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Mathematical Details on O-GNN

Mathematically, we can define the molecular graph G as
G=(V,E,R) (1)

where V is the atom set, V. = {v,v2,...,vv|}, E is the bond set, E = {e;|i,j € |[V]},
and R is the ring set, R = {ry,r2,...,7g|}. 75 is defined as a simple ring (i.e. including
only one ring). Atom, bond, and ring features are further specified by hf}?) (atom type,

chirality, degree number, etc.), hé?]) (bond type, stereochemistry, conjugated type) and hg?)
(a concatenation of atom and bond features that are involved in the rings). The superscript
©) represents that A(?) is the 0" layer feature, i.e. the input feature. In the iterative message

passing step, we can obtain the bond features, atom features, ring features and additionally
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a compound feature UY at {* layer by following the below update steps sequentially:

h) =nY + aggregate(h ", bV b (T WY iere,,), UY) (2)
h) = nlY + Aggregate(h{l ™", {hg)J Fien () {hgi/_l)}z‘/eR(vi), A (3)

WY — )+ aggregate(hi—Y, {hD Yievion. {0 }eroy. UO) ()
U =U"Y + aggregate(U'Y {h{)}iciv, {hgg}z’,jewp {h§~? birery) (5)

where R(e;;), R(v;) denotes the ring sets that involve bond e;; and atom wv;, respectively,
while N(v;) is the neighbor atom set that connects v;. V(r;), E(r;) represents all atoms
and bonds that appear in the ring r;. The aggregate function, Aggregate(-), is designed
to convolve the information over different objects and then add them to the features from
the previous (I — 1) layer. After L message-passing layers, we compute the mean values of

transformed atom features as the graph-level molecular feature to continue with.
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The environmental-related molecular properties can then be obtained by transforming

this graph-level feature with a multi-layer-perceptron network, MLP(-).



f(h¢;) = MLP(hg) (7)

Algorithm Implementation and Model Selection

For the conventional-feature-based models, we created the ECFP and MACCS features with
RDKit¥ built-in functions (rdkit.Chem.A11Chem.GetMorganFingerprintAsBitVect (),
rdkit.Chem.MACCSkeys .GenMACCSKeys () ), while the Mordred GitHub repository® (https:
//github.com/mordred-descriptor/mordred) was used for generating Mordred descrip-
tors. ECFP features were generated with the radius of 2 and the number of bits of 2048 (i.e.
2048-dimension feature vector), and MACCS features were of 167 dimensions. For Mordred
features, only 2D descriptors were calculated with up to 1613 dimensions. Machine learning
algorithms were imported from scikit-learn package.” We also performed the standard
scaling (remove means and normalize it to unit variance) with sklearn.preprocessing.
StandardScaler as a model variant, which may potentially improve the regression accuracy.
In terms of algorithms, the radial basis function kernel was used for support vector regression
(7 = 1/Nyeatures, Neatures s the number of feature dimensions.). The number of tree-based
estimators and maximum depth is set as 100 and 30/3, respectively, for both random-forest
and gradient-boosting regressors. Lastly, a two-layer neural network was implemented with
the initial learning rate of 0.001 in the scikit-learn package. For all of these algorithms,
unless specified, we used 5-fold cross-validation (training:testing in 8:2 ratio)and reported
their root-mean-square-error on the testing set (RMSEj.s) with the mean and standard
deviation values.

For NeuralFP and 0-GNN, we controlled the same 5-fold splits as conventional-feature-
based methods to get a fair comparison. In each of the 5 splits, we trained an ensemble of
5 models by feeding the algorithm with different subsets of the training data points. The

average values of this ensemble of models were used for predicting the testing data points.



NeuralFP was implemented in DeepChem.® We optimized NeuralFP’s hyperparameters of
number of message passing layers and corresponding hidden dimensions ([64,64], [128,128],
[64,64,64]), dimension of the feed forward neural network layer (64, 128), as well as the
dropout ratio (0, 0.2). 0-GNN was implemented with PyTorch and PyTorch-Geometric.
More implementation details can be found in our repository (https://github.com /shangzhu-

cmu/envchemGNN.git)).

Model Selection for Feature-based Models

Here are the model selections for each task, by combining chemical features with best-

performing machine learning models.

Table S 1: Model Performances for Environmental Engineering Tasks®

Task ESOL (1128) BCF (1034) Clint (4422) O3-react (759) SO4-react (557)

Feature raw Modred raw Modred raw Modred scaled MACCS scaled Mordred

Selected Gradient Gradient Random Neural Support Vector
Algorithm Boosting Boosting Forest Networks Machines
RMSEFE.s  0.61 (0.04) 0.67 (0.05)  0.86 (0.05) 2.05 0.60

Supporting Figures

The collected environmental datasets are mapped in Figure S 1 by conducting a principal
component analysis (PCA) on their molecular fingerprints.” The Clint dataset covers the
broadest chemical space, compared with others that are similarly clustered in the PCA plot.
The data distribution after proper transformations is visualized in Figure S1.

Figure S 2 displays the data distribution histogram after logarithm transformation, and
they are the training data for benchmarked ML models.All datasets undergo logarithm trans-
formations to better represent the data that span over orders of magnitudes. Note that the
Clint dataset includes raw values of 0, and, in order to avoid numerical errors, the whole
dataset has been shifted up by a negligible amount (0.0001) before the logarithm transfor-

mation.
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Figure S 3 provides a few example molecules with many rings in the training datasets,
with the number of rings up to 9. These indicate a significant role that ring structures may
play in determining molecular properties.

Figure S 4 and S 5 show the detailed analysis for the FSOL task and the BC'F' task,
respectively. Their pairity plots and residual loss analysis are both similar to the Clint
task. In terms of the PCA plots, for the ESOL task, 0-GNN features in Figure S [d better
distinguish the chemicals with low and high solubility labels, compared with Mordred features
in Figure S[k. The BCF task PCA result is slightly more complicated, since both Figure S
and [pd show difficulty separating the high and low bioconcentration factor values. This
may be attributed to the fact that the features were extracted from one single model from the
cross-validation ensemble, so the result is potentially stochastic. Further, we also observed a
higher standard deviation of the BC'F' task in Table 2 of main text, than the other two tasks
evaluated. Overall, after averaging from the model ensembles, 0-GNN model is still preferred

than the best feature-based machine learning model.
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Figure S 1: Chemial Space Coverage of Curated Datasets
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Figure S 2: Data Distribution after Logarithm Transformation
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Figure S 3: Example Molecules with Large Numbers of Rings in Each Dataset
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Figure S 4: Detailed Analysis of the ESOL task (a) Parity Plot. The black line represents
complete agreement of the predicted and true values. (b) Prediction Residual Plot (predicted
values minus true values). X-axis is the residual values of feature-based models while Y-axis
is for 0-GNN. (c-d) PCA Plots for (¢) Scaled Mordred Features and (d) 0-GNN-extracted Fea-
tures. Each dot is color-coded by their clearance values. The scales of principal components
in (c-d) depend on the raw feature scales before PCA, so the axes of these two plots are in
different ranges.
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Figure S 5: Detailed Analysis of the BC'F task (a) Parity Plot. The black line represents
complete agreement of the predicted and true values. (b) Prediction Residual Plot (predicted
values minus true values). X-axis is the residual values of feature-based models while Y-axis
is for 0-GNN. (c-d) PCA Plots for (c¢) Scaled Mordred Features and (d) 0-GNN-extracted Fea-
tures. Each dot is color-coded by their clearance values. The scales of principal components
in (c-d) depend on the raw feature scales before PCA, so the axes of these two plots are in
different ranges.
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