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Appendix A Supplementary material of the machine learning models

A.1 Random forest regression algorithm

Random forest algorithm, one of the representative Bagging integration algorithms, 

further introduces random feature selection in each round of decision tree training 

process by taking decision tree as the base learner. The random forest regression model 

The algorithm principle of the random forest algorithm is as follows:

(1) The S sample points are randomly selected from the training sample set M to 

obtain a series of new M1, ..., Ms sub training sets.

(2) Each regression tree is trained through the sub training set. The segmentation 

rule of each node of each tree is to select k features randomly from all the features. 

Then the optimal segmentation point  is selected from the k features according to ( , )j s

the minimization of square error , and divided in to left sub tress ( ) and min( , )L j s 1( , )R j s

right sub trees ( ), as shown in Eqs. (S1) - (S4).2 , )R j s（
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Where,  represents the optimal partition feature, s denotes the optimal partition j

sample point under the optimal partition feature, xi is the sample point, yi is the output 

value corresponding to the sample point,  stands for the output value of the subtree, ˆ
mC

and  refers to the total number of features contained in the subtree.mN

(3) The prediction result of each regression tree is the mean value of leaf nodes 

reached by the sample point, as shown in Eqs. (S5) and (S6).

(4) The final prediction result of random forest is the unweighted mean value of all 
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regression tree prediction results, as shown in Eq. (S7).
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Where I is the indicator function,  refers to the predicted result of each tree, ( )sh x

 stands for the final prediction result of random forest, and  denotes the number ( )h x S

of regression trees.

A.2 Support vector regression algorithm

For a linear regression, the objective is to fit a regression line ( ) for the ˆ Ty W x b 

data to minimize the error caused by the deviation. The process usually uses the least 

square method to determine the vector W and offset term b. The support vector 

regression model will set a threshold ( , function interval) around the regression line. 
The point within the threshold will not be punished due to its error (no loss will be 

calculated). Only the support vector will have an impact on its functional model. Such 

a threshold area is commonly known as the -pipeline.
SVR maps the original space of the input data to a higher dimensional feature space 

through the kernel function, making the problem of nonlinear regression become a 

problem of approximate linear regression after the transformation of the kernel 

function. The common kernel functions of the SVR model are shown in Table S1.

In the feature space, to determine the optimal linear plane of fitting data, the 

optimized SVR model is obtained by minimizing the total loss and maximizing the pipe 

width ( ), as shown in Eq. (S8). Since the error of the predicted value of each 
W


training data is at most equal to , the smoothest function ( ) is found by  ( )f x



S4

minimizing the vector norm ( ). The objective function and constraints are given 2W

in Eqs. (S9) and (S10).

The smoothest function of SVR model: (S8)( ) ( )Tf x W x b 

The objective function of SVR model: (S9)2

,

1min
2W b

W

The constraints of SVR model: (S10)[ ( ) ]i iy W x b   

where  is the weight, b is the deviation,  represents the mapping of feature x W ( )x

from low to high dimensions. 

A.3 Neural network algorithm

Neural network algorithm is an information processing system that simulates the 

neural results of human brain to realize the intelligent activities of human brain. Its 

structure mainly includes input layer, hidden layer and output layer, and each layer is 

connected by the most basic element neuron. In the artificial neural network, each 

neuron receives the input signals (x0, x1, ..., xn) transmitted from the upper layer of 

neurons and superposes with the weight (wi). It is then to set a threshold (b) to ensure 

that the output value calculated through the input cannot be randomly activated, and 

finally output them through the activation function.

For a neuron:  (S11)
1
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Where  is the activation function;  denotes the input of a neuron at the upper actf ix

level; and y represents the output of the neuron.

From each layer of the neural network, the result is composed of the output of all 

neurons in this layer, as shown in Eq. (S12).

 (S12)( ) ( ) ( ) ( ) ( )( )i i i i i
out act inh f h w b 

Where  is the output matrix of the upper layer, and its dimension is [ ]; is inh ,  inN D outh

the output matrix of this layer whose dimension is [ ];  is the weight matrix ,  outN D ( )iw

whose dimension is [ ]; is the offset matrix whose dimension is [ ]; ,  in outD D ( )ib 1,  outD
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 denotes the activation function;  is the number of samples in the matrix;  ( )i
actf N inD

represents the input sample dimension, and  represents the output sample outD

dimension.

This paper introduces a back-propagation algorithm, which is a supervised learning 

method. It is constantly updated  and  through "learning from mistakes" to w b

minimize the difference (loss function) between the final model output and the true 

value. Here, the gradient descent algorithm is the most commonly used optimization 

method for updating  and . Then, a trained neural network is obtained by repeating w b

the above process for the whole training set. Finally, to output the test set, it can get the 

prediction value through forward propagation to evaluate the prediction results of the 

trained neural network on the unknown data set.
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Appendix B Supplementary figures and tables

Fig. S1. Data frequency(distribution) analysis of the collected indirect CO2 hydrogenation catalysts
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Fig. S2. Optimization of the hyperparameters of the RFR model under 5-fold
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Fig. S3. Optimization of the hyperparameters of the SVR model under 5-fold cross-validation
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Fig. S4. Optimization of the hyperparameters of the NN model under 5-fold cross-validation
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Appendix C Code of the PCA, SHAP, and GA optimization methods

Appendix C.1 Code of the PCA method 

Fig. S5. Key code of the PCA method 
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Appendix C.2 Code of the SHAP method 

Fig. S6. Key code of the SHAP interpreter 

How to explain the built machine learning model by importing the corresponding SHAP package is 

detailed in: https: //Welcome to the SHAP documentation — SHAP latest documentation.
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Appendix C.3 Code of the GA optimization method 

Fig. S7. Key code of the GA optimization method

Using the Geatpy genetic algorithm template to optimize and screen catalyst parameters is detailed in: 

https: //Geatpy – The Genetic and Evolutionary Algorithm Toolbox for Python with High Performance. 
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Table S1 Common kernel functions and parameters of the SVR model

Function Expression Parameters 

Linear Kernel i( , ) ( , )i j jk x x x x /

Polynomial Kernel ( , ) (( , ) 1)d
i j i jk x x x x   1d 

Gaussian Kernel (RBF)
2

2( , ) exp( )
2

i j
i j

x x
k x x




   0 

Laplacian Kernel ( , ) exp( )i j
i j

x x
k x x




  0 

Sigmoid Kernel
( , ) tanh( ( , ) )i j i jk x x x x  

 0,  0  
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Table S2 Main information of the original dataset 

Features Type Item Unit
Catalyst type /
Cu load wt%
Content of promoter metal I wt%

Catalyst Descriptor

Content of promoter metal Ⅱ wt%
Calcination temperature ℃

Preparation conditions
reduction temperature ℃
Reaction temperature ℃
Reaction pressure MPaOperating conditions
Weight hourly space velocity g·gcat

-1·h-1

Hydrogen ester ration mol·mol-1

Input

Feeding conditions
Solvent type /

Conversion Conversion rate of EC /
Yield of EG /Output

Yield
Yield of MEOH /
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Table S3 Main information of the dataset improved by PCA

Features Type Item Unit
Catalyst type /
Cu load wt%
Atomic weight of promoter metal Ⅰ /
Radius of promoter atomic (ion) Ⅰ /
Electronegativity of promoter metal Ⅰ /
Status of promoter metal Ⅰ /
Content of promoter metal I wt%
Atomic weight of promoter metal Ⅱ /
Radius of promoter atomic (ion) Ⅱ /
Electronegativity of promoter metal 
Ⅱ

/

Status of promoter metal Ⅱ /
Content of promoter metal Ⅱ wt%
Support type /
Preparation method /
Specific surface area m2/g

Catalyst Descriptor

Pore volume cm3/g
Calcination temperature ℃

Preparation conditions
reduction temperature ℃
Reaction temperature ℃
Reaction pressure MPaOperating conditions
Weight hourly space velocity g·gcat

-1·h-1

Hydrogen ester ration mol·mol-1

Input

Feeding conditions
Solvent type /

Conversion Conversion rate of EC /
Yield of EG /Output

Yield
Yield of MEOH /
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Table S4 Definition of the optimized hyperparameters of the established ML models

ML model Hyperparameters Definition 

RFR n_estimators Number of decision trees

max_features Maximum depth of tree

min_samples_leaf Minimum samples contained in leaf nodes

SVR kernel Functions that map samples to higher dimensions

gamma Coefficients in kernel functions

C Penalty coefficient (regularization coefficient)

NN Neuron Basic Unit of neural network

learning rate Tuning parameters to determine the step size in each iteration

Table S5 Evaluation of the SVR model with different kernel functions by 5-fold cross-validated 

average MSE, R2, and MAE

Kernel function MSE R2 MAE
Linear Kernel 0.4493 0.5280 0.4371
Polynomial Kernel 0.2827 0.7037 0.3387
Gaussian Kernel (RBF) 0.2347 0.7559 0.3158
Sigmoid Kernel 1.0355 -0.076 0.7017
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 Table S6 Supplementary 

results of optimized parameters of 

various types of catalysts 

Catalysts Promoter Ⅱ Content of promoter metal Ⅱ Support type Preparation method Specific surface area

Cu/SiO2 None 0 SiO2 AE 489
Cu/HMS None 0 HMS AE 225.49
Cu/SiO2-S None 0 SiO2-S AE 55
Cu-C/SiO2-R None 0 SiO2-C AE 201.3
Cu-MgO/SBA-15 None 0 SBA-15 AE 429.17
Ni-Cu/SiO2 None 0 SiO2 AE 613.53
Cu/SiO2-F None 0 SiO2-F-3.75 OSHP 112
Cu8-Mg1-Zrz/SiO2 Zr 4.2 SiO2 DP 82
Cux-Mg1/SiO2 None 0 SiO2 DP 56
S-1-210@CuSiO3 None 0 S-1-210 OSHT 363
xMo-Cu/SiO2 None 0 SiO2 AE-IWI 448
xMoOx-Cu/SiO2 None 0 SiO2 OPMHT 413
xPt-Cu/SiO2 None 0 SiO2 AE-IWI 578


