Supporting Information

Water-based eco-friendly fabrication of physicochemically crosslinked and highly wettable PU-rich electrospun PU/PEO nanofiber composites with exceptional chemical and thermal stability

Osamu Ohsawa,^{a,b,c,d} Mayakrishnan Gopiraman,^{a,b} Yan Ge,^e Chunhong Zhu,^a Kei Watanabe,^{a,c,*} and Ick Soo Kim^{a,*}

^aNano Fusion Technology Research Group, ^bDivision of Molecules and Polymers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.

^cNafiaS Inc., Fii building, Shinshu University (Ueda Campus), Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.

^dSmart Materials Science and Technology Unit, Textile Technology Division, Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.

^eSchool of Textile and Clothing, Nantong University, Nantong 226019, PR China.

Email addresses of corresponding authors*

<u>kim@shinshu-u.ac.jp</u> (I.S. Kim); <u>k.watanabe@nafias-jp.com</u> (K. Watanabe)

	Polymer solution conditions			Electrospinning co		
Sample code	DI	PEO	CI	Applied voltage	TCD	Solution feeding
	FU		CL	(kV)	(cm)	(mm/sec)
PU ₁₀ /s-PEO ₀ /CL ₁ /bc-NFs	10	0	1	-	-	-
PU ₉ /s-PEO ₁ /CL _{0.9} /bc-NFs	9	1	0.9	8	8	0.0022
PU ₈ /s-PEO ₂ /CL _{0.8} /bc-NFs	8	2	0.8	8	10	0.0018
PU ₇ /s-PEO ₃ /CL _{0.7} /bc-NFs	7	3	0.7	8	10	0.0016
PU ₆ /s-PEO ₄ /CL _{0.6} /bc-NFs	6	4	0.6	8.5	12	0.0015
PU ₅ /s-PEO ₅ /CL _{0.5} /bc-NFs	5	5	0.5	8.5	12	0.0014
PU ₄ /s-PEO ₆ /CL _{0.4} /bc-NFs	4	6	0.4	8.5	12	0.0013
PU ₃ /s-PEO ₇ /CL _{0.3} /bc-NFs	s 3	7	0.3	8.5	13	0.0010
PU ₂ /s-PEO ₈ /CL _{0.2} /bc-NFs	s 2	8	0.2	8.5	13	0.0006
PU ₁ /s-PEO ₉ /CL _{0.1} /bc-NFs	1	9	0.1	8.5	12	0.0004
PU ₀ /s-PEO ₁₀ /CL ₀ /bc-NFs	0	10	0	9	12	0.0002

Table S1. Parameters applied for optimizing PU_x/s-PEO_y/CL_z/bc-NFs blend nanofibers.

PU aqueous dispersion 30 wt%; PEO aqueous solution 6 wt%, CL- crosslinker 41.3 wt% aqueous solution

Table S2. Parameters applied for optimizing PU_x/8-PEO_y/CL_z/bc-NFs blend nanofibers.

	Polymer solution conditions		Electrospinning cond			
Sample code	DIT	PEO	CI	Applied voltage	TCD	Solution feeding
	ru		CL	(kV)	(cm)	(mm/sec)
$PU_{10}/8-PEO_0/CL_1/bc-NFs$	10	0	1	-	-	-
$PU_9/8$ -PEO $_1/CL_{0.9}/bc$ -NFs	9	1	0.9	8	8	0.0022
$PU_8/8$ -PEO $_2/CL_{0.8}/bc$ -NFs	8	2	0.8	8	10	0.0018
PU ₇ /8-PEO ₃ /CL _{0.7} /bc-NFs	7	3	0.7	8	10	0.0016
PU ₆ /8-PEO ₄ /CL _{0.6} /bc-NFs	s6	4	0.6	8.5	12	0.0015
PU ₅ /8-PEO ₅ /CL _{0.5} /bc-NFs	s5	5	0.5	8.5	12	0.0014
PU ₄ /8-PEO ₆ /CL _{0.4} /bc-NFs	4	6	0.4	8.5	12	0.0013
PU ₃ /8-PEO ₇ /CL _{0.3} /bc-NFs	3	7	0.3	8.5	13	0.0010
PU ₂ /8-PEO ₈ /CL _{0.2} /bc-NFs	2	8	0.2	8.5	13	0.0006
$PU_1/8$ -PEO ₉ /CL _{0.1} /bc-NFs	1	9	0.1	8.5	12	0.0004
PU ₀ /8-PEO ₁₀ /CL ₀ /bc-NFs	0	10	0	9	12	0.0002

PU aqueous dispersion 30 wt%; PEO aqueous solution 6 wt%, CL- crosslinker 41.3 wt% aqueous solution

	Polymer solution conditions			Electrospinning conditions			
Sample code	PU	PEO	CL	Applied voltage	TCD	Solution feeding	
				(kV)	(cm)	(mm/sec)	
PU ₁₀ /3-PEO ₀ /CL ₁ /bc-NFs	10	0	1	-	-	-	
$PU_9/3$ - $PEO_1/CL_{0.9}/bc$ - NFs	9	1	0.9	8	8	0.0022	
$PU_8/3\text{-}PEO_2/CL_{0.8}/bc\text{-}NFs$	8	2	0.8	8	10	0.0018	
$PU_7/3\text{-}PEO_3/CL_{0.7}/bc\text{-}NFs$	7	3	0.7	8	10	0.0016	
$PU_6/3$ - $PEO_4/CL_{0.6}/bc$ - NFs	6	4	0.6	8.5	12	0.0015	
$PU_5/3$ - $PEO_5/CL_{0.5}/bc$ - NFs	5	5	0.5	8.5	12	0.0014	
$PU_4/3$ - $PEO_6/CL_{0.4}/bc$ - NFs	4	6	0.4	8.5	12	0.0013	
PU ₃ /3-PEO ₇ /CL _{0.3} /bc-NFs	s3	7	0.3	8.5	13	0.0010	
PU ₂ /3-PEO ₈ /CL _{0.2} /bc-NFs	s2	8	0.2	8.5	13	0.0006	
$PU_1/3$ -PEO ₉ /CL _{0.1} /bc-NFs	1	9	0.1	8.5	12	0.0004	
PU ₀ /3-PEO ₁₀ /CL ₀ /bc-NFs	0	10	0	9	12	0.0002	

Table S3. Parameters applied for optimizing PU_x/3-PEO_y/CL_z/bc-NFs blend nanofibers.

PU aqueous dispersion 30 wt%; PEO aqueous solution 6 wt%, CL- crosslinker 41.3 wt% aqueous solution

Table S4. Parameters applied for optimizing PU_x/4-PEO_y/CL_z/bc-NFs blend nanofibers.

	Polymer solution conditions			Electrospinning conditions			
Sample code	PU	PEO	CL	Applied voltage	TCD	Solution feeding	
	1.0				(cm)		
$PU_{10}/4-PEO_0/CL_1/bc-NFs$	10	0	1	-	-	-	
PU ₉ /4-PEO ₁ /CL _{0.9} /bc-NFs	9	1	0.9	8	8	0.0022	
PU ₈ /4-PEO ₂ /CL _{0.8} /bc-NFs	8	2	0.8	8	10	0.0018	
PU7/4-PEO3/CL0.7/bc-NFs	7	3	0.7	8	10	0.0016	
PU ₆ /4-PEO ₄ /CL _{0.6} /bc-NFs	6	4	0.6	8.5	12	0.0015	
PU ₅ /4-PEO ₅ /CL _{0.5} /bc-NFs	s5	5	0.5	8.5	12	0.0014	
PU ₄ /4-PEO ₆ /CL _{0.4} /bc-NFs	s4	6	0.4	8.5	12	0.0013	
PU ₃ /4-PEO ₇ /CL _{0.3} /bc-NFs	3	7	0.3	8.5	13	0.0010	
$PU_2/4\text{-}PEO_8/CL_{0.2}/bc\text{-}NFs$	2	8	0.2	8.5	13	0.0006	
$PU_1/4$ -PEO ₉ /CL _{0.1} /bc-NFs	1	9	0.1	8.5	12	0.0004	
PU ₀ /4-PEO ₁₀ /CL ₀ /bc-NFs	0	10	0	9	12	0.0002	

PU aqueous dispersion 30 wt%; PEO aqueous solution 6 wt%, CL- crosslinker 41.3 wt% aqueous solution

Fig. S1. Electrospinning Setup

Fig. S2. Average fiber diameter of PU/PEO nanofibers at different PU:PEO mass ratios.

Fig. S3. SEM images of PU_x /s-PEO_y/CL_z nanofibers before and after crosslinking.

Fig. S4. SEM images of $PU_x/4$ -PEO_y/CL_z nanofibers before and after crosslinking.

Fig. S5. SEM images of $PU_x/8$ -PEO_y/CL_z nanofibers before and after crosslinking.

Fig. S6. Physical stability of $PU_x/8$ -PEO_y/CL_z nanofibers before and after crosslinking.

Fig. S7. FT-IR spectra of PEO nanofibers and PU nanofiber composite.

Fig. S8. FT-IR spectra of PU_x /s-PEO_y/CL_z nanofiber composites before and after crosslinking.

Fig. S9. FT-IR spectra of $PU_x/4$ -PEO_y/CL_z nanofiber composites before and after crosslinking.

Fig. S10. XRD patterns of (a) $PU_x/3-PEO_y/CL_z$ -bc-NFs and (b) $PU_x/4-PEO_y/CL_z$ -bc-NFs nanofiber composites and before and after thermal crosslinking (PU_x/g -PEO_y/CL_z-ac-NFs).

Fig. S11. SEM images of $PU_x/8$ -PEO_y/CL_z nanofiber composites before and after dipped in hot water at 90°C for 3h (red – crosslinked and blue – non-crosslinked).

Fig. S12. SEM images of $PU_x/8$ -PEO_y/CL_z NFs composites before and after dipped in DMF at 60°C for 3h (red – crosslinked and blue – non-crosslinked).

Fig. S13. TG-DTA curves of (a) PU_x/s -PEO_y/CL_z-bc-NFs, (b) $PU_x/3$ -PEO_y/CL_z-bc-NFs and (c) $PU_x/4$ -PEO_y/CL_z-bc-NFs nanofibers composites and the nanofiber composites after crosslinking (PU_x/g -PEO_y/CL_z-ac-NFs).