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1. Experimental 

1.1 Materials 

Titanium(IV) oxysulfate (TiOSO4, ≥29 Ti (as TiO2) basis), copper nitrate trihydrate 

(Cu(NO3)2·3H2O purity 99.99%), sodium sulfate (Na2SO4 purity ≥99.9%), sodium hydroxide 

(NaOH purity ≥99.9%), sodium citrate dihydrate (HOC(COONa)(CH2COONa)2·2H2O purity 

≥99%), salicylic acid (2-(HO)C6H4CO2H purity ≥99.0%), sodium hypochlorite (NaClO 10-

15%), sodium nitroferricyanide (Na2[Fe(CN)5NO]·2H2O purity ≥99%), sulfamic acid (H3NO3S 

purity 99.30%), N-(1-Naphthyl)ethylenediamine dihydrochloride 

(C10H7NHCH2CH2NH2·2HCl purity >98%), and sulfanilamide (H2NC6H4SO2NH2 purity 

≥99%), sodium nitrate (NaNO3 purity ≥99.9%), para-(dimethylamino)benzaldehyde 

((CH3)2NC6H4CHO purity 99%) were purchased from Sigma Aldrich. Potassium nitrate (KNO3 

purity ≥99.0%) was purchased from VWR chemicals. Sodium fluoride (NaF purity >99%) was 

purchased from Adamas. Hydrochloric acid (HCl 37%) was purchased from Fluka. All 

chemicals were directly used without further purification. Ultrapure water (18.2 megaohm·cm) 

was obtained by using Mili-Q Synthesis System. 

 

1.2. Determination of ion concentration  

The UV-vis spectrophotometer was used to detect the ion concentration of the catholyte before 

and after NO3
-RR. The catholyte was diluted to an appropriate concentration to match the range 

of the calibration curves. The details of the detection methods for each ion are as follows: 
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1.2.1. Determination of NO3
--N  

A certain amount of electrolyte was taken from the cathode chamber and diluted to 5 mL. Then, 

0.1 mL 1.0 M HCl and 0.01 mL 0.8 wt% sulfamic acid solution were added consecutively into 

the sample solution. The absorption spectrum was measured using a UV-vis spectrophotometer, 

and the absorption intensities at a wavelength of 220 nm and 275 nm were recorded. The final 

absorbance value was calculated by this equation: A=A220nm-2A275nm. The concentration-

absorbance curve was calibrated using a series of standard potassium nitrate solutions. The 

potassium nitrate was dried at 105 °C for 2 h in advance before using it to prepare the standard 

solutions.  

1.2.2 Determination of NO2
--N  

The concentration of NO2
--N was determined using the colorimetric method. A mixture of p-

aminobenzenesulfonamide (4 g), N-(1-Naphthyl) ethylenediamine dihydrochloride (0.2 g), 

ultrapure water (50 mL), and phosphoric acid (10 mL, ρ=1.70 g/mL) was used as a coloring 

reagent. A certain amount of electrolyte was taken from the cathode chamber and diluted to 5 

mL to meet the detection range. Then, 0.1 mL coloring reagent was mixed thoroughly to the 

sample solution. The solution was then aged for 20 min and finally measured using a UV-vis 

spectrophotometer. The absorption intensity at 540 nm was recorded. The concentration-

absorbance curve was calibrated using a series of standard sodium nitrite (NaNO2) solutions. 

NaNO2 was dried at 105 °C for 2 h in advance before using it to prepare the standard solutions.  

1.2.3. Determination of NH3-N 

The concentration of NH3 was determined by the indophenol-blue method using UV-vis 

spectrophotometry as in the previous report.1,2 In detail, 2 mL of standard solution or sample 

solutions obtained from the catholyte after the reaction were mixed with 2 mL of chromogenic 

reagent A, 1 mL of solution B, and 0.2 mL of catalyzing solution C (Solution A was made of 

1.0 M NaOH containing 5 wt% salicylic acid and 5 wt% sodium citrate, solution B was 0.05 M 

sodium hypochlorite, and solution C was 1 wt% sodium nitro-ferricyanide). After shaking and 

standing for 1 h, the absorption spectrum of the solution was then measured using UV-vis 

spectrophotometer in the wavelength range of 550-800 nm. The formation of indophenol blue 

was determined from absorbance at 655 nm. The standard calibration curve was made using 

standard NH4Cl solution with a series of concentrations. The ammonium chloride was dried at 

105 °C for 4 h in advance before using it to prepare the standard solutions.  

1.3 Performance calculation 

The electrocatalytic performances are reflected by NH3 yield, NH3 Faradaic efficiency (FENH3), 

NO3
- conversion, and NH3 selectivity as well as NO2

- selectivity. 



 

 

The NH3 yield was calculated based on Equation 1: 

 

𝑁𝐻3𝑦𝑖𝑒𝑙𝑑 =
𝑐 ×  𝑣

𝑡 ×  𝑚
 

(1) 

 

, where c is the NH3 concentration, v is the volume of the electrolyte in the cathode chamber, t 

is the reduction reaction time, and m is the mass of deposited catalyst. 

The FENH3 was calculated by the Equation 2: 

 

𝐹𝐸 =
8𝐹 ×  𝑐 ×  𝑣

17 ×  𝑄
 

(2) 

 

, where F is the Faraday constant, c is a concentration of NH3, v is the volume of electrolyte in 

the cathode chamber, 17 is the molecular mass of NH3, and Q is the total charge used for the 

electrodes. 

The conversion was calculated using Equation 3, while the selectivity of NH3 and NO2
- was 

obtained by Equation 4 as follow:  

 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =
∆𝑐𝑁𝑂3

−

𝑐0 
× 100%  

 (3) 

 

 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%) =
𝑐

∆𝑐𝑁𝑂3
−

× 100%  (4) 

 

, where ∆𝑐𝑁𝑂3
− is the concentration difference of NO3

- before and after the reaction, c0 is the 

initial concentration of NO3
-, and c is the generated concentration of NH3 or NO2

-. 

 

1.4 Determination of hydrazine (N2H4) 

The possible N2H4 product was estimated by the Watt and Chrisp method.1 The chromogenic 

reagent was prepared by dissolving 2.0 g para-(dimethylamino)benzaldehyde in a mixture of 

10 mL concentrated HCl and 100 mL methanol. For the measurement, 5 mL of samples was 

mixed with 5 mL of chromogenic reagent and stirred for 10 min. After stirring, the absorption 

spectrum solution was directly measured using the UV-vis spectrophotometer at a wavelength 

range of 410-500 nm. The hydrazine concentration was determined from the absorbance at 455 



 

 

nm. The standard calibration curve was made using the standard N2H4 solution with a series of 

concentrations ranging from 0.1 to 0.5 µg mL-1 in 0.5 M Na2SO4. 

 

1.5 Kinetic analyses 

The apparent kinetics rate constant (kap) for NO3
-RR were calculated based on the pseudo-first 

order Langmuir-Hinshelwood model (Equation 5) 

 

− ln
𝐶

𝐶0
= 𝑘𝑎𝑝 𝑡 

(5) 

 

, where C0 is the nitial concentration of NO3
-, C is the NO3

- concentration at reaction time t, t is 

time (min) and kap is the apparent rate constant.3 The NO3
-RR was performed at -0.9 V vs. 

RHE.  

 

The apparent activation energy (Ea) was determined according to the Arrhenius plot (Equation 

6) by performing NO3
-RR experiment in various temperature (20, 40, and 60 oC) at -0.9 V vs. 

RHE. 

 

𝑘𝑎𝑝 = 𝐴𝑒(−
𝐸𝑎
𝑅𝑇

)
 

(6) 

 

, where kap is the apparent rate constant, A is the pre-exponential factor, T is the reaction 

temperature, and R is the universal gas constant.3,4 

 

Tafel slopes were determined by Tafel plots (Equation 7).  

 

𝐸 = 𝑎 + 𝑏 log (𝐽𝑁𝐻3) (7) 

 

, where E is the applied potential (V vs. RHE), JNH3 is the partial current density of NH3, a is a 

constant and b is the Tafel slope.3  
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2. Results 

 

 

 

Figure S1 SEM images of a) (001)-dominant TiO2, b) (101)-dominant TiO2, and c) 

representative model of TiO2 with (001) and (101) exposed facets used for the 

calculation.  

 

The (001) facet exposure is calculated based on Equation 55 

 

𝑆(001)% =
𝑎2

𝑎2 + (𝑎 + 𝑏)(𝑏 − 𝑎) 𝑡𝑎𝑛 68.3°
× 100% 

(5) 

 

with θ is the theoretical angle value (68.3°) between (101) and (001) direction of anatase 

TiO2.
5 Based on the calculation over 30 representative measured particles, the facet 

exposure can be determined as follows: 

a) Facets exposure on (001)-dominant TiO2: ~70.2% of (001) facets and ~29.8% 

of (101) facets.  

b) Facets exposure on (101)-dominant TiO2: ~33.2% of (001) facets and ~66.8% 

of (101) facets. 
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Figure S2 a) TEM image of (001)-dominant Cu-TiO2 with corresponding elemental 

mapping of b) Ti, c) O, and d) Cu elements. 

 

 

Figure S3 a) TEM image of (101)-dominant Cu-TiO2 with corresponding elemental 

mapping of b) Ti, c) O, and d) Cu elements.  
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Figure S4 a-c) HRTEM images of (001)-dominant Cu-TiO2 used to calculate the 

average size of Cu nanoparticles loaded on (001)-dominant TiO2. The calculation was 

performed over 100 representative Cu nanoparticles.  

 

 

Figure S5 a-c) HRTEM images of (101)-dominant Cu-TiO2 used to calculate the 

average size of Cu nanoparticles loaded on (101)-dominant TiO2. The calculation was 

performed over 100 representative Cu nanoparticles. 
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Figure S6 CV curves of (001)-dominant Cu-TiO2, (101)-dominant Cu-TiO2, and Cu2O 

in 0.5 M Na2SO4. Cu2O is used as a reference material. 

 

 

Figure S7 LSV curves of pristine (001)-dominant TiO2 and (101)-dominant TiO2. The 

LSV measurements were performed in 0.5 M Na2SO4 without and with the addition of 

50 ppm NO3
-−N. 
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Figure S8 The calibration curves of a) NO3
-−N, b) NH3−N, and c) NO2

-−N. 

 

 

Figure S9 NO3
- conversion over faceted-TiO2-based electrocatalysts. All catalytic 

activity experiments were performed in 0.5 M Na2SO4 containing 50 ppm NO3
-−N. 
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Figure 10 FENH3 over faceted-TiO2-based electrocatalysts. All catalytic activity 

experiments were performed in 0.5 M Na2SO4 containing 50 ppm NO3
-−N. 

 

 

 

Figure S11 FEH2 over faceted-TiO2-based electrocatalysts. All catalytic activity 

experiments were performed in 0.5 M Na2SO4 containing 50 ppm NO3
-−N. 

 

 



 

11 

 

 

Figure S12 NO2
- selectivity over faceted-TiO2-based electrocatalysts. All catalytic 

activity experiments were performed in 0.5 M Na2SO4 containing 50 ppm NO3
-−N. 

 

 

Figure S13 FENO2 over faceted-TiO2-based electrocatalysts. All catalytic activity 

experiments were performed in 0.5 M Na2SO4 containing 50 ppm NO3
-−N. 
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Figure S14 a) UV-Vis absorption spectra of N2H4 standard solution and b) 

corresponding calibration curve of the N2H4. The absorbance is taken from the 

wavelength of 455 nm. c) The UV-Vis absorption spectra of electrolyte before and after 

reaction. The electrolyte was taken from the reaction using (101)-dominant Cu-TiO2 

performed at -0.9 V vs. RHE in 0.5 M Na2SO4 containing 50 ppm NO3
-−N. 
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Figure S15 Control experiment using (101)-dominant Cu-TiO2 without the addition of 

NO3, and in open circuit potential (OCP). Note that the absorbance curve of (101)-

dominant Cu-TiO2 is obtained after 20 times of dilution from the catholyte, while no 

dilution was performed for the control experiment without NO3
- and in OCP. 

 

 

Figure S16 UV absorbance spectra of the electrolyte (0.5 M Na2SO4) containing 50 

ppm NO3
-−N after exposure to air for 8 h. No accumulation of NH3 during 8 hours of 

exposure excluding the possible contamination from the environment (atmosphere). 
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Figure S17 EPR spectra of pristine (101)-dominant TiO2 (black) and NaBH4-reduced 

(101)-dominant TiO2. (101)-dominant TiO2 is used as the representative samples to 

verify the formation of OVs upon NaBH4 treatment. Both pristine (101)-dominant TiO2 

and reduced (101)-dominant TiO2 show a pair of steep peaks at g = 2.003, which can 

be correlated with the electron trapping at OVs.6 The slightly higher peak intensity of 

reduced (101)-dominant TiO2 compared to the pristine counterpart suggests the 

formation of OVs at certain degree upon NaBH4 reduction process.  
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Figure S18 Comparison of a) NH3 yield and b) NH3 selectivity over pristine (001)-

dominant TiO2, reduced-(001)-dominant-TiO2, and (001)-dominant Cu-TiO2. 

Comparison of c) NH3 yield and d) NH3 selectivity over pristine (101)-dominant TiO2, 

reduced-(101)-dominant-TiO2, and (101)-dominant Cu-TiO2. All experiments were 

performed in 0.5 M Na2SO4 containing 50 ppm NO3
-−N. 
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Figure S19 Comparison of a) NH3 yield and b) NH3 selectivity over pristine (001)-

dominant TiO2, Cu nanoparticles, and (001)-dominant Cu-TiO2. Comparison of c) NH3 

yield and d) NH3 selectivity over pristine (101)-dominant TiO2, Cu nanoparticles, and 

(101)-dominant Cu-TiO2. Note that the sum of the NH3 yield of pristine faceted TiO2 

(in both (001)-dominant TiO2 and (101)-dominant TiO2) with the Cu nanoparticles in 

each potential are still lower compared to the NH3 yield exhibited by (001)-dominant 

Cu-TiO2 and (101)-dominant Cu-TiO2. This result indicates that the enhancement of 

NH3 yield in Cu-loaded faceted TiO2 is mainly determined by the interaction between 

Cu nanoparticles and the faceted TiO2 instead of the individual/independent 

contribution between the two components. All experiments were performed in 0.5 M 

Na2SO4 containing 50 ppm NO3
-−N. 
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Figure S20 Langmuir-Hinshelwood plots on NO3

- concentration decrease over faceted-

TiO2-based catalysts. All experiments were performed at -0.9 V vs. RHE in 0.5 M 

Na2SO4 containing 50 ppm NO3
-−N under ambient conditions. 

 

 

Figure S21 Arrhenius plots on NO3
- concentration decrease over faceted-TiO2-based 

catalysts. All experiments were performed at -0.9 V vs. RHE in 0.5 M Na2SO4 

containing 50 ppm NO3
-−N. The temperatures varied at 20, 40, and 60 oC.   

 

 
Figure S22 Tafel plots over (001)-dominant Cu-TiO2 and (101)-dominant Cu-TiO2.  
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Figure S23 NO3

-, NH3, and NO2
- concentration changes over a) (101)-dominant TiO2 

and b) (101)-dominant Cu-TiO2 during 4 h of reaction. All experiments were performed 

at -0.9 V vs. RHE in 0.5 M Na2SO4 containing 50 ppm NO3
-−N. 

 

 

Figure S24 Comparison of NO2
- concentration changes over (001)-dominant Cu-TiO2 

and (101)-dominant Cu-TiO2. The experiments were performed at -0.9 V vs. RHE in 

0.5 M Na2SO4 containing 50 ppm NO3
-−N. 
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Figure S25 CV plots over faceted-TiO2-based catalysts in non-Faradaic regions with 

various scan rates. 

 

 

Figure S26 Mott-Schottky plots of a) (001)-dominant TiO2 and (001)-dominant Cu-

TiO2 and b) (101)-dominant TiO2 and (101)-dominant Cu-TiO2. 
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Table S1 Comparison of the activity of Ti-based electrocatalysts and Cu catalysts toward 

electrocatalytic NO3
-RR in neutral media. 

No Electrocatalyst Electrolyte 
NH3 yield rate 

(µg mgcat
-1 h-) 

FENH3 

(%) 

NH3 

selectivity 

(%) 

Potential 

(V vs. RHE) 
Ref 

1 (101)-dominant 

Cu-TiO2 

0.5 M Na2SO4 + 50 ppm NO3
-

-N 

447.5 67.1  

(-0.8 V) 

66.7 -0.9 This 

work 

2 TiO2-x 0.5 M Na2SO4 + 50 ppm NO3
-

-N  
~765 85.0 87.1 -1.6a) 7

 

3 Defected-TiO2 

nanotube 

0.5 M Na2SO4 + 15 mM NO3
- 

(210 ppm NO3
--N) 

~1190 43 91 -1.6 8 

4 Co@TiO2/titanium 

plate 

0.1 M PBS + 0.1 M NO3
- 

(~1400 ppm NO3
--N) 

~13600b) 96.7 - -1.0 9 

5 Nb-doped TiO2 0.1 M PBS + 0.1 M NO3
- 

(~1400 ppm NO3
--N) 

27940 70.64 - -1.35 10 

6 Ti foil 0.4 M [NO3
-] at pH ~0.77 - 82 - -1 11 

7 Co3O4/Ti 0.05 M Na2SO4 + 100 ppm 

NO3
--N 

- - 32  12 

8 Cu nanobelts (100) 50.1 M PBS + 500 ppm 

KNO3  
~2227 ~50 72.88 -0.6 13

 

9 Cu-molecular 0.1 M PBS + 500 ppm NO3
- ~442 85.9 - -0.4 14

 

       
a)V vs. SCE 
b)g cm-2 h-1 
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Table S2 RS and RCT values over faceted-TiO2-based catalysts. 

Sample Rs (Ohm) RCT (Ohm) 

(001)-dominant TiO2 6.06 74.38 

(001)-dominant Cu-TiO2 5.51 27.20 

(101)-dominant TiO2 5.52 152.50 

(101)-dominant Cu-TiO2 5.78 40.28 
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