H₁₄OF⁺ 241.10232; found 241.10170. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7au: (2S,4S)-2-(3,4-difluorophenyl)-6-methylchroman-4-ol. White solid, 76% yield,

99% *ee*, 36/1 *dr*. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.41 – 6.70 (m, 6H), 5.14 – 5.00 (m, 2H), 2.40 (ddd, *J* = 13.0, 6.3, 1.9 Hz, 1H), 2.27 (s, 3H), 1.99 – 1.90 (m, 1H). ¹³C NMR (100 MHz, Methanol-*d*₄) δ 155.95, 155.30 (d, *J* = 12.8 Hz), 154.81 (d, *J* = 12.7 Hz), 152.85 (d, *J* = 12.7

Hz), 152.36 (d, J = 12.7 Hz), 142.87 (dd, J = 5.6, 3.8 Hz), 133.72, 132.83, 130.97, 129.66, 126.08 (dd, J = 6.5, 3.6 Hz), 120.91, 79.45 (d, J = 1.5 Hz), 68.59, 43.67, 23.29. HRMS (APCI): m/z [M-OH⁺] calcd. for C₁₆H₁₃OF₂⁺ 259.09290; found 259.09218. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 97/3, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7ba: (2*R*,4*S*)-2-methylchroman-4-ol. White solid, 82% yield, 99% *ee*, >50/1 *dr*. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.46 – 6.71 (m, 4H), 4.88 (d, *J* = 7.4 Hz, 1H), 4.25 (dqd, *J* = 12.6, 6.3, 1.7 Hz, 1H), 2.26 (ddd, *J* = 12.9, 6.4, 1.7 Hz, 1H), 1.71 (dt, *J* = 12.9, 11.2 Hz, 1H), 1.40 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (100 MHz, Methanol-*d*₄) δ 154.57, 128.05, 126.84, 126.04,

119.89, 115.71, 71.15, 64.48, 39.06, 20.44. HRMS (APCI): m/z [M-OH⁺] calcd. for $C_{10}H_{11}O^+$ 147.08044; found 147.08010. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 97/3, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7bb: (2*R*,4*S*)-2-ethylchroman-4-ol. White solid, 81% yield, 99% *ee*, >50/1 *dr*. ¹H NMR (400 MHz, Methanol- d_4) δ 7.45 – 6.72 (m, 4H), 4.88 (d, *J* = 6.5 Hz, 1H), 2.25 (ddd, *J* = 12.8, 6.3, 1.7 Hz, 1H), 2.25 (ddd, *J* = 12.8, 6.3, 1.7 Hz, 1H), 1.85 – 1.65 (m, 3H), 1.07 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, Methanol- d_4) δ 154.62, 128.06, 126.80, 126.30,

119.83, 115.73, 76.04, 64.64, 36.84, 28.24, 8.39. HRMS (APCI): m/z [M-OH⁺] calcd. for $C_{11}H_{13}O^+$ 161.09609; found 161.09570. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 99/1, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7bc: (2*R*,4*S*)-2-propylchroman-4-ol. White solid, 85% yield, 99% *ee*, >50/1 *dr*. ¹H NMR (400 MHz, Methanol- d_4) δ 7.45 – 6.71 (m, 4H), 4.88 (d, *J* = 6.5 Hz, 1H), 4.12 (dddd, *J* = 11.6, 7.6, 4.5, 1.7 Hz, 1H), 2.24 (ddd, *J* = 12.9, 6.3, 1.7 Hz, 1H), 1.80 – 1.45 (m, 5H), 1.01 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Methanol- d_4) δ 154.60, 128.05,

126.82, 126.29, 119.83, 115.74, 74.57, 64.61, 37.57, 37.34, 17.99, 12.99. HRMS (APCI): m/z [M-OH⁺] calcd. for $C_{12}H_{15}O^+$ 175.11174; Found 175.11104. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 99/1, detector: 210 nm, flow rate: 1.0 mL/min, 25 ℃).

7bd: (2S,4S)-2-isopropylchroman-4-ol. White solid, 83% yield, 99% ee, 19/1 dr. ¹H

NMR (400 MHz, Methanol- d_4) δ 7.45 – 6.72 (m, 4H), 3.89 (ddd, J = 11.7, 5.4, 1.6 Hz, 1H), 2.23 (ddd, J = 12.8, 6.3, 1.6 Hz, 1H), 1.94 (pd, J = 6.9, 5.4 Hz, 1H), 1.72 (dt, J = 12.6, 11.2 Hz, 1H), 1.06 (t, J = 6.7 Hz, 6H). ¹³C NMR (100 MHz, Methanol- d_4) δ 154.77, 128.04,

126.65, 126.40, 119.75, 115.70, 79.45, 65.01, 34.03, 32.31, 17.07, 16.66. HRMS (APCI): m/z [M-OH⁺] calcd. for C₁₂H₁₄O⁺ 175.1117; found 175.1119. HPLC (Chiralpak AD-H, elute: Hexanes/i-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7be: (2R,4S)-2-isobutylchroman-4-ol. White solid, 88% yield, 99% *ee*, >50/1 *dr*. ¹H

NMR (400 MHz, Methanol- d_4) δ 7.45 – 6.71 (m, 4H), 4.91 (d, J = 6.7 Hz, 1H), 4.19 (dddd, J = 11.3, 8.7, 4.5, 1.7 Hz, 1H), 2.23 (ddd, J = 12.9, 6.4, 1.7 Hz, 1H), 2.04 – 1.91 (m, 1H), 1.76 – 1.66 (m, 2H), 1.46 - 1.39 (m, 1H), 1.00 (dd, J = 6.7, 3.7 Hz, 6H). ¹³C

NMR (100 MHz, Methanol-d₄) δ 154.56, 128.05, 126.87, 126.30, 119.87, 115.77, 73.04, 64.54, 44.59, 37.88, 24.05, 22.26, 21.19. HRMS (APCI): m/z [M-OH⁺] calcd. for C₁₃H₁₇O⁺ 189.12739; found 189.12656. HPLC (Chiralpak AD-H, elute: Hexanes/i-PrOH = 97/3, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7bf: (2S,4S)-2-(tert-butyl)-chroman-4-ol. White solid, 95% yield, 99% ee, >50/1

CI

 $dr.^{1}$ H NMR (400 MHz, Methanol- d_4) δ 7.45 – 6.72 (m, 1H), 4.87 (s, 4H), 3.75 (dd, J = 12.0, 1.5 Hz, 1H), 2.27 (ddd, J = 12.6, 6.2, 1.5 Hz, 1H), 1.68 (td, J = 12.3, 11.0 Hz, 1H), 1.04 (s, 9H). ¹³C NMR (100 MHz, Methanol-d₄) δ 154.95, 128.05, 126.47, 126.44, 119.71, 115.67, 82.31, 65.43, 33.49, 32.23, 24.70. HRMS (APCI): m/z [M-

OH⁺] calcd. for C₁₃H₁₇O⁺ 189.12739; found 189.12626. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 99/1, detector: 210 nm, flow rate: 1.0 mL/min, 25 $^{\circ}$ C).

7bg: (2R,4S)-6-chloro-2-methylchroman-4-ol. White solid, 91% yield, 99% ee, 35/1 dr. ¹H NMR (400 MHz, Methanol- d_4) δ 7.42 – 6.70 (m, 3H), 4.85 OH (dd, J = 11.2, 6.6 Hz, 1H), 4.26 (dd, J = 5.2, 1.7 Hz, 1H), 2.28 -1.63 (m, 2H), 1.40 (d, J = 6.3 Hz, 3H). ¹³C NMR (100 MHz, 'Ме Methanol-d₄) δ 153.30, 128.03, 127.93, 126.55, 124.68, 117.33,

71.54, 64.17, 38.54, 20.32. HRMS (APCI): m/z [M-OH⁺] calcd. for C₁₀H₉OCl⁺ 181.0415; found 181.0418. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

45/1 *dr*. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.41 – 6.71 (m, 3H), 4.84 (ddt, *J* = 11.0, 6.2, 1.0 Hz, 1H), 3.91 (ddd, *J* = 11.8, 5.4, 1.6 Hz, 1H), 2.22 (ddd, *J* = 12.8, 6.2, 1.7 Hz, 1H), 1.93 (heptd, *J* = 6.8, 5.2 Hz, 1H), 1.69 (ddd, *J* = 12.8, 11.8, 10.9)

Hz, 1H), 1.05 (dd, J = 6.9, 5.7 Hz, 6H). ¹³C NMR (100 MHz, Methanol- d_4) δ 153.47, 128.38, 127.92, 126.38, 124.55, 117.30, 79.78, 64.67, 33.57, 32.25, 17.05, 16.57. HRMS (APCI): m/z [M-OH⁺] calcd. for C₁₂H₁₄OCl⁺ 209.07277; found 209.07227. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 97/3, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7bi: (2R,4S)-6-chloro-2-isobutylchroman-4-ol. White solid, 86% yield, 99% ee, 21/1

dr. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.42 – 6.70 (m, 3H), 4.87 – 4.84 (m, 1H), 4.21 (dddd, *J* = 11.3, 8.6, 4.4, 1.7 Hz, 1H), 2.25 – 2.20 (m, 2H), 1.75 – 1.43 (m, 3H), 0.99 (dd, *J* = 6.7, 3.4 Hz, 6H). ¹³C NMR (100 MHz, Methanol-*d*₄) δ 153.26, 128.29,

127.92, 126.56, 124.65, 117.37, 73.44, 64.22, 44.45, 37.37, 24.03, 22.22, 21.14. HRMS (APCI): m/z [M-OH⁺] calcd. for $C_{13}H_{15}OCl^+$ 223.0884; found 223.0885. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7bj: (2*S*,4*S*)-2-(tert-butyl)-6-chlorochroman-4-ol. White solid, 93% yield, 99% *ee*, 42/1 *dr*. ¹H NMR (400 MHz, Methanol- d_4) δ 7.41 – 6.71 (m, 3H), 4.82 (s, 1H), 3.79

(dd, J = 12.0, 1.5 Hz, 1H), 2.30 - 1.64 (m, 2H), 1.04 (s, 9H). ¹³C NMR (100 MHz, Methanol- d_4) δ 153.61, 128.42, 127.91, 126.22, 124.52, 117.24, 82.67, 65.04, 33.48, 31.76, 24.59. HRMS (APCI): m/z [M-OH⁺] calcd. for C₁₃H₁₅OCl⁺ 223.0884; found

223.0885. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 97/3, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7bk: (2*S*,4*S*)-6-bromo-2-isopropylchroman-4-ol White solid, 85% yield, 99% $ee, 16/1 dr. {}^{1}\text{H} \text{ NMR} (400 \text{ MHz}, \text{Methanol}-d_4) \delta 7.55 - 6.66 (m, 3\text{H}), 4.85 (ddt, <math>J = 11.0, 6.3, 1.0 \text{ Hz}, 1\text{H}), 3.93 - 3.89 (m, 1\text{H}), 2.25 (s, 1\text{H}), 1.93 (pd, <math>J = 6.9, 5.4 \text{ Hz}, 1\text{H}), 1.69 (ddd, J = 12.8, 11.8, 11.0 \text{ Hz}, 1\text{H}), 1.07 - 1.03 (m, 6\text{H}). {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{Methanol}-d_4) \delta 153.96, 130.87, 129.41, 128.93, 117.77, 111.68, 153.96, 130.87, 129.41, 128.93, 117.77, 111.68, 11.0 \text{ Hz}, 11.0 \text{ Hz}, 12.9, 110.93 (m, 110.93) (m, 110.93)$

79.79, 64.61, 33.54, 32.25, 17.05, 16.57. HRMS (APCI): m/z [M-OH⁺] calcd. for $C_{12}H_{14}OBr^+$ 253.02225; found 253.02227. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 97/3, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7bl: (2*S*,4*S*)-2-cyclobutylchroman-4-ol. White solid, 76% yield, 99% *ee*, >50/1 *dr*. ¹H

NMR (400 MHz, Methanol- d_4) δ 7.43 – 6.71 (m, 4H), 4.86 – 4.84 (m, 1H), 4.01 (ddd, J = 11.5, 7.1, 1.7 Hz, 1H), 2.63 – 2.18 (m, 1H), 2.18 (s, 7H), 1.56 (dt, J = 12.8, 11.2 Hz, 1H). ¹³C NMR (100 MHz, Methanol- d_4) δ 154.62, 128.07, 126.75, 126.31, 119.79, 115.74,

77.90, 64.56, 39.69, 34.47, 23.77, 23.06, 17.66. HRMS (APCI): m/z [M-OH⁺] calcd. for $C_{13}H_{15}O^+$ 187.11174; found 187.11112. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 99/1, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7bm: (2S,4S)-2-cyclopentylchroman-4-ol. White solid, 81% yield, 99% ee, 42/1 dr.

¹H NMR (400 MHz, Methanol-*d*₄) δ 7.45 – 6.71 (m, 4H), 4.90 (s, 1H), 3.92 (ddd, *J* = 11.5, 7.4, 1.7 Hz, 1H), 2.31 – 2.09 (m, 2H), 1.94 – 1.40 (m, 9H). ¹³C NMR (100 MHz, Methanol-*d*₄) δ 154.71, 128.05, 126.74, 126.35, 119.75, 115.75, 78.59, 64.69, 44.56, 36.31, 28.21, 25.19 (d, *J* = 3.2 Hz). HRMS (APCI): m/z [M-OH⁺]

calcd. for $C_{14}H_{17}O^+$ 201.12739; found 201.12656. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 97/3, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

7bn: (2S,4S)-2-cyclohexylchroman-4-ol. White solid, 88% yield, 99% ee, 16/1 dr. ¹H

NMR (400 MHz, Methanol- d_4) δ 7.44 – 6.71 (m, 4H), 4.88 – 4.85 (m, 1H), 3.89 (ddd, J = 11.7, 5.6, 1.6 Hz, 1H), 2.23 (ddd, J = 12.7, 6.2, 1.7 Hz, 1H), 1.98 (dtt, J = 13.4, 4.5, 2.3 Hz, 1H), 1.85 – 1.62 (m, 6H), 1.37 – 1.12 (m, 5H). ¹³C NMR (100 MHz, Methanol- d_4) δ 154.77, 128.03, 126.67, 126.43, 119.73, 115.71, 78.94, 65.05,

42.32, 34.22, 28.23, 27.91, 26.29, 25.96, 25.89. HRMS (APCI): m/z [M-OH⁺] calcd. for C₁₅H₁₉O⁺ 215.14304; found 215.14213. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 97/3, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

4-((2*S*,4*S*)-7-bromo-4-hydroxychroman-2-yl)piperidine-1-carboxylate. White solid, 78% yield, 99% *ee*, >50/1 *dr*. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.34 (dt, *J* = 8.3, 1.1 Hz, 1H), 7.05 – 6.92 (m, 2H), 4.83 (dd, *J* = 10.7, 6.1 Hz, 1H), 4.17 (d, *J* = 13.3 Hz, 2H), 3.99 (dd, *J* = 11.6, 5.9 Hz, 1H), 2.79 (s, 2H), 2.26 (ddd, *J* = 13.0, 6.1, 1.8 Hz, 1H), 1.95 (d,

J = 13.1 Hz, 1H), 1.78 - 1.72 (m, 3H), 1.49 (d, J = 1.1 Hz, 9H), 1.44 - 1.26 (m, 2H). ¹³C NMR (100 MHz, Methanol- d_4) δ 155.33, 155.13, 128.44, 125.92, 123.01, 120.83, 118.65, 79.65, 78.61, 64.33, 40.37, 33.79, 27.35, 27.00. HRMS (APCI): m/z [M-OH⁺] calcd. for C₁₉H₂₅O₃NBr⁺ 394.10123; found 394.10060. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

Figure 1. DLS traces of 1 (green) and 2 (red) and catalyst 3 (blue) indicated at 25, 45, and 70 $\,^\circ\!\!.$

Figure S2. Temperature-dependent transmittance of **3** using a turbidity measurement (a) This turbidity measurement was performed on a custom-modified Tepper turbidity photometer TP1-D at a wavelength of 670 nm, a cell path length of 10 mm, and magnetic stirring. The heating program started at a high temperature, and it was cooled to 10 \degree at a constant cooling rate of 1.0 \degree /min. (b) Temperature-dependent transmittance for the determination of the the volume phase transition temperature (VPTT) as the temperature corresponding to the transmittance decrease at the wavelength of 680 nm).

Figure S3. The SEM images and dispersive situations of catalyst **3**. (a) The scanning electron microscopy (SEM) images of catalyst **3**. (b) The dispersive situations of catalyst **3** at indicated 25, 40, and 80 °C in $H_2O/^i$ PrOH (v/v = 1:3) system.

Figure S4. The NMR spectra. (a) The liquid-state ¹H-NMR of **1-2**, catalysts **3** and **3'**. (b) The solid-state ¹³C MAS NMR spectra of **1-2**, and catalysts **3** and **3'**.

(a) The liquid-state ¹H-NMR of the core (1), catalyst **3'**, core-shell (2), and catalyst **3**.

S17

(b) Solid-state ¹³C MAS NMR spectra of 1, 2, and catalysts 3 and 3'.

Figure S5. Average hydrodynamic diameters distribution measurement of **3**. **Run 1.**

Results (25 °C for the first run)

Results (45 °C for the first run)

Run 2. Results (25 °C for the second run)

Size Distribution by Intensity

Results (45 °C for the second run)

Run 3. Results (25 °C for the third run)

Results (45 °C for the third run)

			Size (d.nm):	% Intensity:	St Dev (d.nm):
Z-Average (d.nm):	114.6	Peak 1:	128.9	100.0	45.90
Pdl:	0.104	Peak 2:	0.000	0.0	0.000
Intercept:	0.880	Peak 3:	0.000	0.0	0.000
Result quality :	Good				

Size Distribution by Intensity

Run 4. Results (25 °C for the fourth run)

Results (45 °C for the fourth run)

25

20

			Size (d.nm):	% Intensity:	St Dev (d.nm):
Z-Average (d.nm):	85.69	Peak 1:	91.76	100.0	24.29
Pdl:	0.064	Peak 2:	0.000	0.0	0.000
Intercept:	0.941	Peak 3:	0.000	0.0	0.000
Result quality :	Good				

Run 5. Results (25 °C for the fifth run)

Results (45 °C for the fifth run)

Run 6. Results (25 °C for the sixth run)

Results (45 °C for the sixth run)

Results (70 °C for the sixth run)

			Size (d.nm):	% Intensity:	St Dev (d.nm):
Z-Average (d.nm):	86.91	Peak 1:	93.14	100.0	25.35
Pdl:	0.053	Peak 2:	0.000	0.0	0.000
Intercept:	0.941	Peak 3:	0.000	0.0	0.000
Result quality :	Good				

	4aa $+$ Br $5aa$ $ base$ $ 6aa$ Br									
Entry	Base	Solvent(s)	C	h	Yield (%) of 6aa					
1	allylDBU	ⁱ PrOH	70	12	98					
2	allylDBU	^{<i>i</i>} PrOH-H ₂ O (4:1)	70	12	98					
3	allylDBU	^{<i>i</i>} PrOH-H ₂ O (2:1)	70	12	91					
4	allylDBU	ⁱ PrOH/H ₂ O (3:1)	70	12	98					
5	allylDBU	^{<i>i</i>} PrOH/H ₂ O (3:1)	65	12	92					
6	allylDBU	^{<i>i</i>} PrOH/H ₂ O (3:1)	75	12	98					
7	DBU	^{<i>i</i>} PrOH/H ₂ O (3:1)	70	12	76					
8	DABCO	^{<i>i</i>} PrOH/H ₂ O (3:1)	70	12	45					
9	NEt ₃	ⁱ PrOH/H ₂ O (3:1)	70	12	52					

Table S1. Optimizing reaction conditions for the Aldol/addition reaction.^a

^a Reaction conditions: base (0.12 mmol of base), **4aa** (0.10 mmol), **5aa** (0.12 mmol), HCO₂Na (1.0 mmol), and 4.0 mL of solvent. The ¹H-NMR yield.

		O O Gaa	Catalyst 3 or MesRuTsDPEN HCOONa, DBU H ₂ O/ [/] PrOH (1/3)	ОН (S,S)-7аа	Br		
Entry	Catalyst	H-resource	e, Solvent, base	°C	h	%Yield	%ee/dr
1	MesRuTsDPEN	HCO ₂ Na, ^{<i>i</i>}	PrOH/H ₂ O (3:1), NEt ₃	40	18	98	99/1:1
2	MesRuTsDPEN	HCO ₂ Na, ^{<i>i</i>}	PrOH/H ₂ O (3:1), DBU	40	18	98	99/16:1
3	MesRuTsDPEN	HCO ₂ Na, ^{<i>i</i>}	PrOH/H ₂ O (3:1), DABCO	40	18	98	99/4:1
4	MesRuTsDPEN	HCO ₂ Na, ^{<i>i</i>}	PrOH/H ₂ O (3:1), allylDBU	J 40	18	96	99/16:1
5	3	HCO ₂ Na, ^{<i>i</i>}	PrOH/H ₂ O (3:1), allylDBU	J 40	18	95	99/37:1
6	3	HCO ₂ Na, ^{<i>i</i>}	PrOH/H ₂ O (3:1), allylDBU	J 35	18	90	99/37:1
7	3	HCO ₂ Na, ^{<i>i</i>}	PrOH/H ₂ O (3:1), allylDBU	J 45	18	99	99/20:1

^a Reaction conditions: catalyst (2.50 mol% of Ru-loading), **6aa** (0.10 mmol), base (0.12 mmol), HCO₂Na (1.0 mmol), and 4.0 mL of the mixed H₂O/ⁱPrOH co-solvents. The ¹H-NMR yield, the %*ee/dr* values were determined by chiral HPLC analysis.

Figure S6. HPLC analyses of chiral products

(*S*,*S*)-7aa: (2S,4S)-2-(4-bromophenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7ab: (2S,4S)-2-(4-fluorophenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7ac: (2S,4S)-2-(4-chlorophenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(*S*,*S*)-7ad: (2S,4S)-2-(3-chlorophenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

3

4

30364894

188155

1030493

6033

92.9973

0.5763

13.665

17.457

RT13.665

RT17.457

(*S*,*S*)-7ae: (2S,4S)-2-(2-chlorophenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0mL/min, 25 °C).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(S,S)-7af: (2S,4S)-2-phenylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-

hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

	ID#	名称	保留时间	山雀#	面积	高度	面积%
1		RT11.324	11.324	1	1142748	46386	4.0139
2	2	RT13.708	13.708	2	16614	15	0.0584
3	*	RT16.133	16.133	3	27166087	766833	95.4198
4	L.	RT18.554	18.554	4	144619	3730	0.5080

(*S*,*S*)-7ag: (2S,4S)-2-(p-tolyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7ai: (2S,4S)-2-(o-tolyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0mL/min, 25 °C).

m∨ Table v		nits (mV)						Max	للجنيعة (timum s	^{强度: 71,053} ച
compo 25- ID	ound	RetTime							Unit	s (minute
1umber	Name	(min)	Peak		Area		Н	leight		Area%
8-		, , ,						Ă		<u>a</u>
0.0		10	15.0	20.0	25.0	30.0	35.0	40.0	45.0	min
□ 化合物表初	12									
ID#	名称	保留时间	峰#		面积			高度		面积 x
1 RT	21.913	21.913		1		2804461			70765	97.6444
	32.695	32.695		2		27506			583	0.9577
	37.225	37.225		3		1394			28	0.0485
4 RT	41.351	41.351		4		38756			593	1.3494

(*S*,*S*)-7aj: (2S,4S)-2-(4-methoxyphenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0mL/min, 25 °C).

민생금원	列表视图					
ID#	名称	保留时间	山峰#	面积	高度	面积%
1	RT18.552	18.552	1	1783880	46577	2.4441
2	RT21.550	21.550	2	202781	2622	0.2778
3	RT25.876	25.876	3	70897483	1330315	97.1368
4	RT34.204	34.204	4	103073	1740	0.1412

(*S*,*S*)-7ak: (2S,4S)-2-(3-methoxyphenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7al: (2S,4S)-2-(2-methoxyphenyl)chroman-4-ol: (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(*S*,*S*)-7am: (2S,4S)-2-(furan-2-yl)chroman-4-ol: (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7an: (2S,4S)-2-(thiophen-2-yl)chroman-4-ol: (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7ao: (2S,4S)-6-fluoro-2-phenylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

250

0.0

_■ 化合物表视图 ID#

•

2.5

RT14.696

RT15.461

RT18.519

RT29.38

5.0

名称

7.5

10.0

12.5

保留时间

15.0

14.696

15.461

18.519

20 381

17.5

20.0

峰#

22.5

2

3

25.0

27.5

面积

30.0

713892

29217

77534

12021

32.5

35.0

高度

37.5

40.0

29010

1382

1848

0189

42.5

面积%

mi

×

1.4155

0.0579

0.1537

8 3729

. ⊕0

(*S*,*S*)-7ap: (2S,4S)-6-chloro-2-phenylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7aq: (2*S*,4*S*)-6-bromo-2-phenylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7ar: (2S,4S)-6-methyl-2-phenylchroman-4-ol: (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7as: (2S,4S)-6-fluoro-2-(4-fluorophenyl)chroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7at: (2S,4S)-6-fluoro-2-(p-tolyl)chroman-4-ol: (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(*S*,*S*)-7au: (2S,4S)-2-(3,4-difluorophenyl)-6-methylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0mL/min, 25 °C).

(*R*,*S*)-7ba: (2*R*,4*S*)-2-methylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0mL/min, 25 °C).

(*R*,*S*)-7bb: (2*R*,4*S*)-2-ethylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 99/1, flow rate = 1.0 mL/min, 25 °C).

(*R*,*S*)-7bc: (2*R*,4*S*)-2-propylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 99/1, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7bd: (2S,4S)-2-isopropylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 98/2, flow rate = 1.0mL/min, 25 °C).

(*R*,*S*)-7be: (2R,4S)-2-isobutylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0mL/min, 25 °C).

(R,S)-7bg: (2R,4S)-6-chloro-2-methylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7bh: (2S,4S)-6-chloro-2-isopropylchroman-4-ol: (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0mL/min, 25 °C).

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

(*R*,*S*)-7bi: (2R,4S)-6-chloro-2-isobutylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7bj: (2S,4S)-2-(*tert*-butyl)-6-chlorochroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7bl: (2S,4S)-2-cyclobutylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 99/1, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7bm: (2*S*,4*S*)-2-cyclopentylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7bn: (2*S*,4*S*)-2-cyclohexylchroman-4-ol (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0mL/min, 25 °C).

(*S*,*S*)-7bo: tert-butyl 4-((2*S*,4*S*)-7-bromo-4-hydroxychroman-2-yl)piperidine-1-carboxylate (HPLC: Chiracel AD-H, detected at 210 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0mL/min, 25 °C).

Figure S7. Characterizations of chiral products (¹H NMR, ¹³C NMR, and LC/MS spectra).

(*S*,*S*)-7aa: (2S,4S)-2-(4-bromophenyl)chroman-4-ol.

(S,S)-7ab: (2S,4S)-2-(4-fluorophenyl)chroman-4-ol.

(S,S)-7ac: (2S,4S)-2-(4-chlorophenyl)chroman-4-ol.

(S,S)-7ad: (2S,4S)-2-(3-chlorophenyl)chroman-4-ol.

 $\begin{array}{c} 7.7.53\\ 7.7.51\\ 7.7.51\\ 7.7.51\\ 7.7.51\\ 7.7.51\\ 7.7.51\\ 7.7.51\\ 7.7.51\\ 7.7.51\\ 7.7.51\\ 7.7.51\\ 7.7.51\\ 7.7.51\\ 7.7.51\\ 7.7.52\\ 7.7.52\\ 7.7.73\\$

(S,S)-7ae:(2S,4S)-2-(3,4-dichlorophenyl)chroman-4-ol.

(S,S)-7af: (2S,4S)-2-phenylchroman-4-ol.

(*S*,*S*)-7ag: (2S,4S)-2-(p-tolyl)chroman-4-ol.

(S,S)-7ah: (2S,4S)-2-(m-tolyl)chroman-4-ol.

7.51 7.751 7.751 7.751 7.751 7.751 7.7222 7.7222

S70

(S,S)-7aj: (2S,4S)-2-(4-methoxyphenyl)chroman-4-ol.

S72

(S,S)-7al: (2S,4S)-2-(2-methoxyphenyl)chroman-4-ol.

(*S*,*S*)-7am: (2S,4S)-2-(furan-2-yl)chroman-4-ol.

¹⁰⁰δ ← ⁹⁰⁸⁰⁸⁰

(*S*,*S*)-7an: (2S,4S)-2-(thiophen-2-yl)chroman-4-ol.

(S,S)-7ap: (2S,4S)-6-chloro-2-phenylchroman-4-ol.

(S,S)-7aq: (2S,4S)-6-bromo-2-phenylchroman-4-ol

(S,S)-7ar: (2S,4S)-6-methyl-2-phenylchroman-4-ol.

(S,S)-7as: (2S,4S)-6-fluoro-2-(4-fluorophenyl)chroman-4-ol.

 $\int \frac{165.03}{165.03} \int \frac{165.03}{152.64}$ $\int \frac{162.64}{157.45} \int \frac{162.64}{157.45}$ $\int \frac{157.45}{151.90}$ $\int \frac{157.45}{151.92}$ $\int \frac{138.37}{116.37}$ $\int \frac{118.57}{116.37}$ $\int \frac{116.37}{116.395}$ $\int \frac{116.37}{113.95}$ $\int \frac{116.32}{113.95}$ $\int \frac{116.32}{113.95}$

(S,S)-7at: (2S,4S)-6-fluoro-2-(p-tolyl)chroman-4-ol.

 $\begin{array}{c} 7.35\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.22\\$

S81

S82

(R,S)-7ba: (2R,4S)-2-methylchroman-4-ol.

¹²⁰ 110 100 δ ← f1 (ppm) -10

(R,S)-7bc: (2R,4S)-2-propylchroman-4-ol.

120 110 100 δ ← f1 (ppm)

(S,S)-7bf: (2S,4S)-2-(3,4-difluorophenyl)-6-methylchroman-4-ol.

δ¹²⁰ 110 100 f1 (ppm)

(S,S)-4bh: (2S,4S)-6-chloro-2-isopropylchroman-4-ol.

S90

120 110 100 δ ← f1 (ppm) -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 δ 🗲 f1 (ppm)

(S,S)-7bk: (2S,4S)-6-bromo-2-isopropylchroman-4-ol.

(S,S)-7bl: (2S,4S)-2-cyclobutylchroman-4-ol.

(S,S)-7bm: (2S,4S)-2-cyclopentylchroman-4-ol.

210 200

190 180 170 160

150 140

130

¹²⁰δ ¹¹⁰ f¹⁰⁰ f¹⁰⁰ (ppm)

φo

80

70

ęo

50

40 30

20

ło

6

(S,S)-7bn: (2S,4S)-2-cyclohexylchroman-4-ol.

 $7.744 \\ 7.745 \\ 7.741 \\ 7.742 \\ 7.711 \\ 7.742 \\ 7.711 \\ 7.711 \\ 7.712 \\ 7.712 \\ 7.710 \\ 7.71$

S97

Table S3. The single-crystal structure data of (*S*,*S*)-7ah.

Bond precision:		C-C = 0.0126 A			Wavelength=0.71073				
Cell:	a=11.9068(1	bes (17) b=4.8812 (7)		c=22.71	c=22.718(4)				
	alpha=90	beta=	beta=94.231(4) g		gamma=90				
Temperature:	293 K								
	Calc	culated			Reported				
Volume	1316	6.8(4)			1316.8(3)				
Space group	P 21			P 21					
Hall group	Р 2у	⁷ b		P 2yb					
Moiety formul	a C16	H16 02		?					
Sum formula	C16	H16 02		C16 H16 02					
Mr	240.	29		240.29					
Dx,g cm-3	1.21	.2		1.212					
Ζ	4			4					
Mu (mm-1)	0.07	'9		0.079					
F000 51		0		512.0					
F000'	512.	24							
h,k,lmax	14,5	5, 27		14, 5, 27					
Nref	4639	4639[2619]			4440				
Tmin, Tmax 0.993		3, 0. 996			0. 550, 0. 746				
Tmin' 0.985									
Correction method= # Reported T Limits: Tmin=0.550 Tmax=0.746 AbsCorr = MULTI-SCAN									
Data completeness= 1.70/0.96 Theta(max)= 24.998									
R(reflections)= 0.0702(2296)					wR2(reflections)= 0.2035(4440)				
S = 1.041		Npar= 340)						

Datablock: (2S,4S)-2-(m-tolyl)chroman-4-ol ((S,S)-7ah).

ОН 0 + + + + + CHO 4aa 5aa	O Catalyst 3 H₂O/PrOH 70 °C	40 °C →	OH C 7aa Br		Cata catalys (middle	hexane (upper) t t t t t t t t t t t t t t t t t t t
Entry	1	2	3	4	5	6
%Yield	75	74	72	71	70	69
%ee	99	99	99	99	99	99
dr	28	25	25	20	20	17

 Table S4. Reusability of catalyst (for the Aldol condensation /oxa-addition/reduction cascade of 4aa and 5aa).

Reaction conditions: Catalyst **3** (0.12 mmol of DBU salt-loadings and 2.50 mol% of Ru-loadings based on ICP analyses), 1.0 equivalent of **4aa**, 1.20 equivalent of **5aa**, and 10.0 equivalent of HCOONa in 4.0 mL of $H_2O/^i$ PrOH (v/v = 1:3), and the mixture stirred at 70 °C for the first 12 h followed at 40 °C for 10 h. Yields were determined by ¹H-NMR analysis, and *ee* and *dr* values were determined by chiral HPLC analysis.

Figure S8. Reusability of catalyst **3** in the Aldol condensation /oxa-addition/reduction cascade process of **4aa** and **5aa** (The error bars represent the standard deviation).

Recycle 1.

Recycle 2.

Recycle 3.

Recycle 4.

Translation of all characters (Chinese) in the above all frameworks to English is as follows:

Recycle 5.

Recycle 6.

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

Figure S9. Contrastive ¹H-NMR spectra for deuterium labeling experiments.

(a) The standard ¹H-NMR spectrum of **6aa** in the normal reaction of **4aa** and **5aa**.

(b) The ¹H-NMR spectrum of **6aa**- d_1 in the deuterium labeling reaction of **4aa** and **5aa**- d_1 in H₂O/CH₃OH.

(c) The ¹H-NMR spectrum of **6aa**- d_3 in the deuterium labeling reaction of **4aa** and **5aa**- d_1 reaction in deuterated D₂O/CD₃OD.

Explanation: Through the comparison of the above three ¹H-NMR spectra, it easily arrivals at a conclusion below. The Aldol condensation of **4aa** and **5aa** generates deuterated chalcone. The intramolecular conjugate addition (oxa-Michael cyclization) affords **6aa**- d_3 with equal attacks from both *syn*-face and *anti*-face of the double bond, leading to the same deuterium ratio that is possibly abstracted by D⁺ from D₂O.

(d) The standard ¹H-NMR spectrum of (S,S)-7aa.

(e) The ¹H-NMR spectrum of **7aa**- d_3 in the reaction of **6aa** in deuterated D₂O/CD₃OD.

(f) The ¹H-NMR spectrum of **7aa**- d_4 in the deuterium labeling reaction (control reaction) of **6aa**- d_3 with homogeneous MesRuTsDPEN as a catalyst in the deuterated D₂O/CD₃OD.

(g) The ¹H-NMR spectrum of **7aa**- d_4 in the deuterium labeling reaction (control reaction) of **6aa**- d_3 with **3** as a catalyst in the deuterated D₂O/CD₃OD.

