SUPPORTING INFORMATION

CO2-assisted Hydrolytic Hydrogenation of Cellulose and Cellulose-based Waste into Sorbitol over Commercial Ru/C

Daniele Polidoro,^a Giancarmelo Stamilla,^a Matteo Feltracco,^{b,c} Andrea Gambaro,^{b,c} Alvise Perosa,^a Maurizio Selva *^a

^a Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30175 – Venezia Mestre, Italy

^b Institute of Polar Sciences-CNR, Via Torino 155, 30175 – Venezia Mestre, Italy

^c Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30175 – Venezia Mestre, Italy

Product analysis

The quantitative products analysis in the liquid phase was determined according to the following procedure. Each sample of the aqueous solution collected at the end of CO₂-assisted hydrogenation tests was 1:100 diluted with ultrapure water (Elga Purelab Ultra System, High-Wycombe, UK), and a labeled ¹³C6-levoglucosan was used as an internal standard, spiked with a final concentration of 1 mg L⁻¹. Determination and quantification of all compounds were performed using an ion chromatograph (Thermo Scientific Dionex ICS-5000) coupled to a single quadrupole mass spectrometer (Thermo Scientific MSQ Plus). The chromatographic method was carried out using two separated methods: (a) seven saccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose, and sucrose) and two alcohol-sugars (erythritol and maltitol) were separated using a CarboPac PA10 column (Thermo Scientific, 2 mm × 250 mm) equipped with a CarboPac PA10 guard column (2 × 50 mm). The sodium hydroxide gradient, generated by an eluent generator (Thermo Scientific, Dionex ICS 5000EG), was as follows: 0–3 min, 1 mM; 3–20 min gradient from 10 to 20 mM; 20-45 min isocratic elution with 20 mM; 45-55 min, column cleaning with 100 mM; 55-60 min, equilibration at 1 mM. (b) The separation of the alcoholsugars (mannitol, ribitol, sorbitol, xylitol, and galactitol) was performed using a CarboPac MA1 analytical column (Thermo Scientific, 2 mm × 250 mm) equipped with an AminoTrap column (2 × 50 mm). The sodium hydroxide gradient was as follows: 20 mM (0–23 min), 100 mM (23–43 min), and 20 mM (43–53 min). The injection volume for both methods was 50 μ L, and the flow rate was 0.25 mL min⁻¹. Sodium hydroxide was removed using a suppressor (Thermo Scientific ASRS 500, 2 mm) before entering the mass spectrometer. To improve the ionization of the sugars in the aqueous eluent, a solution of methanol/ammonia (7‰) was added postcolumn with a flow of 0.025 mL min⁻¹. The MS was operated with an electrospray ionization (ESI) interface in negative mode with a temperature of 400 °C and a needle voltage of -2500 V. Selected ion monitoring was used for detection.