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Materials

Pyridine with purity ≥99.0, 3, 5 Lutidine with purity ≥98%, and Dimethyl phosphite with a 

purity of 98% were purchased from Sigma Aldrich. Triethylamine with purity ≥99.5, 

Ethylacetate, Acetonitrile and methanol with AR grade were purchased from Lobachemei. α-

pinene oxide from TCI india.
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Synthesis of ILs-

a) Triethylmethylammonium methyl phosphonate - A slightly modified procedure was 

followed to synthesize triethylmethylammonium methyl phosphonate TEMA[MeOPHO2] IL.1 

A 500 mL three-necked round-bottomed flask was equipped with a reflux condenser with a 

drying tube containing calcium chloride, a gas inlet adapter and an addition funnel with a 

pressure equalizer arm was flushed with nitrogen and filled with 250 mL acetonitrile. After 

that, 11.0 g of dimethyl phosphite (0.1 mol) and 10.0 g (0.0988 mol) of triethylamine were 

added dropwise under vigorous stirring and refluxed for 24 h under a nitrogen environment. 

After the completion of the reaction solvent was removed using a rotary evaporator at 70 oC 

by reducing the pressure and obtained product was washed with excess diethyl ether/ ethyl 

acetate. Again traces of washing solvents were evaporated using a rotary evaporator and later 

put under a high vacuum to remove high boiling point impurities. In the end, the transparent 

liquid was obtained, which was transferred to air-tight bottles and stored in a desiccator under 

low pressure. The synthesis of ILs was shown in Scheme 1. 

b) 3,5 Lutidinium methyl phosphonate - Above mentioned procedure was followed to 

synthesize 3,5 lutidinium methyl phosphite Lut[MeOPHO2] in which 11.0 g of dimethyl 

phosphite (0.1 mol) and 10.58 g (0.0988 mol) of 3,5-Lutidine were added dropwise under 

vigorous stirring and refluxed for 24 h under a nitrogen environment. After completion of the 

reaction, the process described (TEMA[MeOPHO2] synthesis Section) above was used to 

purify the IL.

Scheme-S1. Synthetic procedure for ILs
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c) Pyridinium methyl phosphonate -  Above mentioned procedure was followed to 

synthesize pyridinium methyl phosphite Py[MeOPHO2] in which 11.0 g of dimethyl phosphite 

(0.1 mol) and 7.81 g (0.0988 mol) of pyridine was added dropwise under vigorous stirring and 

refluxed for 24 h under a nitrogen environment. After completion of the reaction, the process 

described (TEMA[MeOPHO2] synthesis Section) above was used to purify the IL. 

The purity of all synthesized ILs was characterized using 1H, 13C and 31P NMR.

Physicochemical characterizations

All ILs were dried in a vacuum for 12 hours and handled carefully to minimize the moisture 

content. UV–vis absorption spectrums were recorded using a Varian Cary 500 UV-Vis NIR 

spectrophotometer. Phase transition points (Tg), crystallization temperatures (Tc), and melting 

points (Tm) were measured on a DSC NETZCH DSC 204 F1 Phoenix thermal analyzer at the 

scan rate of 10 K min-1. Decomposition temperatures (Td) measurements were performed on a 

NETZSCH TG 209 F1 Libra thermogravimeter under N2 atmosphere at a heating rate of 10 K 

min-1 in the temperature range of 303.15 to 1073.15 K. Densities (ρ) and sound velocities (u) 

measurements from 293.15 K to 343.15 K in 5 K steps were carried out using an Anton Paar 

Model DSA 5000 with a vibrating tube density meter with a resolution of 5 x 10-6 g.cm-3 and 

0.01m.s-1 for the density and speed of sound respectively.  Dynamic viscosity (η) 

measurements from 293.15 K to 343.15 K in 5 K steps were carried out using an AMVn 

Automated Micro Viscometer (Anton Paar, Graz, Austria) with a ball rolling capillary method.
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1. Characterizations of synthesized ILs

a. NMR analysis 
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Figure S1. (a) 1H, (b) 13C and (c) 31P NMR spectrums of TEMA[MeOPHO2]
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Figure S2. (a) 1H, (b) 13C and (c) 31P NMR spectrums of Py[MeOPHO2]



S6

(c)

(b)
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DSC and TGA analysis
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2. Characterizations of isolated product  
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Figure S4.  (a) DSC and (b) TGA thermograms of synthesized ILs

Figure S5. 1H-NMR of Trans-carveol
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Figure S7. GSMS chromatogram of Trans-carveol

Figure S6. 13C-NMR of Trans-carveol
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Figure S8. GSMS chromatogram of Alpha Campholenic Aldehyde

Figure S9. Mechanistic studies by FTIR of APO and APO with IL background
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Figure S10. Mechanistic studies by 1H NMR (a) APO + TEMA[MeOPHO2],  (b) APO + 
TEMA[MeOPHO2] after 3 h heated at 413.15 K (c) Isolated TCV
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3. Thermodynamic parameters investigation of synthesized ILs

(a) Conductivity (κ) and Walden rule

The classical Walden rule is usually used for assessing the ionicity of ILs. The ionic mobilities 

(represented by the equivalent conductivity Λ = FΣμiZi) and the fluidity φ (φ = η−1) of the 

medium can be related to the Walden rule by the movement of the ions. The relationship 

between the and  of ILs can be described as:Λ 𝜂

               (S1)Λ𝜂 = 𝑘

(a)

(b)

Figure S11. Mechanistic studies by 31P NMR (a) TEMA[MeOPHO2],  (b) APO + 

TEMA[MeOPHO2].
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Where Λ is the molar electrical conductivity, η is the dynamic viscosity, and k is a temperature-

dependent constant.

(b) Dynamic viscosity 

The thermodynamic flow activation parameters Gibbs energy of activation (‡ΔG), enthalpy of 

activation (‡ΔH), the entropy of activation (‡ΔS) and variation of the calorific capacity of 

activation (‡ΔCP) were estimated from the Eyring equation.2

            (S2)
𝜂 =

ℎ𝑁𝑎

𝑉𝑀
𝑒𝑥𝑝(

‡
 Δ𝐺

𝑅𝑇 )

where η is the dynamic viscosity, h is the Planck constant, Na is the Avogadro constant, VM is

the molecular volume, R is the universal gas constant, and T is the absolute temperature.

According to the thermodynamic law ‡ΔG,  

               (S3)
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Figure S12. Walden plot of synthesized ILs with temperature. 
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The VM, , and  are considered temperature-dependent herein. Thus, the constraints can Δ𝐻 Δ𝑆

be applied in broader ranges of temperature. ‡ΔG is calculated by isolating it from the Eyring 

equation. ‡ΔH is obtained by using the Gibbs-Helmholtz equation.

                 (S4)

‡
 Δ𝐻 = (∂( ‡

 Δ𝐺/𝑇)

∂(1/𝑇) )

Thus, ‡ΔH is calculated by the derivation of function ‡ΔG /T with respect to 1/T. ‡ΔCP is given 

by the derivation of the activation enthalpy ‡ΔH to temperature. ‡ΔS is calculated from its 

thermodynamic equation (Equation S2). η may be described by any previously mentioned 

empirical models for viscosity.
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Figure S13. (a) Gibbs energy of activation, (b) enthalpy of activation, (c) standard molar 
entropy and (d) variation of calorific capacity of activation of synthesized ILs with 
temperature. 
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(c) Density 

The investigation of the volumetric properties of ILs was done as per the literature. A straight 

line can be obtained according to plot lnρ against T/K. The lnρ against T/K can be fitted by the 

following empirical equation: 

(S5)𝑙𝑛𝜌 =  𝑏 ‒ ⁡𝛼𝑇

Where b is an empirical constant and α is the thermal expansion coefficient.

At 298.15 K, the molecular volume, Vm, standard molar entropy, S0, and lattice energy, UPOT, 

of the ILs can be obtained from the experimental density by the following equations:

(S6)
𝑉𝑚 =  

𝑀
𝜌𝑁𝑎
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Figure S14. (a) Molecular volume, (b) standard molar entropy, (c) thermal expansion 
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290 300 310 320 330 340 350

445

450

475

480
 Py[MeOPHO2]
 TEAM[MeOPHO2]
 Lut[MeOPHO2]

U
P

O
T 

(J
.m

ol
–1

)

Temperature (K)



S15

(S7)𝑆0 =  1246.5 ⋅ (𝑉𝑚) +  29.5

𝑈𝑃𝑂𝑇 =  1981.2 ⋅ ( 𝜌
𝑀)

1
3 +  103.8                (𝑆8)

where, M is molar mass, ρ is the density, and Na is Avogadro’s constant.

4. Polarizability/ dipolarity of synthesized ILs

Kamlet taft parameters 

The negative solvatochromism of Reichardt's dye has been widely used to investigate the 

polarity of ILs. Reichardt's dye has a significant permanent dipole moment for dipole-dipole 

or dipole-induced dipole interactions, an effective polarizable arrangement for dispersion 

interactions with a high electron-pair donor for hydrogen bonding interactions. The significant 

negative solvatochromism of dye is due to different dipolar excited states of the molecule. 

When IL polarity increases, the molecule's ground state is stabilized in solvation relative to the 

excited state. IL polarity parameters, , is determined by intermolecular charge-transfer 𝐸𝑁
𝑇

absorption of the dye in an IL. The normalized   represents a solvent polarity normalized 𝐸𝑁
𝑇

using water and tetramethyl silane. 4-nitroaniline and N, N-diethyl-4-nitroaniline are 

commonly used to evaluate these parameters by solvatochromic comparisons of UV-spectra.  

This indicates the hydrogen-bond-donor acidity (α), hydrogen-bond-acceptor basicity (β), and 

polarizability of ILs.

(1) Solvent Polarizibilty (π*)

where,

(2) Hydrogen Bond Donator Capacity (α)

183.3
52.27)( max*





DENA

)(
10000)(

max
max DENA

DENA


 

(S9)
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Reichardt’s DyeN,N diethyl 
4-nitroaniline

4-Nitroaniline

where, 

(3) Hydrogen Bond Accepter Capacity (β)

where,

(4)

RD = Reichardt’s dye 

DENA= N,N-diethyl-4-nitroaniline

NA= 4-Nitroaninline

Table S1: Catalytic performance of recycled TEMA[MeOPHO2] TSIL

Selectivity%
Entry Recycle Conversion%

CV CA Others

1. Fresh 99 74 26 -

2. 1 99 73 27 -

3. 2 99 75 25 -

4. 3 98 74 26 -

5. 4 98 74 26 -

6. 5 97 73 23 4

Reaction conditions: 0.5 mL APO, 413.15 K, 1.5 mL ILs, 3 h.

5.16
31.30)23.0(6.14)30( * 


 TE

)(
28591)30(
max RD

ET 
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64.2)4()(035.1 maxmax 
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7.30)30( 

 TT
N

EE

(S10)

(S11)

(S12)
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Figure S15. Show GC standard data of TCV and obtained reaction mixture.

5. Recyclability of TEMA[MeOPHO2] IL – When the reaction was finished, a biphasic 

system was created by mixing water and ethyl acetate in a separating funnel. 

TEMA[MeOPHO2] was isolated in the aqueous phase, while the products TCV and CA 

were isolated in the ethyl acetate phase. To eliminate minute organic contaminants, the 

recovered aqueous phase underwent one more ethyl acetate wash.  To get regenerated 

TEMA[MeOPHO2] IL, rotary evaporation of the aqueous phase is performed. 1H NMR 

was used to assess the purity of recycled IL.
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Figure S16. (a) 1H NMR (b) % of recovery of recycled TEMA[MeOPHO2] IL up to 
five cycles
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6. Green metrics for organic transformation

O OH
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Scheme S2a. Phosphotungstic acid-catalyzed isomerization of PO
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Scheme S2b. Zinc-catalyzed isomerization of PO into CV and CA
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Scheme S2c. Present work ILs catalyzed isomerization of PO

Table S2. The calculated green metrics for compounds (Comparison between literature 
and current work)

Entry Comp 
No.

AE
 (%)

E 
(%)

MI 
(%)

MP
 (%)

EMY
 (%)

SI 
(%)

Ref.

1 A 100 1.86 3.73 26.74 1.74 0.57

2 B 100 2 3.97 25.12 No hazardous 
reactant

0.60

3 Current 
work

100 1.0 2.38 42.00 No hazardous 
reactant

0.0

3, 4
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Table S3. The calculated green metrics for ILs synthesis 

Entry ILs 
scheme

AE
 (%)

E 
(%)

MI (%) MP
 (%)

EMY
 (%)

SI 
(%)

1 A 99.91 1.0 1.96 83.73 0.00 0.19

Table S4. Literature data on TCV conversion

Entry Reaction conditions Catalyst Con. (%) Sel. (%) Ref.

1 Carvone, (K2CO3/Me 

OH), 20°C, 45 h

Diphenyl tin hydride 100 Cis-trans 

= 97-2.9

5

2 D-Limonene(R. 

globerulus

PWD8.),15-40°C 24 h.

K2HPO4-KH2PO4 Trans-74 6

3 (+)-Limonene/ (-)-

limonene, ethanol, room 

temperature, 2h.

P450 enzymes /NaBH4 7

4 APO, 78 to 110°C) H4SiW12 O40 40 Trans-

24%

8

5 Limonene, 25°C, 6h. immobilized 

cyanobacterial cells 

(Synechococcus sp. 

PCC)

Cis-

trans= 

31-9

9

6 APO Molecularly Imprinted 

Polymers (MIPs)

100 Trans-45 10

7 APO in DMF, 120°C, 

3h. 

H3PW12O40 94 Trans-93 11

8 APO in DMA, 140°C, 

8h. 

Ce/SiO2 and Sn/SiO2, 98 Trans-73 12

9 APO in DMA, 140°C, 

3h.

Ce–Si–MCM-41 100 Trans- 

41%

13

10 APO in DMA, 140°C, 

3h.

Fe- Beta-300 100 Trans-

43%

14

11 Limonene Hydrogen peroxide and 

t-butyl hydroperoxide 

- 74 15

Scheme-S2d. Synthetic procedure for ILs

10 g triethylamine (MW 101.19 g/mol)  + 11 g dimethylphosphite (110.049 g/mol)  in 
250 ml Acetonitrile (MW 41.05 g/mol)
MW of ILs = 211.23 g/mol
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