Electronic Supplementary Information

Ionic liquid-based aqueous biphasic systems as one-step clean-up, microextraction and preconcentration platforms for the improved determination of salivary biomarkers

Raúl González-Martín^{a,b,c}, Francisca A. e Silva^c, María J. Trujillo-Rodríguez^{a,b,c},

David Díaz Díaz^{d,e}, Jacob Lorenzo-Morales^{f,g,h}, Mara G. Freire**c, Verónica

Pino*a,b,g

^aLaboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Avda. Astrofísico Francisco Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain ^bUnidad de Investigación de Bioanalítica y Medio Ambiente, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), ULL, Avda. Astrofísico Francisco Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain °CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal ^dDepartamento de Química Orgánica, ULL, Avda. Astrofísico Francisco Sánchez 3, 38206, San Cristóbal de La Laguna, Spain ^eInstituto de Bio-Orgánica Antonio González, ULL, Avda. Astrofísico Francisco Sánchez 2, 38206, San Cristóbal de La Laguna, Spain ^fIUESTP, ULL, Avda. Astrofísico Francisco Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain ^gCentro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain ^hDepartamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, ULL, 38200, San Cristóbal de La Laguna, Spain

Table of Contents

Procedures

Synthesis and characterization of the C ₄ Gu-Cl IL	page	S3
Proteins assays	page	S3
Tie-lines determination	page	S4
Figures		
Figure S1	page	S5
Figure S2	page	S6
Figure S3	page	S 7
Figure S4	page	S 8
Tables		
Table S1	page	S9
Table S2	page	S10
Table S3	page	S10
Table S4	page	S11
Table S5	page	S11
Table S6	page	S12
Table S7	page	S13
Table S8	page	S14
Table S9	page	S15
Table S10	page	S16
Table S11	page	S17
Table S12	page	S18
Table S13	page	S19
Table S14	page	S20
Table S15	page	S21
Table S16	page	S23
Table S17	page	S24
References (ESI)	page	S25

Synthesis and characterization of the C₄Gu-Cl IL

The C₄Gu-Cl IL was synthesized according to the procedure described in the literature [29] with slight modifications. Briefly, 1H-pyrazole-1-carboxamidine hydrochloride (19.8 mmol, 2.90 g) and butylamine (19.8 mmol, 1.96 mL) were mixed in EtOH at 35 °C for 48 h. Then, the solvent was evaporated (50 °C, $1.50 \cdot 10^4 \text{ N} \cdot \text{m}^{-2}$) and the product was dried under vacuum at 25 °C for 24 h. Finally, the IL was successfully characterized by ¹H-NMR.

Fig. S1 shows the synthesis procedure followed to prepare the IL, together with its chemical structure, and the ¹H-NMR spectrum obtained in DMSO- d_6 .

Proteins assays

The Bradford Colorimetric Assay (BCA) was performed in the following samples: *i*) nondiluted healthy male saliva; *ii*) 1:2 diluted male saliva; *iii*) 1:10 diluted male saliva; *iv*) salt-rich phase of the ABS/TPP; *v*) IL-rich phase (diluted up to 1 g) of the ABS/TPP. The calibration standards were prepared within 0–2000 μ g·mL⁻¹ range by diluting the commercial BSA solution. Each well of the plate was filled with 250 μ L of the Bradford standard solution and 5 μ L of each sample. Finally, the well-plate was read at 595 nm, and the concentration of proteins in each sample were obtained using the measured absorbance values.

The solutions to run in the SDS-PAGE were prepared by mixing 45 μ L of each sample or phase (depending on the experiment) with 15 μ L of the Laemmli buffer. Non-diluted male saliva, 1:2 diluted male saliva, and diluted IL-rich phase, were measured by duplicate. Each solution was stirred at 100 °C for 5 min before running the gel. An 80 V potential was initially applied and then increased up to 150 V for performing the electrophoresis. This procedure lasted 45 min, followed by the tinction of the gel with the Coomasie solution overnight. Finally, the gel was decolored using an aqueous solution of acetic acid/MeOH (10/30, v/v).

Tie-lines determination

The following system of equations was solved for the determination of TLs (Eqs. S1–S4):

$$[IL]_{IL} = A \cdot \exp[(B \cdot [salt]_{IL}^{0.5}) - (C \cdot [salt]_{IL}^{3})]$$
(S1)

$$[IL]_{salt} = A \cdot exp[(B \cdot [salt]_{salt}^{0.5}) - (C \cdot [salt]_{salt}^{3})]$$
(S2)

$$[IL]_{IL} = \frac{[IL]_{M}}{\alpha} - \frac{1 - \alpha}{\alpha} \cdot [IL]_{salt}$$
(S3)

$$[\text{salt}]_{\text{IL}} = \frac{[\text{salt}]_{\text{M}}}{\alpha} - \frac{1 - \alpha}{\alpha} \cdot [\text{salt}]_{\text{salt}}$$
(S4)

where $[IL]_{IL}$ and $[salt]_{IL}$ are the weight percentages of the IL and the salt, respectively, in the IL-rich phase; $[IL]_{salt}$ and $[salt]_{salt}$ are the weight percentages of the IL and the salt, respectively, in the salt-rich phase; and $[IL]_{M}$ and $[salt]_{M}$ are the weight percentages of both the IL and the salt in the mixture point selected for the determination of the TL. α is the ratio between the IL-rich phase weight and the total mixture weight. *A*, *B* and *C* are fitting parameters of the regression. The TLL describes the difference between the composition of both the IL-rich and the salt-rich phases, and it was calculated applying the Eq. S5:

$$TLL = \sqrt{\left(\left[\text{salt}\right]_{\text{IL}} - \left[\text{salt}\right]_{\text{salt}}\right)^2 + \left(\left[\text{IL}\right]_{\text{IL}} - \left[\text{IL}\right]_{\text{salt}}\right)^2}$$
(S5)

Figure S1. Synthesis and characterization of the C₄Gu-Cl IL: (**A**) Synthetic reaction scheme to form the C₄Gu-Cl IL; (**B**) ¹NMR spectrum (300 MHz, DMSO- d_6) of the synthesized C₄Gu-Cl IL:

 $\begin{array}{l} - \delta \ 3.18 - 2.98 \ (m, \ 2H), \ 1.51 - 1.20 \ (m, \ 4H), \ 0.84 \ (t, \ J = 7.2 \ Hz, \ 3H) \\ - \ Ethanol \ residual \ signals: \ 1.11 \ - \ 0.99 \ (t, \ 3H), \ 3.50 \ - \ 3.35 \ (q, \ 2H). \end{array}$

Figure S2. Development of ABS-TPP systems resorting to ABSs composed of 30 wt% of C₄Gu-Cl and 25 wt% of K₂HPO₄: (**A**) ABSs formed using real male saliva and different dilutions of the sample, i.e., **1**) non-diluted saliva, **2**) 1:2 diluted saliva, **3**) 1:10 diluted saliva (with the solid interphases marked with *); (**B**) ABS formed using ultrapure water, in which there is no formation of a solid interphase between the liquid phases.

S6

Figure S3. Solubility studies in both the initial and the final composition of the ACN/H₂O HPLC mobile phase of: (A) the IL-rich phase collected after performing an ABS/TPP using non-diluted saliva, using a mixture point belonging to the TL1 of the ABS composed by $C_4Gu-Cl + K_2HPO_4$ (18 wt% IL + 30 wt% salt); (B) real human saliva without any pretreatment.

Figure S4. Diagrams obtained in the greenness assessment of 2 representative reported methods for the determination of BPs in human saliva [9,10]: (A) AGREE diagrams for the entire method; (B) AGREEprep diagrams for the sample preparation procedure in such studies.

Bisphenol (abbreviation)	Chemical structure	CAS number	Molecular weight (g·mol ⁻¹)	pK _a	Log K _{ow} *
Bisphenol A (BPA)	НОСОН	80-05-7	228.29	10.29	3.641
Bisphenol B (BPB)	но он	77-40-7	242.31	10.27	4.150
Bisphenol C (BPC)	HO	79-97-0	256.34	10.45	4.643
Bisphenol F (BPF)	HOUND	620-92-8	200.23	9.91	2.764
Bisphenol P (BPP)	но-	2167-51-3	346.46	10.31	6.564

Table S1. Physicochemical properties of the target bisphenols, obtained from SciFinder[®] 2023 database.

* Logarithm of octanol/water partition coefficient at 25 °C.

Duffanal	nII	Amount of	Amount of	Amount of	Amount of
Duniers"	рп	$C_6H_8O_7^b(g)$	C ₆ H ₅ K ₃ O ₇ ^b (g)	$\mathrm{KH}_{2}\mathrm{PO}_{4}^{\mathrm{b}}\left(\mathrm{g}\right)$	$K_2HPO_4^b(g)$
	5	7.3258	17.6782	-	-
Citrate	6	3.6750	21.3197	-	-
buffers	7	0.9623	24.0422	-	-
	8	0.1163	24.8807	-	-
Phosphate	7			7 2415	10 2000
buffer	/	-	-	/.2413	12.3282

Table S2. Preparation of citrate and phosphate buffers.

^a The total mass of all the buffers solutions was 50 g, being at ca. 50 wt% of $C_6H_5K_3O_7$ + $C_6H_8O_7$ for citrate buffers and at ca. 40 wt% of $KH_2PO_4 + K_2HPO_4$ for phosphate buffer.

^b Amounts of non-hydrated compounds.

Table S3. Chromatographic retention times obtained in the HPLC for target analytes under optimum conditions, as well as optimum fluorescence conditions set in the FD for the identification of the target bisphenols.

Bisphenol	Retention time (min) ± SD ^a	$\lambda_{ex}^{b}(nm)$	$\lambda_{em}^{c}(nm)$
BPF	10.48 ± 0.01	235	300
BPA	13.53 ± 0.01	275	305
BPB	16.09 ± 0.02	275	305
BPC	18.34 ± 0.02	275	305
BPP	27.04 ± 0.04	235	300

^a Standard deviation for n = 10.

^b Excitation wavelength.

^c Emission wavelength.

	Is the ABS formed?
Citrate buffer ^a pH 5	No
Citrate buffer ^a pH 6	Yes
Citrate buffer ^a pH 7	Yes
Citrate buffer ^a pH 8	Yes
$C_6H_5K_3O_7$	Yes
KH ₂ PO ₄	No
Phosphate buffer ^b pH 7	Yes
K ₂ HPO ₄	Yes
K ₃ PO ₄	Yes
-	Citrate buffer ^a pH 5 Citrate buffer ^a pH 6 Citrate buffer ^a pH 7 Citrate buffer ^a pH 8 $C_6H_5K_3O_7$ KH_2PO_4 Phosphate buffer ^b pH 7 K_2HPO_4 K_3PO_4

Table S4. Ability of the C_4 Gu-Cl IL to form biphasic systems in water with different salts and buffers.

^a Buffer prepared by mixing $C_6H_8O_7$ and $C_6H_5K_3O_7$ in water at different ratio depending on the pH (see Table S2).

^b Buffer prepared by mixing KH₂PO₄ and K₂HPO₄ in water (see Table S2).

Table S5. Correlation parameters for the experimental binodal data of the ABSs composed of C_4 Gu-Cl and salt according to Eq. (1).

Salt		$A \pm SD^{a}$	B ± SD ^a	$(C \pm SD^a) \cdot 10^5$	R ² b
Citrate salts	Citrate buffer pH 6	114 ± 39	-0.2 ± 0.1	1.8 ± 0.9	0.984
	Citrate buffer pH 7	126 ± 6	$\textbf{-0.28} \pm 0.01$	2.7 ± 0.1	0.998
	Citrate buffer pH 8	113 ± 7	$\textbf{-}0.26\pm0.02$	3.2 ± 0.2	0.996
	$C_6H_5K_3O_7$	119 ± 6	$\textbf{-0.27} \pm 0.02$	3.3 ± 0.2	0.997
Phosphate salts	Phosphate buffer pH 7	123 ± 15	-0.32 ± 0.04	3.7 ± 0.5	0.994
	K ₂ HPO ₄	131 ± 13	$\textbf{-0.33}\pm0.03$	5.4 ± 0.4	0.994
	K ₃ PO ₄	206 ± 29	-0.53 ± 0.05	9 ± 1	0.990

^a Standard deviation.

^b Determination coefficient.

Table S6. Experimental weight fraction (wt%) data for the system composed of C_4Gu-Cl IL (1) + citrate buffer ($C_6H_8O_7$ / $C_6H_5K_3O_7$) at pH 6 (2) + H₂O (3) at 25 °C and atmospheric pressure.

wt%1	wt%2
55.25	9.64
43.49	15.36
35.62	19.49
23.39	27.07
19.84	29.52
16.01	32.25
13.14	34.77

wt%1	wt%2	wt%1	wt%2
55.89	8.54	15.82	28.04
51.21	10.56	15.10	28.56
48.35	11.21	14.46	29.06
44.48	12.84	13.83	29.58
41.08	14.37	12.93	30.13
38.11	15.67	12.42	30.59
35.46	17.01	12.06	30.89
32.80	18.58	11.55	31.34
31.03	19.41	11.07	31.75
29.39	20.23	10.31	32.34
27.49	21.29	9.87	32.76
26.34	21.88	9.47	33.13
25.11	22.42	9.10	33.49
23.62	23.40	8.66	34.05
22.70	23.82	8.28	34.49
21.22	24.81	7.92	34.87
20.52	25.11	7.57	35.30
19.84	25.49	7.24	35.72
19.25	25.85	6.97	36.06
18.67	26.20	6.68	36.45
17.88	26.69	6.40	36.84
17.15	27.14	6.10	37.25
16.37	27.64		

Table S7. Experimental weight fraction (wt%) data for the system composed of C_4Gu- Cl IL (1) + citrate buffer ($C_6H_8O_7$ / $C_6H_5K_3O_7$) at pH 7 (2) + H₂O (3) at 25 °C and atmospheric pressure.

wt%1	wt%2	wt%1	wt%2
58.62	6.77	11.46	29.71
53.02	8.40	10.58	30.55
45.58	11.90	10.06	31.05
40.14	14.57	9.59	31.47
37.91	15.29	9.02	32.05
33.99	17.39	8.50	32.69
31.91	18.08	7.95	33.29
29.29	19.36	7.57	33.78
26.62	20.58	7.30	34.10
24.72	21.53	6.98	34.48
22.37	23.04	6.71	34.84
20.88	23.81	6.33	35.34
19.76	24.43	5.96	35.88
18.79	24.92	5.54	36.54
17.81	25.46	5.24	37.07
16.35	26.46	4.94	37.58
15.22	27.15	4.51	38.37
14.29	27.80	4.23	38.93
13.50	28.27	3.61	40.23
12.73	28.67	3.18	41.11
12.16	29.13		

Table S8. Experimental weight fraction (wt%) data for the system composed of C_4Gu- Cl IL (1) + citrate buffer ($C_6H_8O_7$ / $C_6H_5K_3O_7$) at pH 8 (2) + H₂O (3) at 25 °C and atmospheric pressure.

wt%1	wt%2	wt%1	wt%2
56.81	7.52	16.09	26.19
50.92	9.66	15.69	26.43
44.71	11.83	15.12	26.82
41.18	13.38	14.56	27.24
37.97	15.00	14.19	27.48
36.52	15.42	13.81	27.73
34.40	16.47	13.39	28.07
32.74	17.26	12.95	28.42
31.04	18.04	12.55	28.80
29.46	18.91	11.89	29.29
28.08	19.72	11.47	29.64
26.83	20.26	10.86	30.12
25.66	20.78	10.26	30.63
24.51	21.32	9.58	31.28
23.14	22.17	9.00	31.87
22.22	22.62	8.44	32.43
21.38	23.06	7.77	33.20
20.96	23.15	7.39	33.66
20.03	23.77	6.91	34.23
19.43	24.12	6.76	34.38
18.76	24.44	6.49	34.79
18.17	24.78	6.17	35.22
17.37	25.31	5.59	36.09
16.65	25.81		

Table S9. Experimental weight fraction (wt%) data for the system composed of C_4Gu- Cl IL (1) + $C_6H_5K_3O_7$ (2) + H_2O (3) at 25 °C and atmospheric pressure.

Table S10. Experimental weight fraction (wt%) data for the system composed of C_4 Gu-Cl IL (1) + phosphate buffer (KH₂PO₄ / K₂HPO₄) at pH 7 (2) + H₂O (3) at 25 °C and atmospheric pressure.

wt%1	wt%2
52.50	8.51
45.78	9.21
41.88	10.76
38.15	12.33
35.46	13.38
33.48	14.56
31.24	15.42
28.08	17.04
25.79	18.30
23.54	19.56
21.55	20.66
20.09	21.56
18.54	22.43
17.29	23.17
16.14	23.85
15.08	24.54
14.16	25.17
13.43	25.67
12.62	26.24
11.78	26.83
11.20	27.22
10.40	27.86
9.70	28.39
8.84	29.08

wt%1	wt%2	wt%1	wt%2
55.43	8.11	15.56	22.35
46.28	9.48	14.69	22.63
41.83	10.52	14.21	22.88
38.02	12.02	13.74	23.11
36.76	12.39	13.32	23.35
34.49	13.44	13.03	23.52
33.38	13.75	12.65	23.74
31.46	14.60	12.29	23.98
29.86	15.34	11.91	24.22
28.96	15.55	11.46	24.54
27.75	16.14	10.79	24.98
26.47	16.70	10.55	25.13
25.34	17.26	10.27	25.33
24.15	17.92	9.71	25.72
23.59	17.98	9.39	26.00
22.34	18.59	8.73	26.47
21.51	18.95	8.22	26.86
20.62	19.45	7.66	27.35
19.11	20.39	7.24	27.66
18.40	20.67	6.94	27.91
17.75	20.99	6.54	28.29
17.18	21.30	6.20	28.59
16.72	21.54	5.57	29.19

Table S11. Experimental weight fraction (wt%) data for the system composed of C_4 Gu-Cl IL (1) + K₂HPO₄ (2) + H₂O (3) at 25 °C and atmospheric pressure.

wt%1	wt%2	wt%1	wt%2
56.31	7.47	13.40	17.71
46.77	7.57	12.62	18.11
43.05	8.31	11.83	18.54
41.21	8.49	11.06	18.99
39.23	9.18	10.47	19.33
37.02	9.85	9.80	19.72
35.25	10.30	9.37	20.02
32.78	11.03	8.86	20.35
31.76	11.23	8.44	20.65
30.36	11.50	8.15	20.85
28.68	12.13	7.83	21.11
26.84	12.61	7.45	21.55
25.90	12.85	7.10	21.70
24.83	13.14	6.93	21.85
24.01	13.60	6.72	22.03
23.37	13.65	6.48	22.26
22.92	13.75	6.26	22.42
22.26	14.10	6.02	22.72
21.82	14.20	5.81	22.87
21.17	14.52	5.63	23.05
20.41	14.76	5.50	23.17
19.67	14.97	5.23	23.46
18.83	15.35	5.05	23.67
18.02	15.72	4.92	23.83
17.14	16.03	4.79	23.95
16.34	16.30	4.64	24.14
15.38	16.72	4.502	24.27
14.30	17.31		
		1	

Table S12. Experimental weight fraction (wt%) data for the system composed of C_4Gu- Cl IL (1) + K_3PO_4 (2) + H_2O (3) at 25 °C and atmospheric pressure.

Salt	TL	Weight fraction composition (wt%)										
		[IL] _{IL}	[salt] _{IL}	$[IL]_M$	[salt] _M	[IL] _{salt}	[salt] _{salt}	TLL	α			
Citrate	1	59.12	7.053	29.64	24.59	13.08	34.44	53.57	0.36			
buffer pH 6	2	66.40	4.836	35.25	24.87	4.575	44.59	73.50	0.50			
	3	71.85	3.540	39.50	25.36	1.955	50.69	84.31	0.54			
Citrate	1	66.03	5.278	29.64	24.90	4.935	38.23	69.41	0.40			
buffer pH 7	2	59.19	7.117	24.42	24.46	12.80	30.25	51.84	0.25			
	3	79.78	2.666	35.15	25.04	3.242	41.03	85.62	0.42			
Citrate	1	79.40	1.824	31.08	25.44	3.300	39.02	84.71	0.37			
buffer pH 8	2	71.61	3.036	24.89	26.09	5.616	35.59	73.59	0.29			
	3	81.72	1.540	33.31	25.28	2.638	40.33	88.08	0.39			
C ₆ H ₅ K ₃ O ₇	1	78.79	2.207	30.35	24.66	4.431	36.68	81.96	0.35			
	2	70.16	3.623	25.72	24.47	7.468	33.03	69.25	0.29			
	3	90.06	1.001	34.86	25.05	3.094	38.88	94.85	0.37			
Phosphate	1	80.13	1.813	29.41	24.95	2.707	37.12	85.10	0.34			
buffer pH 7	2	73.36	2.635	26.39	24.63	3.739	35.23	76.88	0.33			
	3	60.22	4.991	19.67	25.50	5.604	32.61	61.20	0.26			
K ₂ HPO ₄	1	84.48	1.730	30.08	24.776	1.089	37.06	90.56	0.35			
	2	78.16	2.395	24.75	24.86	2.033	34.41	82.59	0.30			
	3	69.90	3.530	20.11	25.22	2.922	32.71	73.05	0.26			
K ₃ PO ₄	1	91.43	2.335	29.85	24.95	0.1253	35.86	97.26	0.33			
	2	82.83	2.931	24.05	24.98	0.2636	33.90	88.18	0.29			
	3	74.37	3.651	19.79	25.13	0.3935	32.76	79.50	0.26			

Table S13. TLs, TLLs, and α of the developed ABSs composed of C4Gu-Cl IL + salt + H2O.

TL1 (highlighted in the table) is the TL common for all the systems.

Table S14. Quality analytical parameters and precision of the chromatographic method (HPLC-FD), using standards of the target bisphenols in ACN/H₂O (20/80, v/v).

Bisphenol	$(b \pm t \cdot S_b)^a$	R ^{2b}	S _{y/x} ^c ·10 ⁻⁴	LOD ^d	LOQ ^e	Low conc. level (80 ng·g ⁻¹)		High conc	. level (750 ng·g ⁻¹)
	·10 ⁻⁶			(ng·g ⁻¹)	(ng·g ⁻¹)	Intraday Intermediate		Intraday	Intermediate
						RSD range ^f	precision RSD ^g (%)	RSD range ^f	precision RSD ^g (%)
						(%)		(%)	
BPF	3.0 ± 0.1	0.9992	3.5	2.0	5.0	0.90-2.1	5.9	0.60-5.6	3.6
BPA	3.9 ± 0.2	0.9992	4.8	2.0	5.0	0.50-2.1	3.5	0.60-4.8	3.8
BPB	4.7 ± 0.2	0.9992	5.6	1.8	4.9	0.40–1.9	1.6	0.50-2.8	2.5
BPC	7.3 ± 0.3	0.9994	7.6	1.5	4.5	0.60-3.5	4.4	0.70-3.4	3.6
BPP	10.6 ± 0.4	0.9992	13	1.5	4.5	2.4–2.8	2.8	1.2–1.3	1.2

^a Slope and uncertainty of the slope within the calibration range $(5-1000 \text{ ng} \cdot \text{g}^{-1}, n = 6)$ for a confidential level of 95%.

^b Determination coefficient.

^c Standard deviation of the residuals.

^d Limit of detection, determined by decreasing the concentration of the standards in ACN/H₂O (20/80, v/v) until a S/N ratio of 3 was obtained.

^e Limit of quantification, estimated as 10/3 times the LOD, and experimentally verified by injection of the standards in ACN/H₂O (20/80, v/v) at the concentrations predicted.

^f Range (day 1 to day 2) of relative standard deviation for intra-day precision (n = 4), tested with an aqueous standard not included as calibration point.

^g Relative standard deviation for intermediate precision (n = 8, 2 non-consecutive days), tested with an aqueous standard not included as calibration point.

Table S15. Comparison of several parameters of the developed ABS/TPP-HPLC-FD method with other methods reported in the literature for the determination of BPs in human saliva.

Analytes in common / other analytes ^a	Saliva pretreatment	Saliva amount	Extraction material ^b / amount	Extraction method ^c	Post- extraction steps	Analytical technique ^d	Overall time ^e (min)	LOD ^f (ng·mL ⁻¹)	Ref.
BPA, BPB, BPC, BPF, & BPP	non required	1.1 g	C ₄ Gu-Cl IL / 0.35 g	ABS/TPP-based microextraction	dilution	LC-FD	0 + 21 + 30	0.40–1.4	This work
BPA, BPB, BPC, BPF, & BPP / 6 PBs + 7 BPs	deproteinization + lyophilization	1.0 g	acetone + ethanol / 1.5 mL + 1.5 mL	UAE	evaporation + reconstitution	LC-MS/MS	545 + 11 + 21	0.10–0.40	[9]
BPA & BPF / TCS + 4 PBs + 2 BPs + 6 PTs	centrifugation + enzymatic digestion	2.0 mL	acetonitrile / 200 μL	DLLME	derivatization	GC-MS	215 + 15 + 31	0.015–3.0	[10]
BPA & BPP / 4 BPs + 5 PBs + 5 BzPs + TCC	non required	0.50 mL	trichloromethane / 500 μL	DLLME	evaporation + reconstitution	LC-MS/MS	0 + 15 + 10	0.010– 0.10	[8]
BPA, BPB, BPF & BPP / 10 BPs	centrifugation	1.0 mL	SUPRA (hexanol + THF) / (45 μL + 450 μL)	SUPRAS microextraction	evaporation + reconstitution	LC-MS/MS	30 + 35 + 32	0.012– 0.049	[38]

^a Abbreviations: PBs for parabens, BPs for bisphenols, TCS for triclosan, PTs for phthalates, BzPs for benzophenones, TCC for triclocarban.

^b Abbreviations: C₄Gu-Cl for butylguanidinium chloride, IL for ionic liquid, SUPRA for supramolecular solvent, THF for tetrahydrofuran.

^c Abbreviations: ABS/TPP for three-phase partitioning based on aqueous biphasic system, UAE for ultrasounds-assisted extraction, DLLME for dispersive liquid-liquid microextraction.

^d Abbreviations: LC for liquid-chromatography, FD for fluorescence detection, MS for mass spectrometry, MS/MS for tandem mass spectrometry, GC for gas chromatography.

^e Sample pretreatment time + extraction time + chromatographic analysis time.

^f Limit of detection, expressed with respect to the saliva sample.

Table S16. Statistical tests for the RRs to assess the matrix effect obtained with the ABS/TPP-HPLC-FD method when analyzing saliva samples

 different from that used for the matrix-matched calibration approach.

	Healthy male saliva						Healthy female saliva					
Bisphenol	F test ^a	Student's t test ^c				F test ^a		Student's t test ^c				
	Result ^b	Variances comparison	t _{cal} d	<i>t</i> _{crit} ^e	Result ^f	Matrix effect	Result ^b	Variances comparison	t _{cal} d	<i>t</i> _{crit} ^e	Result ^f	Matrix effect
BPF	$F_{\rm cal} < F_{\rm crit}$	Homogeneous	0.84	3.2	$t_{\rm cal} < t_{\rm crit}$	No	$F_{\rm cal} < F_{\rm crit}$	Homogeneous	0.37	2.8	$t_{\rm cal} < t_{\rm crit}$	No
BPA	$F_{\rm cal} \! > \! F_{\rm crit}$	Heterogeneous	3.7	3.2	$t_{\rm cal} > t_{\rm crit}$	Yes	$F_{\rm cal} > F_{\rm crit}$	Heterogeneous	1.9	3.2	$t_{\rm cal}^{} < t_{\rm crit}^{}$	No
BPB	$F_{\rm cal} < F_{\rm crit}$	Homogeneous	3.0	3.2	$t_{\rm cal} < t_{\rm crit}$	No	$F_{\rm cal} {<} F_{\rm crit}$	Homogeneous	0.43	2.8	$t_{\rm cal} < t_{\rm crit}$	No
BPC	$F_{\rm cal} < F_{\rm crit}$	Homogeneous	1.7	3.2	$t_{\rm cal} < t_{\rm crit}$	No	$F_{\rm cal} {<} F_{\rm crit}$	Homogeneous	0.37	2.8	$t_{\rm cal} < t_{\rm crit}$	No
BPP	$F_{\rm cal} < F_{\rm crit}$	Homogeneous	2.2	3.2	$t_{\rm cal}^{} < t_{\rm crit}^{}$	No	$F_{\rm cal} > F_{\rm crit}$	Heterogeneous	2.13	2.8	$t_{\rm cal}^{} < t_{\rm crit}^{}$	No

^a F statistical test for variances (comparing the RRs obtained in each sample with those obtained in the matrix of the calibration).

^b Result of the *F* test, considering n - 1 degrees of freedom (n = 3) and a confidential level of 95%.

^c Student's *t* statistical test for means comparison (considering equal variances or different variances, depending on the result of the *F* test).

^dCalculated *t* value.

^eCritical *t* value.

^f Result of the *t* test, considering $n_1 + n_2 - 2$ degrees of freedom and a confidential level of 95%, and being n_1 and n_2 the number of RR data of each of the compared saliva samples (n = 3 for both analyzed matrices and for the calibration matrix).

Table S17. Comparison between the costs related to the use of the butylguanidinium chloride IL and those associated to the use of other ILs or other conventional benchmark materials commonly employed as ABSs phase-forming components.

Solvent	Chemical structure	€ per g (supplier)	€ per extraction ^b
Butylguanidinium chloride	$\overset{NH_2}{\overbrace{\overset{\bullet}{N}\overset{\bullet}{NH_2}}}_{NH_2}$	11.37 (synthesized in this work ^a)	3.98
1-butyl-3- methylimidazolium chloride		21.76 (Sigma- Aldrich)	7.62
1-butyl-4- methylpyridinium chloride		20.47 (Fisher Scientific)	7.16
1-butyl-1- methylpyrrolidinium chloride	N⊕ Cl	6.82 (Sigma- Aldrich)	2.39
Polypropylene glycol		8.98 (Sigma- Aldrich)	3.14

^a Cost calculated by considering the price of the commercial reagents involved in the synthesis of the IL, as well as the amounts used of these reagents and the amount of IL obtained per batch.

^b Cost associated to the use of 0.35 g of the solvent (the amount of IL used in the ABS/TPP microextraction procedure proposed in this work). This amount not necessarily will work with other ILs or polymers, and therefore, perhaps higher costs for these other materials would be needed. The ideal scenario for these other materials is included in the Table.

References (ESI)

[8] M.L. de Oliveira, B.A. Rocha, V.C.O. Souza, and F. Barbosa Jr., *Talanta*, 2019, 196, 271–276.

[9] I. Moscoso-Ruiz, Y. Gálvez-Ontiveros, S. Cantarero-Malagón, A. Rivas, and A. Zafra-Gómez, *Microchem. J.*, 2022, **175**, 107122.

[10] T.H.V. Vu, H.-H. Lim, and H.-S. Shin, *Bull. Korean Chem. Soc.*, 2020, 41, 424–432.

[29] R. González-Martín, I. Pacheco-Fernández, J.H. Ayala, A.M. Afonso, and V. Pino, *Talanta*, 2019, 203, 305–313.

[38] E. Romera-García, N. Caballero-Casero, and S. Rubio, *Talanta*, 2019, 204, 465–474.