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Mathematical Details on O-GNN

Mathematically, we can define the molecular graph G as

G = (V,E,R) (1)

where V is the atom set, V = {v1, v2, ..., v|V|}, E is the bond set, E = {eij|i, j ∈ |V|},

and R is the ring set, R = {r1, r2, ..., r|R|}. ri is defined as a simple ring (i.e. including

only one ring). Atom, bond, and ring features are further specified by h
(0)
vi (atom type,

chirality, degree number, etc.), h
(0)
eij (bond type, stereochemistry, conjugated type) and h

(0)
ri

(a concatenation of atom and bond features that are involved in the rings). The superscript

(0) represents that h(0) is the 0th layer feature, i.e. the input feature. In the iterative message

passing step, we can obtain the bond features, atom features, ring features and additionally
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a compound feature U (l) at lth layer by following the below update steps sequentially:

h(l)
eij

= h(l−1)
eij

+ Aggregate(h(l−1)
eij

, h(l−1)
vi

, h(l−1)
vj

, {h(l−1)
ri′

}i′∈R(eij), U
(l−1)) (2)

h(l)
vi

= h(l−1)
vi

+ Aggregate(h(l−1)
vi

, {h(l)
eij
}j∈N(vi), {h(l−1)

ri′
}i′∈R(vi), U

(l−1)) (3)

h(l)
ri

= h(l−1)
ri

+ Aggregate(h(l−1)
ri

, {h(l)
vi
}i∈V (ri), {h(l)

eij
}j∈E(ri), U

(l−1)) (4)

U (l) = U (l−1) + Aggregate(U (l−1), {h(l)
vi
}i∈|V|, {h(l)

eij
}i,j∈|V|, {h(l)

ri′
}i′∈|R|) (5)

where R(eij), R(vi) denotes the ring sets that involve bond eij and atom vi, respectively,

while N(vi) is the neighbor atom set that connects vi. V (ri), E(ri) represents all atoms

and bonds that appear in the ring ri. The aggregate function, Aggregate(·), is designed

to convolve the information over different objects and then add them to the features from

the previous (l− 1)th layer. After L message-passing layers, we compute the mean values of

transformed atom features as the graph-level molecular feature to continue with.

hL
G =

Σi∈|V|h
(l)
vi

|V|
(6)

The environmental-related molecular properties can then be obtained by transforming

this graph-level feature with a multi-layer-perceptron network, MLP(·).
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f(hL
G) = MLP(hL

G) (7)

Algorithm Implementation and Model Selection

For the conventional-feature-based models, we created the ECFP and MACCS features with

RDKit1 built-in functions (rdkit.Chem.AllChem.GetMorganFingerprintAsBitVect(),

rdkit.Chem.MACCSkeys.GenMACCSKeys()), while the Mordred GitHub repository2 (https:

//github.com/mordred-descriptor/mordred) was used for generating Mordred descrip-

tors. ECFP features were generated with the radius of 2 and the number of bits of 2048 (i.e.

2048-dimension feature vector), and MACCS features were of 167 dimensions. For Mordred

features, only 2D descriptors were calculated with up to 1613 dimensions. Machine learning

algorithms were imported from scikit-learn package.3 We also performed the standard

scaling (remove means and normalize it to unit variance) with sklearn.preprocessing.

StandardScaler as a model variant, which may potentially improve the regression accuracy.

In terms of algorithms, the radial basis function kernel was used for support vector regression

(γ = 1/Nfeatures, Nfeatures is the number of feature dimensions.). The number of tree-based

estimators and maximum depth is set as 100 and 30/3, respectively, for both random-forest

and gradient-boosting regressors. Lastly, a two-layer neural network was implemented with

the initial learning rate of 0.001 in the scikit-learn package. For all of these algorithms,

unless specified, we used 5-fold cross-validation (training:testing in 8:2 ratio)and reported

their root-mean-square-error on the testing set (RMSEtest) with the mean and standard

deviation values.

For NeuralFP and O-GNN, we controlled the same 5-fold splits as conventional-feature-

based methods to get a fair comparison. In each of the 5 splits, we trained an ensemble of

5 models by feeding the algorithm with different subsets of the training data points. The

average values of this ensemble of models were used for predicting the testing data points.
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NeuralFP was implemented in DeepChem.4 We optimized NeuralFP’s hyperparameters of

number of message passing layers and corresponding hidden dimensions ([64,64], [128,128],

[64,64,64]), dimension of the feed forward neural network layer (64, 128), as well as the

dropout ratio (0, 0.2). O-GNN was implemented with PyTorch and PyTorch-Geometric.

More implementation details can be found in our repository (https://github.com/shangzhu-

cmu/envchemGNN.git).

Model Selection for Feature-based Models

Here are the model selections for each task, by combining chemical features with best-

performing machine learning models.

Table S 1: Model Performances for Environmental Engineering Tasksa

Task ESOL (1128) BCF (1034) Clint (4422) O3-react (759) SO4-react (557)
Feature raw Modred raw Modred raw Modred scaled MACCS scaled Mordred
Selected
Algorithm

Gradient
Boosting

Gradient
Boosting

Random
Forest

Neural
Networks

Support Vector
Machines

RMSEtest 0.61 (0.04) 0.67 (0.05) 0.86 (0.05) 2.05 0.60

Supporting Figures

The collected environmental datasets are mapped in Figure S 1 by conducting a principal

component analysis (PCA) on their molecular fingerprints.5 The Clint dataset covers the

broadest chemical space, compared with others that are similarly clustered in the PCA plot.

The data distribution after proper transformations is visualized in Figure S1.

Figure S 2 displays the data distribution histogram after logarithm transformation, and

they are the training data for benchmarked ML models.All datasets undergo logarithm trans-

formations to better represent the data that span over orders of magnitudes. Note that the

Clint dataset includes raw values of 0, and, in order to avoid numerical errors, the whole

dataset has been shifted up by a negligible amount (0.0001) before the logarithm transfor-

mation.
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Figure S 3 provides a few example molecules with many rings in the training datasets,

with the number of rings up to 9. These indicate a significant role that ring structures may

play in determining molecular properties.

Figure S 4 and S 5 show the detailed analysis for the ESOL task and the BCF task,

respectively. Their pairity plots and residual loss analysis are both similar to the Clint

task. In terms of the PCA plots, for the ESOL task, O-GNN features in Figure S 4d better

distinguish the chemicals with low and high solubility labels, compared with Mordred features

in Figure S 4c. The BCF task PCA result is slightly more complicated, since both Figure S

5c and 5d show difficulty separating the high and low bioconcentration factor values. This

may be attributed to the fact that the features were extracted from one single model from the

cross-validation ensemble, so the result is potentially stochastic. Further, we also observed a

higher standard deviation of the BCF task in Table 2 of main text, than the other two tasks

evaluated. Overall, after averaging from the model ensembles, O-GNN model is still preferred

than the best feature-based machine learning model.

Figure S 1: Chemial Space Coverage of Curated Datasets
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Figure S 2: Data Distribution after Logarithm Transformation

Figure S 3: Example Molecules with Large Numbers of Rings in Each Dataset
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ESOL-Scaled Mordred ESOL-O-GNN

(a) (b)

(c) (d)

Figure S 4: Detailed Analysis of the ESOL task (a) Parity Plot. The black line represents
complete agreement of the predicted and true values. (b) Prediction Residual Plot (predicted
values minus true values). X-axis is the residual values of feature-based models while Y-axis
is for O-GNN. (c-d) PCA Plots for (c) Scaled Mordred Features and (d) O-GNN-extracted Fea-
tures. Each dot is color-coded by their clearance values. The scales of principal components
in (c-d) depend on the raw feature scales before PCA, so the axes of these two plots are in
different ranges.
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(a) (b)

(c)

BCF-Scaled Mordred BCF-O-GNN

(d)

Figure S 5: Detailed Analysis of the BCF task (a) Parity Plot. The black line represents
complete agreement of the predicted and true values. (b) Prediction Residual Plot (predicted
values minus true values). X-axis is the residual values of feature-based models while Y-axis
is for O-GNN. (c-d) PCA Plots for (c) Scaled Mordred Features and (d) O-GNN-extracted Fea-
tures. Each dot is color-coded by their clearance values. The scales of principal components
in (c-d) depend on the raw feature scales before PCA, so the axes of these two plots are in
different ranges.
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