Supporting Information

Magnetical hollow micro-sized nanoaggregates for synergistically accelerating PET glycolysis

Ling-Xia Yun^{a,b}, Yan Wei^{a,b}, Qian Sun^c, Yu-Ting Li^{a,b}, Bin Zhang^{a,b}, Hang-Tian

Zhang^{b,*}, Zhi-Gang Shen^d, Jie-Xin Wang^{a,b,*}

^aState Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China;

^bResearch Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China;

^cGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China;

^dSchool of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105

Total number of pages: 10

Total number of Fig.s:13 (Fig.s S1-S13)

Total number of Tables:1 (Table S1)

^{*} Corresponding authors:

Hang-Tian Zhang, E-mail: <u>zhanghangtian_zemon@outlook.com</u> (H.T. Zhang) Jie-Xin Wang, E-mail: <u>wangjx@mail.buct.edu.cn</u> (J.X. Wang)

Fig. S1. (a) The TEM image, (b) XRD pattern and (c) hysteresis loop of Fe₃O₄ NPs.

Fig. S2. SEM images of ZnO-3.5 nm-Fe₃O₄ HMNAs obtained under different inlet temperatures: (a) 120 °C, (b) 140 °C, (c) 180 °C and different feed rates: (d) 0.36 L/h, (e) 0.54 L/h, (f) 0.9 L/h. (g) The SEM image of cracked hollow microspheres after the ultrasound treatment for a period of time.

Fig. S3. XRD patterns of obtained ZnO NPs.

Fig. S4. (a) TEM images of the ZnO-UM suspension. (b-d) SEM images of the ZnO-UM-Fe₃O₄-2:1

HMNAs. (e) The SEM image of ZnO-Fe₃O₄ particles obtained from poorly dispersed ZnO powder.

Fig. S5. BET surface areas of (a) ZnO NPs and HMNAs, Fe_3O_4 NPs and HMNAs, (b) ZnO-Fe₃O₄ HMNAs obtained from different primary sizes of ZnO. (c) Mesoporous volumes of ZnO-Fe₃O₄ HMNAs.

Fig. S6. (a) XRD patterns of ZnO-Fe₃O₄ HMNAs with different weight ratios of ZnO and Fe₃O₄ NPs

and (b) SEM images.

Fig. S7. Digital photographs of ZnO-Fe₃O₄ HMNAs with different weight ratios of ZnO and Fe₃O₄ NPs

attracted to a magnet (3000 Gs).

Fig. S8. HPLC chromatograms of the glycolysis products catalyzed by (a) ZnO-3.5 nm-Fe $_3O_4$ HMNAs,

(b) ZnO-6.6 nm-Fe₃O₄ HMNAs, (c) ZnO-11.4 nm-Fe₃O₄ HMNAs.

Fig. S9. (a)¹³C NMR and (b) ¹H NMR spectra of obtained BHET and standard BHET.

Fig. S10. SEM images of (a) virgin PET, (b) residual PET after the glycolysis for different times at 170

°C.

Fig. S11. SEM images, elemental mapping and EDS contents of Zn and Fe over the ZnO-Fe₃O₄ HMNAs

before (a) and after each recycling step (b-f).

Fig. S12. (a) CeO₂-2.7 nm and CeO₂-2.7 nm-Fe₃O₄: (i) TEM image of CeO₂ nanoparticles. (ii–iii) SEM images of CeO₂-2.7 nm-Fe₃O₄ and elemental mapping. (iv) XRD patterns. (b) ZIF-8-30 nm and ZIF-8-Fe₃O₄: (i) TEM image of ZIF-8-30 nm. (ii–iii) SEM images of ZIF-8-30 nm-Fe₃O₄ and elemental mapping. (iv) XRD patterns.

Fig. S13. (a) CeO₂-2.7 nm and Fe₃O₄ NPs directly mixed with the ratio of 2:1 and CeO₂-Fe₃O₄ HMNAs,
(b) ZIF-8-30 nm and Fe₃O₄ NPs directly mixed with the ratio of 2:1 and ZIF-8-Fe₃O₄ HMNAs.
(glycolysis at 180 °C, 40 min, the weight ratio of EG to PET of 6, catalysts of 1 wt%)

Table S1. Comparison of reported catalysts for the glycolysis of PET.

	Catalysts	Mass ratio of cat./PET (%)	Temperature (°C)	Time (h)	Product yield (%)	WHSV (g _{BHET} ·g _{cat} ⁻¹ ·h ⁻¹)	Ref.
Nonmagnetic catalysts	ZnO/SBA-15	5	197	1	91	7.16	22
	rGO\[TESPMI] ₂ CoCl ₄	0.15	190	3	95.2	83.21	46
	Graphitic carbon nitride colloid	2.5	196	0.5	80.3	25.27	12
	MAF-6	1	180	4	81.7	8.03	45
	Ultrasmall Co NPs	1.5	180	3	96	8.39	11
	ZnO nanodispersion	0.7	170	1	82.3	46.24	13
	ZnO-Fe ₃ O ₄ HMNAs	1	190	0.5	92.3	72.61	This work
	CeO ₂ -Fe ₃ O ₄ HMNAs	1	197	0.75	95.39	50.03	This work
	ZIF-8-Fe ₃ O ₄ HMNAs	1	190	0.33	85.2	101.55	This work
	CoFe ₂ O ₄ @ZIF-8/ZIF- 67	1	200	1	84.3	33.16	16
Magnetic	CoFe ₂ O ₄ /C10-OAC	2	195	2.5	95.4	7.50	43
catalysts	γ-Fe ₂ O ₃ /nitrogen- doped graphene	10	195	3	100	1.31	14
	Mg-Al-O@Fe ₃ O ₄	0.5	240	1.5	80	41.96	17
	Zn-MNPs	0.8	196	2	79.8	19.62	44
	Fe ₃ O ₄ NPs@h-BNNS	0.2	200	5	100	39.33	18